JPS6332324A - Liquid dispensing device - Google Patents

Liquid dispensing device

Info

Publication number
JPS6332324A
JPS6332324A JP61176073A JP17607386A JPS6332324A JP S6332324 A JPS6332324 A JP S6332324A JP 61176073 A JP61176073 A JP 61176073A JP 17607386 A JP17607386 A JP 17607386A JP S6332324 A JPS6332324 A JP S6332324A
Authority
JP
Japan
Prior art keywords
sample
amount
probe
speed
pulse motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61176073A
Other languages
Japanese (ja)
Other versions
JPH0511846B2 (en
Inventor
Hiroyasu Uchida
裕康 内田
Tomonori Mimura
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61176073A priority Critical patent/JPS6332324A/en
Publication of JPS6332324A publication Critical patent/JPS6332324A/en
Publication of JPH0511846B2 publication Critical patent/JPH0511846B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to powder the necessary amount of sample and to widen a range, and to improve the performance and reliability of a device in the use of a multi-item automatic analyzing device, etc., by controlling the rotating speed of a pulse motor through a driving circuit according to the suction of the sample, etc. CONSTITUTION:This dispensing device consists of a probe 8 which pipettes the liquid sample, etc., a syringe pump 1 which drives a piston 3 for the suction and discharging of the sample here by a pulse motor 6, a driving circuit 17 for the pulse motor 6, and a control circuit 16 which controls the circuit 17. The circuit 16 consists of a basic clock generating circuit 18 composed of a crystal oscillator, etc., and an arithmetic part 19 which determines the rotating speed (f) and movement quantity of the motor 6 according to the suction amount of the sample, and the rotating speed (f) is determined by a specific formula. Consequently, the moving speed of the liquid in the probe 8 is controlled with a speed almost proportional to the suction amount V of the sample, the moving speed is extremely; small almost at the minimum dispensation amount, and the liquid never becomes thin. Further, the dispensing speed increases almost at the maximum dispensation amount and fast operation is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体分注装置に係り、特に液体試料および試薬
等をピペッティングにより定量分注する微小量のサンプ
リングの高精度化、高信頼度化に好適な多項目自動分析
装置等の液体分注装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid dispensing device, and in particular, to high precision and high reliability sampling of minute amounts in which liquid samples, reagents, etc. are quantitatively dispensed by pipetting. The present invention relates to a liquid dispensing device such as a multi-item automatic analyzer suitable for various applications.

〔従来の技術〕[Conventional technology]

多項目自動分析装置で液体試料および試薬の定量分注に
用いられている分注装置には、例えば。
Dispensing devices used for quantitative dispensing of liquid samples and reagents in multi-item automatic analyzers include, for example.

1985年に講談社から発行された小沢恭−編の「臨床
用自動分析」の第43頁から第44頁において論じられ
ている装置があり、以下試料の分注の場合について説明
する。試料のピペッティングのためのプローブにマイク
ロシリンジおよびミリシリンジの2本のシリンジポンプ
、精製水の貯蔵びんを順次接続し、2本のシリンジポン
プの間およびミリシリンジポンプと貯蔵びんの間にそれ
ぞれ第1、第2の電磁弁を設け、流路系は精製水で満た
された構成となっている。2本のシリンジポンプのうち
マイクロシリンジポンプは、試料のピペッティング用で
あり、プローブでの試料の吸入、吐出は、マイクロシリ
ンジポンプ内のピストンの動作によって得られる。多項
目自動分析装置においては、分析項目毎に所要試料が異
なり、したがって、各分析項目毎にピストンの移動量を
変更する必要があり、この変更はコンピュータ制御され
たパルスモータでピストンを移動させ、その移動量を制
御することで蓮することができるようになっている。ま
た、ミリシリンジポンプは、ピペッティング終了後のプ
ローブ内周の洗浄用で、シリンジ内に吸入した精製水を
第1の電磁弁を経てプローブから一定量吐出し、プロー
ブ内周を洗浄する。
There is an apparatus discussed on pages 43 to 44 of "Clinical Automated Analysis" edited by Kyo Ozawa, published by Kodansha in 1985, and the case of sample dispensing will be explained below. Two syringe pumps, a microsyringe and a millisyringe, and a purified water storage bottle are connected to the probe for pipetting the sample in sequence, and a third syringe pump is connected between the two syringe pumps and between the millisyringe pump and the storage bottle, respectively. 1. A second solenoid valve is provided, and the flow path system is filled with purified water. Of the two syringe pumps, the microsyringe pump is used for pipetting the sample, and suction and ejection of the sample with the probe is achieved by the operation of the piston within the microsyringe pump. In a multi-item automatic analyzer, the required sample is different for each analysis item, so it is necessary to change the amount of piston movement for each analysis item.This change is achieved by moving the piston with a computer-controlled pulse motor. By controlling the amount of movement, it is possible to form a lotus. The milli-syringe pump is used to clean the inner periphery of the probe after pipetting is completed, and discharges a certain amount of purified water sucked into the syringe from the probe via the first electromagnetic valve to clean the inner periphery of the probe.

