JPS6345069B2 - - Google Patents

Info

Publication number
JPS6345069B2
JPS6345069B2 JP5707380A JP5707380A JPS6345069B2 JP S6345069 B2 JPS6345069 B2 JP S6345069B2 JP 5707380 A JP5707380 A JP 5707380A JP 5707380 A JP5707380 A JP 5707380A JP S6345069 B2 JPS6345069 B2 JP S6345069B2
Authority
JP
Japan
Prior art keywords
liquid
sample
diluent
probe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5707380A
Other languages
Japanese (ja)
Other versions
JPS56154667A (en
Inventor
Kazuo Shiono
Sugio Mabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5707380A priority Critical patent/JPS56154667A/en
Publication of JPS56154667A publication Critical patent/JPS56154667A/en
Publication of JPS6345069B2 publication Critical patent/JPS6345069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples

Description

【発明の詳細な説明】 本発明は例えば血液や尿等の試料中の所定の成
分を定量分析する自動分析装置に用いられる試料
分注装置や試薬分注装置に好適に採用される分注
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a dispensing method suitable for use in sample dispensing devices and reagent dispensing devices used in automatic analyzers that quantitatively analyze predetermined components in samples such as blood and urine. It is related to.

自動分析装置は従来種々の構成のものが提案さ
れているが、一般にはサンプラによつて順次搬送
される血液等の試料を試料分注装置によつて、所
定の通路に沿つて間欠的に搬送される反応管に順
次に定量分注すると共に、この反応管に測定項目
に応じた試薬を試薬分注装置によつて定量分注し
て試料と試薬とを反応させ、その反応液の吸光度
を測定して測定項目の定量分析を行なうデイスク
リート方式を採用している。かゝる自動分析装置
は一般には多項目の分析が行なわれるよう構成さ
れ、それに応じて各分析項目に対して使用する試
薬を同時にセツトできるよう構成されている。こ
の場合、各試薬に対してそれぞれ分注装置を設け
ることもできるが、このようにすると装置が高価
になると共に大形かつ複雑になるため、近年では
試薬分注装置を試料分注装置と同様に、1つの分
注装置で異なる複数種の試薬をデイスクリートに
分注するよう構成している。このように、1つの
分注装置によつて多種類の試料や試薬をデイスク
リートで分注する場合には、コンタミネーシヨン
を防ぐため一般にはプローブ先端まで希釈液を満
たしておき、先ず空気を吸引してから所要の液体
(例えば試料)を所定量吸引し、プローブ内壁に
附着する試料を空気層と希釈液との境界面におい
て剥落しながら吸引した試料を所定量の希釈液と
共に吐出している。しかし、この場合の試料の吸
引量に対する吐出量の割合は、第1図に示すよう
に吐出流速によつて変わり、吐出流速を速くする
と、第2図Aに示すようにプローブ1内において
希釈液2と試料3との間に形成した空気層4はつ
ぶれ、プローブ1の内壁に附着する試料3を十分
剥落さないまゝ、したがつて試料3をプローブ1
の内壁に附着させたまゝ、希釈液2と共にプロー
ブ1の先端から吐出し、その結果第2図Bに示す
ようにプローブ1の内壁に試料3が残存して吐出
割合が低下する。この傾向は試料の粘性が高い程
著しい。このように、吸引した試料3がプローブ
1の内壁に残存すると、所望量の分注ができない
と共に、次に吸引する試料との間でコンタミネー
シヨンを起すため、分析精度に悪影響を及ぼすこ
とになる。この欠点を解決するため、吐出流速を
遅くすることも考えられるが、このようにすると
吐出時間が長くかゝり分析処理速度を低下させる
と共にプローブ先端での水切れが悪くかつ再現性
が悪くなるため、分注精度が低下することにな
る。なお、第1図に示す特性曲線は希釈液(吐出
量)が400μ、空気層5μ、試料吸引量(試料
粘度24.8センチストークス)が100μの条件で測
定したものである。
Automated analyzers with various configurations have been proposed in the past, but in general, samples such as blood are sequentially transported by a sampler, and are intermittently transported along a predetermined path by a sample dispensing device. At the same time, the sample and reagent are reacted by dispensing a fixed amount of reagent according to the measurement item into the reaction tube using a reagent dispensing device, and the absorbance of the reaction solution is measured. A discrete method is used to measure and quantitatively analyze the measured items. Such automatic analyzers are generally constructed so that multiple analysis items can be analyzed, and accordingly, reagents used for each analysis item can be set at the same time. In this case, it is possible to provide a separate dispensing device for each reagent, but this makes the device expensive, large and complex, so in recent years, reagent dispensing devices have been used in the same way as sample dispensing devices. In addition, a single dispensing device is configured to discretely dispense a plurality of different reagents. In this way, when dispensing multiple types of samples or reagents discretely using one dispensing device, in order to prevent contamination, the tip of the probe is generally filled with diluent, and then the air is removed first. After aspirating, a predetermined amount of the required liquid (for example, a sample) is aspirated, and the sample adhering to the inner wall of the probe is peeled off at the interface between the air layer and the diluent, while the aspirated sample is discharged together with a predetermined amount of the diluent. There is. However, in this case, the ratio of the amount of sample discharged to the amount of sample aspirated changes depending on the discharge flow rate, as shown in Figure 1, and when the discharge flow rate is increased, the diluted liquid flows inside the probe 1 as shown in Figure 2A. The air layer 4 formed between the probe 2 and the sample 3 is collapsed, and the sample 3 attached to the inner wall of the probe 1 is not sufficiently peeled off.
The sample 3 remains attached to the inner wall of the probe 1 and is discharged from the tip of the probe 1 together with the diluent 2. As a result, as shown in FIG. 2B, the sample 3 remains on the inner wall of the probe 1 and the discharge rate decreases. This tendency becomes more pronounced as the viscosity of the sample increases. In this way, if the aspirated sample 3 remains on the inner wall of the probe 1, it will not be possible to dispense the desired amount, and it will cause contamination with the next aspirated sample, which will have a negative impact on the accuracy of analysis. Become. In order to solve this drawback, it may be possible to slow down the discharge flow rate, but this would result in a long discharge time, which would slow down the analysis processing speed, as well as make it difficult for water to drain at the tip of the probe, resulting in poor reproducibility. , the dispensing accuracy will be reduced. The characteristic curve shown in FIG. 1 was measured under conditions of a diluent (discharge amount) of 400 μ, an air layer of 5 μ, and a sample suction amount (sample viscosity of 24.8 centistokes) of 100 μ.

