JPS634503Y2 - - Google Patents

Info

Publication number
JPS634503Y2
JPS634503Y2 JP16636382U JP16636382U JPS634503Y2 JP S634503 Y2 JPS634503 Y2 JP S634503Y2 JP 16636382 U JP16636382 U JP 16636382U JP 16636382 U JP16636382 U JP 16636382U JP S634503 Y2 JPS634503 Y2 JP S634503Y2
Authority
JP
Japan
Prior art keywords
heater section
processing chamber
heating
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16636382U
Other languages
Japanese (ja)
Other versions
JPS5970729U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16636382U priority Critical patent/JPS5970729U/en
Publication of JPS5970729U publication Critical patent/JPS5970729U/en
Application granted granted Critical
Publication of JPS634503Y2 publication Critical patent/JPS634503Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Heating (AREA)
  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】 本考案は熱間静水圧加圧装置における電気加熱
装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electric heating device in a hot isostatic pressing device.

加圧焼結.拡散接合などの処理に用いる小形の
熱間静水圧加圧装置(以下HIP装置と略称する)
の需要が近年になつて急激に増えてきているが、
このHIP装置は装置コストを最小限に抑えるため
に、単一の電源・制御装置によつて加熱運転され
るヒータからなる加熱装置を使用しているものが
多いところから、処理室内を上・下部の別なく均
一に加熱することは可成り難かしい。
Pressure sintering. A small hot isostatic press device (hereinafter abbreviated as HIP device) used for processes such as diffusion bonding.
The demand for has increased rapidly in recent years,
In order to minimize equipment costs, most HIP equipment uses a heating device consisting of a heater that is operated by a single power supply and control device. It is quite difficult to heat uniformly regardless of the temperature.

これは熱間静水圧加圧処理における2つのパラ
メータ、すなわち、圧力と温度の条件差によつて
炉内の熱伝達の態様が相当異なるからであり、例
えば高温低圧では輻射による熱伝達が主体であ
り、一方、低温高圧では対流による熱伝達が主体
となつているように両者間の差違は大なるものが
ある。
This is because the mode of heat transfer in the furnace varies considerably depending on the two parameters in hot isostatic pressing, namely pressure and temperature. For example, at high temperature and low pressure, heat transfer is mainly due to radiation. On the other hand, at low temperatures and high pressures, heat transfer by convection plays a major role, so there is a big difference between the two.

従つて、100〜2000気圧、1000〜2000℃のすべ
ての領域にわたつて単一制御・単一電源供給方式
のヒータで均熱性を確保することは至難であつ
た。
Therefore, it has been extremely difficult to ensure heat uniformity over the entire range of 100 to 2,000 atm and 1,000 to 2,000° C. using a heater with a single control and single power supply system.

本考案は従来のこの種HIP装置が有する欠陥を
排除し得ると共に、低装置コストならびに運転経
済性の向上をはかり、しかも単一制御・単一電源
供給方式であるにもかかわらず均熱性を確保する
ことを可能ならしめる点を目的として案出される
に至つたものであつて、特にHIP装置の処理室を
加熱するための加熱装置を、正の抵抗温度係数を
持つ材料からなる電気ヒータを備えて、該電気ヒ
ータに単一の電源から電力供給を行なう構成にす
ると共に、前記電気ヒータには、処理室の周囲に
主として配置される主ヒータ部と、処理室の下方
部に配置され、かつ、前記主ヒータ部に比し抵抗
が大きい補助ヒータ部とを並列に接続して有する
構成を特徴としており、処理室の上方部の温度が
高くなるとそれに応じて主ヒータ部の抵抗が増加
するので補助ヒータ部での発熱量が相対的に増加
し、その結果、自己平衡的に下方部の温度が上昇
することにより、すぐれた均熱性が得られるもの
であり、かくして所期の目的は達成されるに至つ
たのである。
This invention eliminates the defects of conventional HIP equipment of this type, lowers equipment cost and improves operating economy, and also ensures heat uniformity despite using a single control and single power supply system. It was devised with the aim of making it possible to do this, and in particular, the heating device for heating the processing chamber of the HIP device is equipped with an electric heater made of a material with a positive temperature coefficient of resistance. The electric heater is configured to be supplied with power from a single power source, and the electric heater includes a main heater section mainly arranged around the processing chamber, and a main heater section arranged below the processing chamber. , is characterized by a configuration in which an auxiliary heater part having a higher resistance than the main heater part is connected in parallel, and as the temperature in the upper part of the processing chamber increases, the resistance of the main heater part increases accordingly. The amount of heat generated in the auxiliary heater section increases relatively, and as a result, the temperature in the lower section rises in a self-balancing manner, resulting in excellent heat uniformity, thus achieving the desired purpose. This led to the conclusion that

以下、本考案の実施例について添付図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において1は高圧容器であつて、器内に
有頂筒状の断熱層2と炉床3が配設されて、両部
材2,3により処理室4が画成される。
In FIG. 1, reference numeral 1 denotes a high-pressure vessel, in which a capped cylindrical heat insulating layer 2 and a hearth 3 are disposed, and both members 2 and 3 define a processing chamber 4.