次に1以上の構成のサンプリング装置での試料のサンプ
リング動作を説明する。試料吸入前のプローブは、その
先端に少量の空気を吸い込み、その後試料位置に移動し
、その先端を試料中に浸し、マイクロシリンジの吸入動
作により所要量の試料を吸入する。このときには、第1
および第2の電磁弁は閉状態にある。吸入量は吐出すべ
き量より若干多く設定してある。試料吸入が終了すると
プローブは上昇し、吐出位置まで移動し、反応容器−ブ
は洗浄位置に移動し、余分に吸入していた試料を吐出し
、次いで第1の電磁弁を開いて、ミリシリンジポンプの
吐出動作で一定量の水を吐出してプローブ内側を洗うと
ともに、外側も外部よりの洗浄水で洗浄される。その後
、第1の電磁弁を閉、第2の電磁弁を開いてミリシリン
ジポンプの吸入動作でシリンジ内の精製水を吸い込み、
第2の電磁弁を閉じる。また、マイクロシリンジポンプ
は、プローブ先端に微少量の空気を吸い込んで次の仕事
を待つ。この微少量の空気は、試料が水で薄まらないよ
うにするために入れたものである。
Next, a sample sampling operation using a sampling device having one or more configurations will be explained. Before sample suction, the probe sucks a small amount of air into its tip, then moves to the sample position, immerses its tip into the sample, and sucks in the required amount of sample by the suction operation of the microsyringe. At this time, the first
and the second solenoid valve is in a closed state. The intake amount is set to be slightly larger than the amount to be exhaled. When the sample suction is completed, the probe rises and moves to the discharge position, the reaction vessel moves to the cleaning position, discharges the excess sample that has been sucked in, and then opens the first solenoid valve to discharge the sample into the millisyringe. The discharge operation of the pump discharges a certain amount of water to wash the inside of the probe, and the outside is also washed with washing water from the outside. After that, close the first solenoid valve, open the second solenoid valve, and suck the purified water in the syringe with the suction operation of the millisyringe pump.
Close the second solenoid valve. Additionally, a microsyringe pump sucks a small amount of air into the tip of the probe and waits for the next job. This small amount of air was added to prevent the sample from diluting with water.

上記した従来のサンプリング装置は、従来の多項目自動
分析装置においては十分に装置の精度。
The above-mentioned conventional sampling device has sufficient accuracy compared to the conventional multi-item automatic analyzer.

信頼度を満足し、その役目を果してきたが、近年の自動
分析装置の進歩、発展に合わせてその改良が必要となっ
てきている。すなわち、臨床生化学検査の多様化、多量
化により、分析項目数の増加、分析処理能力の増大の必
要性が高まり、これらの要求に対し、装置の大規模化、
装置動作の高速化を併用して対処されてきたが、さらに
小形化、高効率化装置の実現に向って一層の高速化が必
要となっている。また、装置性能に対する改善要求も高
く、中でもとりわけ装置性能に直接影響する試料のサン
プリング装置においては、分注量の一層の微少化、広範
囲化、正確さの確保の必要がある。
Although it has satisfied the reliability and fulfilled its role, it has become necessary to improve it in line with the progress and development of automatic analyzers in recent years. In other words, with the diversification and increase in the number of clinical biochemical tests, there is a growing need for an increase in the number of analysis items and an increase in analysis processing capacity.
Although this problem has been solved by increasing the speed of device operation, there is a need for even higher speeds in order to realize smaller, more efficient devices. In addition, there is a high demand for improvement in device performance, and especially in sample sampling devices that directly affect device performance, there is a need to further miniaturize the dispensing amount, widen the range, and ensure accuracy.