上述した種々の欠点を除去する分注方法とし
て、空気層を介してプローブ内に吸引した試料を
吐出した後、例えばシリンジポンプのピストンを
往復動させ、プローブ内において希釈液と空気と
の境界面を複数回往復動させてプローブ内壁を洗
浄してから希釈液を所定量吐出することが考えら
れる。このようにすれば、試料吐出後にプローブ
内壁に附着残存する試料を希釈液と空気との境界
面の往復動により有効に剥落すことができる。し
かし、この場合にはプローブ内で希釈液を複数回
往復動させるための制御が困難であると共に、分
注操作に長時間を要するため分析処理速度が低下
する不具合がある。また、希釈液を往復動させて
いる際に、プローブ内壁から剥落された試料がプ
ローブ内の希釈液の上流側にも侵入したり、また
希釈液内に気泡が発生して、コンタミネーシヨン
を起す恐れがあると共に希釈液の分注精度に悪影
響を及ぼす恐れがある。
As a dispensing method that eliminates the various drawbacks mentioned above, after discharging the aspirated sample into the probe through an air layer, for example, the piston of a syringe pump is reciprocated, and the interface between the diluent and air is removed within the probe. It is conceivable to clean the inner wall of the probe by reciprocating the probe a plurality of times and then discharge a predetermined amount of the diluent. In this way, the sample remaining on the inner wall of the probe after the sample is discharged can be effectively peeled off by the reciprocating movement of the interface between the diluent and the air. However, in this case, it is difficult to control the diluent to move back and forth multiple times within the probe, and the dispensing operation takes a long time, resulting in a reduction in the analysis processing speed. In addition, when the diluent is reciprocated, the sample peeled off from the inner wall of the probe may enter the upstream side of the diluent inside the probe, and air bubbles may be generated within the diluent, causing contamination. In addition, there is a risk that the dispensing accuracy of the diluent may be adversely affected.

本発明の目的は上述した種々の欠点を除去し、
吸引して吐出すべき液体が高粘性のものであつて
も、これを高精度かつ迅速に、しかもコンタミネ
ーシヨンを起すことなく分注できる分注方法を提
供するものである。
The object of the present invention is to eliminate the various drawbacks mentioned above,
To provide a dispensing method capable of dispensing a liquid to be aspirated and discharged with high precision and speed, even if the liquid is highly viscous, without causing contamination.

本発明の分注方法は、先端に空気層を残して予
じめ第1の液体を収容したプローブ内に該空気層
を介して所定量の第2の液体を吸引して、この第
2の液体を所定量の第1の液体と共に吐出するに
あたり、前記空気層を介して吸引した第2の液体
をほゞ全部吐出するまでの流速を、その後吐出す
る第1の液体の吐出流速よりも遅くすることを特
徴とするものである。
The dispensing method of the present invention involves sucking a predetermined amount of the second liquid into the probe, which has previously contained the first liquid with an air layer left at the tip, through the air layer. When discharging the liquid together with a predetermined amount of the first liquid, the flow rate until substantially all of the second liquid sucked through the air layer is discharged is lower than the discharge flow rate of the first liquid to be discharged thereafter. It is characterized by:

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第3図は本発明分注方法を実施する分注装置の
一例の構成を示すものである。この分注装置は自
動分析装置の試料分注装置として構成したもので
あり、試料容器11内の試料液(第2の液体)1
2を希釈液容器13内に収容された希釈液(第1
の液体)14で所定の割合で希釈して反応管15
内に分注するものである。試料液12の吸引位置
において昇降可能でかつ吸引した所定量の試料液
12を所定量の希釈液14と共に反応管15内に
吐出する位置に移動可能なプローブ16を開閉弁
17、シリンジポンプ18および開閉弁19を経
て希釈液容器13に連結する。本例ではシリンジ
ポンプ18のピストン20を、図示しないピニオ
ン−ラツク機構等の動力伝達機構を介して可逆モ
ータ21に連結し、このモータの回転によりピス
トン20を往復動させると共に試料液12および
希釈液14の吐出工程期間中において、試料液1
2をほゞ全部吐出するまでの流速を、その後吐出
する希釈液14の吐出流速よりも遅くするように
制御回路22によりモータ駆動回路23を経てモ
ータ21の回転数、すなわちピストン20の押込
み速度を制御するよう構成する。
FIG. 3 shows the configuration of an example of a dispensing device for carrying out the dispensing method of the present invention. This dispensing device is configured as a sample dispensing device for an automatic analyzer, and is used to collect the sample liquid (second liquid) 1 in the sample container 11.
2 into the diluent (first
dilute with liquid) 14 at a predetermined ratio and add to reaction tube 15.
It is to be dispensed within. An on-off valve 17, a syringe pump 18, and a probe 16 that can be raised and lowered at a sample liquid 12 suction position and moved to a position where a predetermined amount of the sample liquid 12 that has been sucked is discharged into a reaction tube 15 together with a predetermined amount of diluent 14. It is connected to the diluent container 13 via an on-off valve 19. In this example, the piston 20 of the syringe pump 18 is connected to a reversible motor 21 via a power transmission mechanism such as a pinion-rack mechanism (not shown), and the piston 20 is reciprocated by the rotation of this motor, and the sample liquid 12 and diluent During the discharge process of 14, sample liquid 1
The rotational speed of the motor 21, that is, the pushing speed of the piston 20, is controlled by the control circuit 22 via the motor drive circuit 23 so that the flow rate until almost all of the diluent 2 is discharged is slower than the discharge flow rate of the diluent 14 that is subsequently discharged. Configure to control.