例えば、分析に必要な最少試料量は5μQから3μQへ
、さらにはそれ以下に移りつつあり、一方、ある分析項
目では、感度の確保のために20μaの試料量を必要と
している。また、動作の高速化では、一連の装置動作の
サイクルタイムが20秒から12秒へ、さらには、6秒
へと装置動作速度でほぼ倍々化して進んでおり、サンプ
リング装置の動作速度もほぼそれに比例して速くなって
いる。
For example, the minimum sample amount required for analysis is moving from 5 μQ to 3 μQ, and even less, while some analysis items require a sample amount of 20 μA to ensure sensitivity. In addition, the cycle time for a series of device operations has almost doubled from 20 seconds to 12 seconds and then to 6 seconds, and the operation speed of sampling devices has also increased. It's proportionally faster.

従来、5μ0から2oμ悲の範囲の試料分注であったも
のを3μ2もしくはそれ以下の量から20μQまでを従
来に比べて約2倍もしくは4倍の速度で分注してその精
度を維持、改善する必要がある。
Previously, samples were dispensed in the range of 5μ0 to 2oμ, but now we can maintain and improve the accuracy by dispensing samples from 3μ2 or less to 20μQ at about twice or four times the speed compared to conventional methods. There is a need to.

ピペッティングによる試料の分注精度、すなわち、サン
プリング精度に影響する要因としては。
Factors that affect sample dispensing accuracy by pipetting, that is, sampling accuracy.

分注量の正確差のみならずプローブ内での試料と精製水
の接触等による試料の濃度変化等がある6分注量の正確
さは、高速化に際してもその形状寸法を確保することで
得られるが、水による試料の薄まりは吸入、吐出速度の
高速化の影響が大きい。
6. Accuracy of dispensing amount can be improved by ensuring its shape and dimensions even when speeding up, as there are not only accuracy differences in dispensing amount but also changes in concentration of the sample due to contact between the sample and purified water in the probe, etc. However, the dilution of the sample due to water is greatly affected by increasing the suction and discharge speeds.

管路内で流体の流れは、よく知られているように、流体
の粘性によりその流れの方向に対する横断面では管壁で
速度が零、中央部で平均流速の2倍の速度分布を有し、
これが試料の薄まりの第1の要因となっている。このた
めに、試料のピペッティングにおいては、試料と水との
界面近傍では、試料と水との接触による試料の薄まりが
認められる。
As is well known, the flow of fluid in a pipe has a velocity distribution in which the velocity is zero at the pipe wall in a cross section with respect to the flow direction and is twice the average flow velocity in the center due to the viscosity of the fluid. ,
This is the first cause of thinning of the sample. For this reason, when pipetting a sample, the sample is diluted near the interface between the sample and water due to contact between the sample and water.

すなわち、プローブ内に試料を吸い込む場合には、その
流れの中央部で試料が水の流れの中に入り込み、吐き出
す場合には試料の流れの中に水の洗端部が入り込んで試
料の希釈現象が発生する。従来の装置では、この試料の
薄まりの影響を排除するため、上記したように、水と試
料の間に微少量の空気を介在させるとともに1.吸引す
る試料の量を吐出する量よりも若干多くしていた。また
、試料の薄まりの第2の要因としては、試料および水に
よるプローブ内面の濡れがある。試料の吸引前には、水
と接していたプローブ内面には試料の吸引のために水が
シリンジポンプ側に流れた後も濡れのために内面表面に
薄く残り、その上を試料が流れるために、試料の薄まり
が発生する。これら住起因した試料の薄まりのサンプリ
ング精度への影響は、分注量が微少化するほど大きくな
り、例えば、従来の例では、3μaを分注した場合のサ
ンプリング精度は20μQの場合に比べて2〜3倍悪い
。また、サンプリング速度が高まり、プローブ内の液の
流速の増大につれて大きくなることば自明である。
In other words, when a sample is sucked into the probe, the sample enters the flow of water at the center of the flow, and when it is expelled, the washing end of the water enters the flow of the sample, causing a dilution phenomenon of the sample. occurs. In conventional apparatuses, in order to eliminate the influence of thinning of the sample, as described above, a small amount of air is interposed between the water and the sample, and 1. The amount of sample to be aspirated was slightly larger than the amount to be discharged. A second cause of thinning of the sample is wetting of the inner surface of the probe by the sample and water. Before the sample was aspirated, the inner surface of the probe was in contact with water, and even after the water flows to the syringe pump side to aspirate the sample, a thin layer remains on the inner surface due to wetness, and the sample flows over it. , thinning of the sample occurs. The effect of dilution of the sample due to these factors on sampling accuracy becomes larger as the amount dispensed becomes smaller. For example, in the conventional example, the sampling accuracy when dispensing 3 μA is 2 μA compared to when dispensing 20 μQ. ~3 times worse. It is also obvious that the sampling rate increases as the flow rate of the liquid within the probe increases.

上記した従来のサンプリング装置を試料分注量が微少化
、高速化した装置に適用しては、その精度の維持、確保
ができなく、その解決のために、上記した空気量を増し
たのでは、試料の微量化に対して正確さを欠き、また、
吸入量と吐出量との差を大きくするのでは、試料の微量
化に逆向して許容されるものではない。
If the above-mentioned conventional sampling device is applied to a device with a smaller sample dispensing amount and faster speed, it will not be possible to maintain or ensure the accuracy, and in order to solve this problem, the above-mentioned amount of air may have been increased. , lacks accuracy in reducing the amount of sample, and
Increasing the difference between the suction amount and the ejection amount is not acceptable because it goes against the grain size of the sample.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の説明から明らかなように、従来のサンプリング装
置では、試料の分注精度を確保するための動作速度上の
限界があり、この装置で試料の分注量の微少化、高速化
をはかるには、試料の薄まりについては分注量の多少に
かかわらず試料の吸入、吐出速度が一定であり、したが
って、微量の試料の定量分注でのサンプリング精度の確
保ができないという問題があった。
As is clear from the above explanation, conventional sampling devices have a limit in operating speed to ensure sample dispensing accuracy, and this device can be used to miniaturize and speed up sample dispensing. With regard to dilution of the sample, the suction and discharge speeds of the sample are constant regardless of the amount dispensed, and therefore, there is a problem in that sampling accuracy cannot be ensured when dispensing a small amount of sample quantitatively.

本発明の目的は、必要試料量が極めて微少化、広範囲化
し、しかも、その分注速度を著しく高めた多項目自動分
析装置等に使用したときに、その分注精度を確保し、装
置の性能、信頼度を高めることができる高性能の液体分
注装置を提供することにある。
The purpose of the present invention is to ensure the dispensing accuracy and the performance of the device when used in a multi-item automatic analyzer, etc., in which the required sample amount is extremely small and wide, and the dispensing speed is significantly increased. The object of the present invention is to provide a high-performance liquid dispensing device that can increase reliability.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、試料のサンプリング精度に影響する最大の
要因がプローブ内では水による試料の薄まりであり、そ
の薄まりは分注量の微量化およびプローブ内での液の流
速の増加につれて多くなり、また、試料の分注量が上限
値の20μQ近くまで多くなった場合には、この流量を
倍加してもサンプリング精度への影響は実用上差し支え
ないことに着目し、液体試料等のピペッティングのため
のプローブと、このプローブでの上記試料の吸入。
The above objective is that the biggest factor that affects sample sampling accuracy is the dilution of the sample by water inside the probe, and this dilution increases as the amount of liquid dispensed becomes smaller and the flow rate of the liquid within the probe increases. , we focused on the fact that when the amount of sample dispensed is close to the upper limit of 20μQ, there is no practical impact on sampling accuracy even if this flow rate is doubled, and for pipetting liquid samples, etc. probe and inhalation of the above sample with this probe.

吐出動作を行うピストンをパルスモータで駆動するよう
にしたシリンジポンプと、上記パルモータの駆動回路と
、この駆動回路を制御する制御回路とから構成され、こ
の制御回路は、上記試料等の吸入あるいは吐出速度を分
注量に応じて上記パルスモータの回転速度を上記駆動回
路を介して制御する構成として達成するようにした。
It consists of a syringe pump whose piston that performs the dispensing operation is driven by a pulse motor, a drive circuit for the above-mentioned pulse motor, and a control circuit that controls this drive circuit. This is achieved by controlling the rotational speed of the pulse motor via the drive circuit in accordance with the dispensed amount.

〔作用〕[Effect]

試料の吸入、吐出はシリンジポンプの動作によって得ら
れており、したがって、この吸入、吐出速度を分注量に
応じて制御するには、シリンジポンプのピストンを駆動
しているパルスモータの回転速度を制御すればよく、こ
の制御は、分注量に応じたパルス速度を演算9発生する
パルスモータの制御回路で行うようにしたので、微量分
注に対しては試料の水による薄まりを排除でき、最大分
注量付近では、移動速度を従来に比して倍加できる。
The suction and discharge of the sample is obtained by the operation of the syringe pump. Therefore, in order to control the suction and discharge speed according to the dispensed amount, it is necessary to adjust the rotation speed of the pulse motor that drives the piston of the syringe pump. This control is performed by the control circuit of the pulse motor that generates the pulse speed according to the amount to be dispensed, so it is possible to eliminate the dilution of the sample due to water when dispensing a small amount. Near the maximum dispensing amount, the moving speed can be doubled compared to the conventional method.