以下本実施例の分注装置の動作の一例を第4図
に示すタイムチヤートを参照しながら説明する。
なお、本例では分注周期を7秒とし、希釈液容器
13からプローブ16の先端までの流路内には希
釈液14が充満している。先ず、開閉弁17を
閉、開閉弁19を開とし、モータ21を所定時間
駆動し、その出力軸を所定の方向に回転させてピ
ストン20を下降させ、所定量の希釈液14をシ
リンジポンプ18内に吸引する。次に、プローブ
16の先端を空気中に位置させた状態で開閉弁1
7を開、開閉弁19を閉とし、モータ21をその
出力軸が前記と同方向に回転するように若干駆動
してプローブ16から空気を吸引し、その先端部
に空気層を形成する。その後、プローブ16の先
端部を試料容器11内の試料液12中に浸漬させ
た状態で、モータ21を所定時間駆動し、その出
力軸を前記と同方向に回動させて試料液12を所
定量吸引する。次に、プローブ16の先端を反応
管15の開口に臨ませてから、モータ21を駆動
し、その出力軸を前記とは逆方向に回転させてピ
ストン20を上昇させて、吸引した所定量の希釈
液14、空気層および試料液12を反応管15内
に吐出するが、この吐出工程では試料液12が
ほゞ全部、本例では試料液12、空気層および希
釈液14の一部がプローブ16の先端から吐出さ
れるまでは、ピストン20の押込み速度すなわち
吐出流速が比較的遅くなるように制御回路22に
よりモータ駆動回路23を経てモータ21の回転
数を制御し、その後吐出流速が比較的速くなるよ
うにモータ21の回転数を制御して、残りの希釈
液14を反応管15内に吐出する。このように吐
出工程中において吐出流速を切換えるには、ピス
トン20が試料液、空気層および希釈液の一部を
吐出する位置を検出してその切換えのタイミング
をとつたり、あるいはモータ21としてパルスモ
ータを使用する場合にはそのパルス数を計数し、
その計数値が所定の値、すなわち希釈液の一部が
吐出されるのに対応する値になつたときに、駆動
パルスの周波数を高くする等種々の方法を採用す
ることができる。
An example of the operation of the dispensing apparatus of this embodiment will be described below with reference to the time chart shown in FIG.
In this example, the dispensing period is 7 seconds, and the flow path from the diluent container 13 to the tip of the probe 16 is filled with the diluent 14. First, the on-off valve 17 is closed, the on-off valve 19 is opened, the motor 21 is driven for a predetermined time, its output shaft is rotated in a predetermined direction, the piston 20 is lowered, and a predetermined amount of diluent 14 is pumped into the syringe pump 18. suction inside. Next, with the tip of the probe 16 positioned in the air, open/close valve 1
7 is opened, the on-off valve 19 is closed, and the motor 21 is slightly driven so that its output shaft rotates in the same direction as described above to suck air from the probe 16 and form an air layer at its tip. Thereafter, with the tip of the probe 16 immersed in the sample liquid 12 in the sample container 11, the motor 21 is driven for a predetermined period of time, and its output shaft is rotated in the same direction as described above to place the sample liquid 12. Aspirate a fixed amount. Next, after placing the tip of the probe 16 facing the opening of the reaction tube 15, the motor 21 is driven, its output shaft is rotated in the opposite direction to the above, and the piston 20 is raised to raise the predetermined amount of the aspirated amount. The diluent 14, the air layer, and the sample liquid 12 are discharged into the reaction tube 15, but in this discharge process, almost all of the sample liquid 12, in this example, the sample liquid 12, the air layer, and a part of the diluent 14 are exposed to the probe. 16, the control circuit 22 controls the rotation speed of the motor 21 via the motor drive circuit 23 so that the pushing speed of the piston 20, that is, the discharge flow velocity is relatively slow, and thereafter the discharge flow velocity is relatively slow. The remaining diluent 14 is discharged into the reaction tube 15 by controlling the rotation speed of the motor 21 so as to increase the rotation speed. In order to switch the discharge flow rate during the discharge process as described above, the position at which the piston 20 discharges the sample liquid, the air layer, and a part of the diluted liquid can be detected and the switching timing can be determined, or the motor 21 can be used as a pulse generator. When using a motor, count the number of pulses,
When the count value reaches a predetermined value, that is, a value corresponding to a portion of the diluted liquid being ejected, various methods can be adopted, such as increasing the frequency of the drive pulse.

以後、上述した順次の動作を繰り返し行なうこ
とにより、順次の試料液を順次の反応管に希釈分
注する。
Thereafter, by repeating the above-described sequential operations, successive sample solutions are diluted and dispensed into successive reaction tubes.