〔実施例〕〔Example〕

以下本発明を第1図、第2図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 1 and 2.

第1図は本発明の液体分注装置の一実施例を示す構成図
である。第1図において、1はマイクロシリンジポンプ
で、シリンダ2.ビントン3.ピストン3のシーリング
4より構成してある。5はラックピニオン機構、6はパ
ルスモータで、パルスモータ6の回転運動をラックピニ
オン機構で直線運動に変換してピストン3を駆動するよ
うにしてある。7は可撓チューブ、8はプローブ、9は
プローブ8に旋回、上下運動を与えるプローブ移動機構
、10は電磁弁で、シリンダ2は一方が電磁弁10、ポ
ンプ11等を介して精製水の貯蔵びん12に連結してあ
り、他方が可撓チューブ7でプローブ8に配管してあり
、貯蔵びん12からの精製水がプローブ8の先端まで満
してある。13は試料が入っている試料容器、14は反
応容器、15は分析項目、試料および試薬の量等を入力
する入力装置、16は入力された試料の分注量に応じた
回転速度(回転角)でパルスモータ6を制御する制御回
路、17は制御回路16からの信号でパルスモータ6を
駆動する駆動回路である。
FIG. 1 is a configuration diagram showing an embodiment of a liquid dispensing device of the present invention. In FIG. 1, 1 is a microsyringe pump, cylinder 2. Vinton 3. It consists of a sealing 4 of a piston 3. 5 is a rack and pinion mechanism; 6 is a pulse motor; the rotational motion of the pulse motor 6 is converted into linear motion by the rack and pinion mechanism to drive the piston 3; 7 is a flexible tube, 8 is a probe, 9 is a probe moving mechanism that gives rotation and vertical movement to the probe 8, 10 is a solenoid valve, and the cylinder 2 stores purified water through the solenoid valve 10 on one side and the pump 11, etc. The other end is connected to a bottle 12 and the other end is connected to a probe 8 by a flexible tube 7, and the purified water from the storage bottle 12 is filled up to the tip of the probe 8. 13 is a sample container containing a sample, 14 is a reaction container, 15 is an input device for inputting analysis items, amounts of samples and reagents, etc., and 16 is a rotation speed (rotation angle) corresponding to the input sample dispensing amount. ) is a control circuit that controls the pulse motor 6, and 17 is a drive circuit that drives the pulse motor 6 with a signal from the control circuit 16.

以上の構成の液体分注装置、すなわち、液体試料サンプ
リング装置による試料の定量分注は、次のようにして得
られる。まず、上死点に位置していたピストン3を僅か
下降してプローブ8の先端に微量の空気を吸い込み、そ
の後、プローブ8をプローブ移動機構9によって試料容
器13の位置に移動し、プローブ8を試料中まで下降す
る。ここで、パルスモータ6を制御回路16の出力であ
らかじめ入力装置ISにより入力、記憶されていた所定
の分注量Voに余分に吸入する量v1を加えた吸入量V
に見合う量と速度fで回転させて、ピストン3をシリン
ダ2より引き出してプローブ8内に試料を吸入する。そ
の後、プローブ8を上昇し、反応容器14の位置に移動
し、反応容器14中に下降して吸入時に設定された速t
Lfで所定分注量Vθに対応するだけピストン3を押し
込む方向にパルスモータ6を回転させてプローブ8より
試料を吐出する。吐出完了後は、プローブ8を洗浄位置
(図示せず)に移動し、ビントン3を上死点に戻して残
った試料Vl を吐出するとともに、電磁弁10を開き
、ポンプ11を所定時間動作させて精製水をプローブ8
の先端から吐出してプローブ8の内面を洗浄し、また、
同時にプローブ8の外面も水で洗浄し、電磁弁10を閉
じる。
Quantitative dispensing of a sample using the liquid dispensing device having the above configuration, that is, the liquid sample sampling device, can be performed as follows. First, the piston 3, which was located at the top dead center, is slightly lowered to suck a small amount of air into the tip of the probe 8. Then, the probe 8 is moved to the position of the sample container 13 by the probe moving mechanism 9, and the probe 8 is moved to the position of the sample container 13. Descend into the sample. Here, the pulse motor 6 is operated by the output of the control circuit 16 to determine the suction amount V, which is the sum of the predetermined dispensing amount Vo, which has been input and stored in advance by the input device IS, and the extra suction amount v1.
The piston 3 is pulled out from the cylinder 2 and the sample is sucked into the probe 8. Thereafter, the probe 8 is raised, moved to the position of the reaction vessel 14, and lowered into the reaction vessel 14 to maintain the speed t set during inhalation.
At Lf, the pulse motor 6 is rotated in a direction to push in the piston 3 by an amount corresponding to the predetermined dispensing amount Vθ, and the sample is discharged from the probe 8. After the discharge is completed, the probe 8 is moved to the cleaning position (not shown), the Vinton 3 is returned to the top dead center and the remaining sample Vl is discharged, the solenoid valve 10 is opened, and the pump 11 is operated for a predetermined time. Probe 8 with purified water.
Discharged from the tip of the probe 8 to clean the inner surface of the probe 8, and
At the same time, the outer surface of the probe 8 is also washed with water, and the solenoid valve 10 is closed.

この状態で次の分注依頼を待つ。In this state, wait for the next dispensing request.

ここで、試料の吸入、吐出速度は、その分注量によって
決定するのであるが、それは制御回路17で行う。その
詳細を第2図を用いて説明する。
Here, the suction and discharge speeds of the sample are determined by the amount dispensed, and this is done by the control circuit 17. The details will be explained using FIG. 2.

第2図は第1図の制御回路16の一実施例を示すブロッ
ク図である。第2図において、18は水晶発振器等から
なる基本クロック発生回路、19は試料の吸入量Vに応
じてパルスモータ6の回転速度fおよび移動量nを決定
する演算部で、コンピュータからなり、例えば、次式の
演算により回転速度fを決定する。
FIG. 2 is a block diagram showing one embodiment of the control circuit 16 of FIG. 1. In FIG. 2, 18 is a basic clock generation circuit consisting of a crystal oscillator, etc., and 19 is an arithmetic unit that determines the rotational speed f and movement amount n of the pulse motor 6 according to the suction amount V of the sample, and is composed of a computer, for example. , the rotational speed f is determined by calculating the following equation.

ここしこ、V;パルスモータ6に与える1パルス当りの
試料の吸入または吐出量 t;所定分注時間 20は回転速度fおよび移動量nなるパルス列を発生す
るパルス発生器で、基本クロックの周波数fo’a−f
/foに分周して回転速J!1fを得る。
Here, V: the suction or discharge amount of the sample per pulse applied to the pulse motor 6, t; the predetermined dispensing time 20 is a pulse generator that generates a pulse train with a rotational speed f and a movement amount n, and the frequency of the basic clock is fo'a-f
/fo and rotation speed J! Obtain 1f.

21はパルス発生器20で得られたパルス列をパルスモ
ータ6の各相巻線に分配する分配回路である。これらは
すべて既知の回路またはコンピュータで構成できる。
21 is a distribution circuit that distributes the pulse train obtained by the pulse generator 20 to each phase winding of the pulse motor 6. All of these can be constructed using known circuits or computers.

(1)式によれば、試料の吸入ivにほぼ比例した速度
でプローブ8内の液の移動速度を制御することができ、
試料の薄まりの影響を最も受けやすい最小分注量付近で
は、その移動速度が極めて小さく、したがって、薄まり
の発生もなく、また、薄まりの影響をほとんど受けない
最大分注量付近では、その分注速度を高めることができ
、高速動作を可能にすることができる。吸入量■に応じ
た回転速度fを得るには、演算部19によるほかにあら
かじめ吸入量Vを適切な範囲で区切って数段階に分け、
そのおのおのに対して回転速度fを決定しておいて、こ
れをテーブルとして準備しておくようにしてもよい。
According to equation (1), the moving speed of the liquid within the probe 8 can be controlled at a speed approximately proportional to the inhalation of the sample iv,
Near the minimum dispensed volume, which is most susceptible to sample dilution, the moving speed is extremely small, so no dilution occurs, and near the maximum dispensed volume, which is almost unaffected by sample dilution, the dispensing speed is extremely low. The speed can be increased and high-speed operation can be made possible. In order to obtain the rotational speed f corresponding to the suction amount ■, in addition to using the calculation unit 19, the suction amount V is divided into several stages by dividing it into an appropriate range in advance.
The rotational speed f may be determined for each of them, and this may be prepared as a table.

なお、制御回路16は、従来装置でのコンピュータ部分
の内容の変更で実現することができ、経済的な負荷を生
ずることはない。
Note that the control circuit 16 can be realized by changing the contents of the computer part of a conventional device, and does not cause an economic burden.