上述した実施例によれば、第5図Aに示すよう
にプローブ16内において希釈液14と試料液1
2との間に形成した空気層24は、希釈液14の
一部が吐出されるまでは吐出流速が遅いから、第
5図BおよびCに示すようにつぶれることなく吐
出される。したがつて、試料液12が高粘性のも
のであつてもプローブ16の内壁に附着した試料
液12は希釈液14と空気層24との境界面にお
いて有効に剥落されるから、試料液12を高精度
で分注できる。また、試料液12の吐出後比較的
速い流速で希釈液14が吐出されるから、希釈液
14のプローブ16先端での水切れがよいと共
に、プローブ16の内壁は有効に洗浄され、した
がつてコンタミネーシヨンも有効に防止すること
ができる。更に、試料液12の吐出後、希釈液1
4をプローブ16内で往復動させるものでないか
ら、プローブ16内の希釈液中に気泡が侵入する
ことがなく、したがつて希釈液14も高精度で分
注することができると共に、制御が簡単でかつ分
注時間も短時間で済むから分析処理速度を早める
ことができる。
According to the embodiment described above, the diluent 14 and the sample liquid 1 are mixed in the probe 16 as shown in FIG. 5A.
Since the air layer 24 formed between the diluent 14 and the diluent 14 has a slow discharge flow rate until a part of the diluent 14 is discharged, the air layer 24 is discharged without collapsing as shown in FIGS. 5B and 5C. Therefore, even if the sample liquid 12 is highly viscous, the sample liquid 12 adhering to the inner wall of the probe 16 is effectively peeled off at the interface between the diluting liquid 14 and the air layer 24. Can be dispensed with high precision. Furthermore, since the diluent 14 is discharged at a relatively high flow rate after the sample liquid 12 is discharged, the water from the diluent 14 drains well at the tip of the probe 16, and the inner wall of the probe 16 is effectively cleaned, thereby preventing contamination. nation can also be effectively prevented. Furthermore, after discharging the sample liquid 12, diluted liquid 1
4 is not reciprocated within the probe 16, air bubbles do not enter the diluent within the probe 16, and therefore the diluent 14 can be dispensed with high precision and is easily controlled. Moreover, since the dispensing time is short, the analysis processing speed can be accelerated.

なお、吐出工程中において瞬間的に流速を切換
えることが困難な場合には、第6図にタイムチヤ
ートを示すように、試料液をほゞ全部吐出した
後、ピストンを一時停止させ、吐出流速の切換操
作をしてから残りの吐出工程を行なうようにすれ
ばよい。
If it is difficult to change the flow rate instantaneously during the dispensing process, as shown in the time chart in Figure 6, after discharging almost all of the sample liquid, the piston is temporarily stopped and the dispensing flow rate is changed. After performing the switching operation, the remaining discharge steps may be performed.

本発明は上述した例のみに限定されるものでは
なく、幾多の変更または変形が可能である。例え
ば吐出流速を切換える手段としては、モータ21
とピストンとの間にギヤを介在させ、所定のタイ
ミングでそのギヤ比を変えて吐出流速を変更する
こともできるし、モータ21としてDCモータを
用いた場合には、その駆動電圧を切換えて吐出流
速を変更することができる。また、ピストン20
の往復動を空気圧や油圧で行なう場合には、その
駆動圧力を制御することにより、吐出流速を制御
することができる。更に、上述した実施例では、
1つのシリンジポンプ18で分注装置を構成した
ものに本発明の分注方法を採用したが、希釈液吸
引・吐出用のシリンジポンプと、試料液および空
気層の吸引・吐出用のシリンジポンプとを用いて
構成した分注装置にも本発明を有効に採用するこ
とができる。更にまた、吐出流速の切換えは、希
釈液の一部が吐出される以前、すなわち試料液が
一部残存する時点あるいは空気層が吐出される時
点から、吐出流速を速めることもでき、この場合
でも上述したと同様の効果を得ることができる。
更に、上述した例では自動分析装置に用いられる
試料分注装置に本発明を適用したが、試薬分注装
置やその他自動分析装置以外に用いられる種々の
分注装置にも本発明を有効に適用することができ
る。
The present invention is not limited to the above-mentioned examples, but can be modified or modified in many ways. For example, as a means for switching the discharge flow rate, the motor 21
It is also possible to interpose a gear between the motor 21 and the piston, and change the gear ratio at a predetermined timing to change the discharge flow rate.If a DC motor is used as the motor 21, the drive voltage can be changed to change the discharge flow rate. Flow rate can be changed. Also, piston 20
When the reciprocating motion is performed using pneumatic pressure or hydraulic pressure, the discharge flow rate can be controlled by controlling the driving pressure. Furthermore, in the embodiments described above,
The dispensing method of the present invention was adopted in a dispensing device configured with one syringe pump 18, but the syringe pump for aspirating and discharging the diluted liquid, and the syringe pump for aspirating and discharging the sample liquid and air layer are used. The present invention can also be effectively applied to a dispensing device configured using the following. Furthermore, the discharge flow rate can be changed to increase the discharge flow rate before a part of the diluent is discharged, that is, from the time when a part of the sample liquid remains or when an air layer is discharged. Effects similar to those described above can be obtained.
Furthermore, in the example described above, the present invention was applied to a sample dispensing device used in an automatic analyzer, but the present invention can also be effectively applied to a reagent dispensing device and various other dispensing devices used other than automatic analyzers. can do.