また、上記説明は、すべて試料分注についてのみ述べた
が、試薬分注においても、その微量化。
In addition, although all of the above explanations have been made only regarding sample dispensing, the miniaturization of reagent dispensing is also important.

高速化の必要性は試料の場合と全く同じであり、本発明
を試薬分注に適用しても同じ効果が得られることはいう
までもない。
The need for speeding up is exactly the same as in the case of samples, and it goes without saying that the same effects can be obtained even when the present invention is applied to reagent dispensing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、プローブ内での
試料等と水の移動速度を試料等の分注量に応じて制御で
きるので、微量分注に対しては分注精度に影響する試料
等の水に対する薄まりを排除することができ、また、薄
まりの影響を受は短い最大分注量付近では、移動速度を
従来に比して倍化することができ、高速分注を可能とす
るなどの多項目自動分析装置等に適用して装置動作の高
速化、高精度化に貢献することができるという効果があ
る。
As explained above, according to the present invention, the moving speed of the sample, etc. and water within the probe can be controlled according to the amount of the sample, etc., which affects the dispensing accuracy when dispensing a small amount. It is possible to eliminate the dilution of samples, etc. in water, and in the vicinity of the maximum dispensing amount, where the effect of dilution is short, the moving speed can be doubled compared to conventional methods, enabling high-speed dispensing. The present invention has the effect that it can be applied to multi-item automatic analysis devices such as those used in the past, contributing to faster and more accurate device operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液体分注装置の一実施例を示す構成図
、第2図は第1図の制御回路の一実施例を示すブロック
図である。 1・・・マイクロシリンジポンプ、2・・・シリンダ、
3・・・ピストン、6・・・パルスモータ、8・・・プ
ローブ、9・・・プローブ移動機構、12・・精製水の
貯蔵びん、13・・・試料容器、14・・・反応容器、
15・・・入力装置、16・・・制御回路、17・・・
駆動回路、18・・・基本クロック発生回路、19・・
演算部、2o・・・パルス発生器、21・・分配回路。
FIG. 1 is a block diagram showing an embodiment of the liquid dispensing device of the present invention, and FIG. 2 is a block diagram showing an embodiment of the control circuit of FIG. 1... Micro syringe pump, 2... Cylinder,
3... Piston, 6... Pulse motor, 8... Probe, 9... Probe moving mechanism, 12... Purified water storage bottle, 13... Sample container, 14... Reaction container,
15... Input device, 16... Control circuit, 17...
Drive circuit, 18... Basic clock generation circuit, 19...
Arithmetic unit, 2o... pulse generator, 21... distribution circuit.

Claims (1)

【特許請求の範囲】 1、液体試料等のピペツテイングのためのプローブと、
該プローブでの前記試料の吸入、吐出動作を行うピスト
ンをパルスモータで駆動するようにしたシリンジポンプ
と、前記パルスモータの駆動回路と、該駆動回路を制御
する制御回路とから構成され、該制御回路は、前記試料
等の吸入あるいは吐出速度を分注量に応じて前記パルス
モータの回転速度を前記駆動回路を介して制御する構成
としてあることを特徴とする多項目自動分析装置等の液
体分注装置。 2、前記制御回路は、前記試料等の吸入あるいは吐出速
度が分注量にほぼ比例して変化するように前記パルスモ
ータの回転速度を制御するように構成してある特許請求
の範囲第1項記載の液体分注装置。 3、前記制御回路は、前記試料等の吸入あるいは吐出速
度が分注量に応じて段階的に変化するように前記パルス
モータの回転速度を制御するように構成してある特許請
求の範囲第1項記載の液体分注装置。
[Claims] 1. A probe for pipetting a liquid sample, etc.;
The syringe pump includes a syringe pump in which a piston for inhaling and discharging the sample with the probe is driven by a pulse motor, a drive circuit for the pulse motor, and a control circuit for controlling the drive circuit. A liquid dispensing device for a multi-item automatic analyzer, etc., characterized in that the circuit is configured to control the rotational speed of the pulse motor via the drive circuit in accordance with the aspiration or discharge speed of the sample, etc., depending on the amount dispensed. Note device. 2. The control circuit is configured to control the rotation speed of the pulse motor so that the suction or discharge speed of the sample, etc. changes approximately in proportion to the amount dispensed. Liquid dispensing device as described. 3. The control circuit is configured to control the rotation speed of the pulse motor so that the suction or discharge speed of the sample etc. changes stepwise according to the amount dispensed. Liquid dispensing device described in section.
JP61176073A 1986-07-26 1986-07-26 Liquid dispensing device Granted JPS6332324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61176073A JPS6332324A (en) 1986-07-26 1986-07-26 Liquid dispensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176073A JPS6332324A (en) 1986-07-26 1986-07-26 Liquid dispensing device