以上詳細に説明したように、本発明によれば、
空気層を介して吸引した液体の吐出流速をその後
吐出する他の液体の吐出流速よりも遅くしたか
ら、空気層の境界面による液体の剥落作用を有効
に利用でき、したがつて空気層を介して吸引する
液体が高粘性のものであつてもこれを高精度かつ
迅速に、しかもコンタミネーシヨンを起すことな
く分注することができ、本発明の目的を有効に達
成することができる。
As explained in detail above, according to the present invention,
Since the discharge flow rate of the liquid sucked through the air layer is made slower than the discharge flow rate of other liquids that are subsequently discharged, it is possible to effectively utilize the peeling effect of the liquid due to the boundary surface of the air layer. Even if the liquid to be sucked is highly viscous, it can be dispensed with high precision and quickly without causing contamination, and the object of the present invention can be effectively achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吐出流速に対する液体の吐出割合を示
す線図、第2図AおよびBは従来の分注方法によ
る欠点を説明するための線図、第3図は本発明分
注方法を実施する分注装置の一例の構成を示す線
図、第4図は第3図に示す分注装置の動作の一例
を説明するためのタイムチヤートを示す図、第5
図A,BおよびCは第3図に示す分注装置におけ
るプローブ内の液体の状態を示す断面図、第6図
は第3図に示す分注装置の動作の他の例を説明す
るためのタイムチヤートを示す図である。 11……試料容器、12……試料液(第2の液
体)、13……希釈液容器、14……希釈液(第
1の液体)、15……反応管、16……プローブ、
17,19……開閉弁、18……シリンジポン
プ、20……ピストン、21……モータ、22…
…制御回路、23……モータ駆動回路、24……
空気層。
Fig. 1 is a diagram showing the discharge ratio of liquid with respect to the discharge flow rate, Fig. 2 A and B are diagrams for explaining the drawbacks of the conventional dispensing method, and Fig. 3 is a diagram showing the dispensing method of the present invention. FIG. 4 is a diagram showing the configuration of an example of the dispensing device; FIG. 4 is a diagram showing a time chart for explaining an example of the operation of the dispensing device shown in FIG. 3; FIG.
Figures A, B, and C are cross-sectional views showing the state of the liquid in the probe in the dispensing device shown in FIG. 3, and FIG. 6 is a cross-sectional view for explaining another example of the operation of the dispensing device shown in FIG. It is a diagram showing a time chart. 11... Sample container, 12... Sample liquid (second liquid), 13... Diluent liquid container, 14... Diluent (first liquid), 15... Reaction tube, 16... Probe,
17, 19...Opening/closing valve, 18...Syringe pump, 20...Piston, 21...Motor, 22...
...Control circuit, 23...Motor drive circuit, 24...
air layer.