Publications (2)

Publication Number Publication Date
JPS6332324A true JPS6332324A (en) 1988-02-12
JPH0511846B2 JPH0511846B2 (en) 1993-02-16

Family

ID=16007247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176073A Granted JPS6332324A (en) 1986-07-26 1986-07-26 Liquid dispensing device

Country Status (1)

Country Link
JP (1) JPS6332324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134568A (en) * 1988-11-15 1990-05-23 Shimadzu Corp Liquid distribution apparatus
JPH0471170U (en) * 1990-10-30 1992-06-24
JP2006292732A (en) * 2005-03-17 2006-10-26 Sysmex Corp Method and instrument for measuring blood specimen
JP2008209339A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Automatic analysis apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902601A1 (en) * 1999-01-23 2000-07-27 Roche Diagnostics Gmbh Method and device for removing analytical consumables from a storage container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915864U (en) * 1972-05-15 1974-02-09
JPS55137109U (en) * 1979-03-22 1980-09-30
JPS5612610A (en) * 1979-06-09 1981-02-07 Itt Plug member for optical connector
JPS61123821A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Acoustooptic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585223A (en) * 1978-12-22 1980-06-27 Stanley Electric Co Ltd Fixed quantity discharge method of fluid
JPS5630618A (en) * 1979-08-22 1981-03-27 Kyoto Denshi Kogyo Kk Automatic liquid suction measuring device
JPS5839520B2 (en) * 1980-03-05 1983-08-30 日立造船株式会社 Method for saccharification of cellulose substances
JPS56154667A (en) * 1980-05-01 1981-11-30 Olympus Optical Co Ltd Partial injection
JPS60172694A (en) * 1984-02-20 1985-09-06 株式会社北計工業 Liquid precision transfer compounding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915864U (en) * 1972-05-15 1974-02-09
JPS55137109U (en) * 1979-03-22 1980-09-30
JPS5612610A (en) * 1979-06-09 1981-02-07 Itt Plug member for optical connector
JPS61123821A (en) * 1984-11-20 1986-06-11 Matsushita Electric Ind Co Ltd Acoustooptic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134568A (en) * 1988-11-15 1990-05-23 Shimadzu Corp Liquid distribution apparatus
JPH0471170U (en) * 1990-10-30 1992-06-24
JP2006292732A (en) * 2005-03-17 2006-10-26 Sysmex Corp Method and instrument for measuring blood specimen
JP2008209339A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Automatic analysis apparatus

Also Published As

Publication number Publication date
JPH0511846B2 (en) 1993-02-16

Similar Documents

Publication Publication Date Title
US4853336A (en) Single channel continuous flow system
CA1081994A (en) Liquid dispenser with improved aspirating probe
US4456037A (en) Process of delivering samples and reagents
JPS5992356A (en) Weighing method and weigher
EP0408270B1 (en) Pipetter, pipette tube, sample analyzing apparatus including them and method of mixing and pipetting liquids
US9086395B2 (en) Automatic analysis apparatus
JP3419431B2 (en) Washing device in biochemical automatic analyzer
KR100930143B1 (en) Automatic analyzer and probe lifting method
US3900289A (en) Apparatus and method for filling a compartment
CN105606836B (en) The lifting action method of rod member in automatic analysing apparatus and automatic analysing apparatus
JPH0346786B2 (en)
JPH0640100B2 (en) Automatic analyzer sample dispensing method
JPH04115136A (en) Particle measuring apparatus
JPS6332324A (en) Liquid dispensing device
EP4016085A1 (en) Iterative liquid aspiration
JPS6345069B2 (en)
JP2000227428A (en) Method and device for titration
JPH0354474A (en) Distribution apparatus
JP3418329B2 (en) Sample dispensing method and automatic analyzer
WO2022091545A1 (en) Automatic analysis device
US20230184801A1 (en) Automatic analyzer, dispensing device, and dispensing control method
JPH04291159A (en) Liquid dispenser for automatic analyzer
JP2014206381A (en) Automatic analyzer
JPS59119268A (en) Automatic chemical analyzer
JPH06324058A (en) Dispensing apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term