Claims (1)

【特許請求の範囲】[Claims] 1 先端に空気層を残して予じめ第1の液体を収
容したプローブ内に該空気層を介して所定量の第
2の液体を吸引して、この第2の液体を所定量の
第1の液体と共に吐出するにあたり、前記空気層
を介して吸引した第2の液体をほぼ全部吐出する
までの流速を、その後吐出する第1の液体の吐出
流速よりも遅くすることを特徴とする分注方法。
1. A predetermined amount of the second liquid is sucked through the air layer into a probe that has previously contained the first liquid, leaving an air layer at the tip, and this second liquid is mixed into a predetermined amount of the first liquid. When discharging the second liquid together with the liquid, the flow rate until almost all of the second liquid sucked through the air layer is discharged is made slower than the discharge flow rate of the first liquid to be subsequently discharged. Method.
JP5707380A 1980-05-01 1980-05-01 Partial injection Granted JPS56154667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5707380A JPS56154667A (en) 1980-05-01 1980-05-01 Partial injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5707380A JPS56154667A (en) 1980-05-01 1980-05-01 Partial injection

Publications (2)

Publication Number Publication Date
JPS56154667A JPS56154667A (en) 1981-11-30
JPS6345069B2 true JPS6345069B2 (en) 1988-09-07

Family

ID=13045273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5707380A Granted JPS56154667A (en) 1980-05-01 1980-05-01 Partial injection

Country Status (1)

Country Link
JP (1) JPS56154667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661481B2 (en) 2009-07-03 2020-05-26 Heineken Supply Chain B.V. Container, preform assembly and method and apparatus for forming containers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332324A (en) * 1986-07-26 1988-02-12 Hitachi Ltd Liquid dispensing device
JP2526582B2 (en) * 1987-05-25 1996-08-21 株式会社島津製作所 Sample dilution method
JPH0810214B2 (en) * 1988-02-19 1996-01-31 株式会社島津製作所 Diluted sample preparation device for liquid chromatography
DE69429230T2 (en) * 1993-09-29 2002-07-18 Becton Dickinson Co DEVICE AND METHOD FOR AUTOMATICALLY TESTING SAMPLES
JP5074833B2 (en) * 2007-06-19 2012-11-14 古河電気工業株式会社 Optical measuring device and specimen identification and dispensing device
EP2383551B1 (en) 2009-01-06 2020-04-08 The Furukawa Electric Co., Ltd. Optical measurement apparatus and sample identifying and dispensing apparatus
JP2010210249A (en) * 2009-03-06 2010-09-24 Jeol Ltd Method and device for dispensing of biochemical autoanalyzer
JP6595907B2 (en) * 2015-12-25 2019-10-23 日本電子株式会社 Automatic analyzer and automatic analysis method
JP7458882B2 (en) * 2020-04-24 2024-04-01 株式会社日立ハイテク Automatic analyzer, dispensing device and dispensing control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661481B2 (en) 2009-07-03 2020-05-26 Heineken Supply Chain B.V. Container, preform assembly and method and apparatus for forming containers
US10675783B2 (en) 2009-07-03 2020-06-09 Heineken Supply Chain B.V. Container, preform assembly and method and apparatus for forming containers
US11571836B2 (en) 2009-07-03 2023-02-07 Heineken Supply Chain B.V. Container, preform assembly and method and apparatus for forming containers

Also Published As

Publication number Publication date
JPS56154667A (en) 1981-11-30

Similar Documents

Publication Publication Date Title
US5474744A (en) Automatic pipetting device with cleaning mechanism
EP1766418B1 (en) Probe washing cups and methods
JPH0139067B2 (en)
JPS6212859B2 (en)
JPS626176B2 (en)
JPS6345069B2 (en)
JP5372975B2 (en) Dispensing device and analyzer equipped with the dispensing device
JP2886894B2 (en) Automatic analyzer
JPS6412346B2 (en)
JPS61234335A (en) Liquid distribution
JPH06289032A (en) Dispensing method for automatic analyzer and dispensing system
JPH0470585B2 (en)
JP3717859B2 (en) Chemical analyzer
JP2526582B2 (en) Sample dilution method
EP3859347A1 (en) Automated analyzer and cleaning method
JPS6224151A (en) Suction discharger for automatic chemical analyzer
JPS6332324A (en) Liquid dispensing device
JPS6365370A (en) Sample pipetting device
JPH0229989B2 (en)
JP7417463B2 (en) Dispensing device, automatic analyzer, dispensing method
JPH04291159A (en) Liquid dispenser for automatic analyzer
JP2002022754A (en) Dispensing device
JPS58189560A (en) Dispensing method
JPH0249165A (en) Dispenser
JPS6156784B2 (en)