この処理室4を加熱するための加熱装置として
は、単一電源が供給され、かつ単一制御方式とな
した電気ヒータが用いられていて、該電気ヒータ
は処理室4の上下ほゞ全長に亘る周囲に主として
配置される筒状をなす主ヒータ部5と、処理室4
の下方部に配置される筒状をなす補助ヒータ部6
とからなつている。
As a heating device for heating the processing chamber 4, an electric heater that is supplied with a single power source and has a single control method is used. A cylindrical main heater section 5 mainly arranged around the main heater section 5 and a processing chamber 4.
A cylindrical auxiliary heater section 6 arranged at the lower part of the
It is made up of.

上記電気ヒータに使用される材料は、常用温度
付近において抵抗の温度係数が正であつて、使用
温度範囲が500〜2000℃のものが必要であり、そ
の好適なものとしてはモリブデン.グラフアイト
が挙げられる。
The material used for the above-mentioned electric heater must have a positive temperature coefficient of resistance near normal operating temperatures and a working temperature range of 500 to 2000°C, and a suitable material is molybdenum. Examples include graphite.

そして主ヒータ部5および補助ヒータ部6は例
えばグラフアイト製の板状体もしくは筒状体を素
材となして、その上端縁および下端縁から適宜間
隔を存する交互に上下方向のスリ割りを削設する
ことにより、ジグザグ面を有する板体もしくは筒
体を形成し、板体の場合はこれを筒状に配設し、
また筒状体はそのままで、ジグザグ面を有する筒
状発熱体に構成せしめるものであつて、炉床3上
に搭載された被処理物の周りから均散して加熱し
得るような形状となすことが好ましい。
The main heater section 5 and the auxiliary heater section 6 are made of a plate-like or cylindrical body made of graphite, for example, and vertical slits are cut alternately at appropriate intervals from the upper and lower edges thereof. By doing this, a plate or cylinder having a zigzag surface is formed, and in the case of a plate, this is arranged in a cylinder shape,
In addition, the cylindrical body is configured as a cylindrical heating element having a zigzag surface, and is shaped so that it can uniformly heat the object placed on the hearth 3 from around it. It is preferable.

それ等両ヒータ部5,6は第2図に示す如く単
一の電源を供給可能に並列に接続される。
Both heater sections 5 and 6 are connected in parallel so that a single power source can be supplied as shown in FIG.

しかして第1図々示例は補助ヒータ部6が主ヒ
ータ部5の下端部分の内方に同心的に配置され、
かつ炉床3の受止面下方にいん蔽された配置形態
となつているが、本考案装置例はこの他に、第3
図および第4図に夫々例示してなる構造のもので
あつても良く、第3図々示のものは、炉床3の受
止面によつていん蔽されることなく、第1図々示
のものを同様主ヒータ部5と同心配列になつてい
る構造であり、一方、第4図々示のものは、主ヒ
ータ部5と補助ヒータ部6とが上下に接近してし
かも同軸配置となつた構造である。
Therefore, in the example shown in FIG. 1, the auxiliary heater section 6 is arranged concentrically inside the lower end portion of the main heater section 5,
In addition to this, the device example of the present invention also has a third
The structure shown in FIG. 3 and FIG. 4 may be used, and the structure shown in FIG. The structure shown in FIG. It has a well-arranged structure.

それ等各例に共通しているところは、主ヒータ
部5が炉床3に搭載された被処理物を側周全面か
ら囲むようになり、一方、補助ヒータ部6が前記
被処理物よりも下方に配置されている点であつ
て、後述する均熱性の確保上に両ヒータ部5,6
が機能している点は一致している。
What these examples have in common is that the main heater section 5 surrounds the object to be processed mounted on the hearth 3 from the entire side circumference, while the auxiliary heater section 6 surrounds the object to be processed mounted on the hearth 3. Both heater parts 5 and 6 are arranged at the lower part in order to ensure heat uniformity, which will be described later.
They agree that it is working.

なお、主ヒータ部5と補助ヒータ部6とは、電
気抵抗を比較した場合に前者が小さく後者が大き
い関係に存しており、加熱能力は主ヒータ部5の
方が遥かに大きくなつている。
It should be noted that when comparing the electrical resistances of the main heater section 5 and the auxiliary heater section 6, the former is small and the latter is large, and the heating capacity of the main heater section 5 is much larger. .

両ヒータ部5,6の具体的構造例を挙げると、
主ヒータ部5においては、直径15mm、長さ405mm
のグラフアイト丸棒18本を、処理室4周囲を18等
分割する配置となして直列接続することにより、
総合抵抗が約0.501Ωのヒータに形成し、一方、
補助ヒータ部6においては、直径5mm、長さ105
mmのグラフアイト丸棒30本を同様に30等分割する
配置となして直列接続することにより、総合抵抗
が1.886Ωのヒータに形成して、両ヒータ部5,
6に共通の単一電源約140Vを印加するようにす
れば、主ヒータ部5の発熱量は約40KW、補助ヒ
ータ部の発熱量は約10KWとなる。
A specific example of the structure of both heater parts 5 and 6 is as follows:
Main heater part 5 has a diameter of 15 mm and a length of 405 mm.
By connecting 18 graphite round rods in series in an arrangement that divides the periphery of the processing chamber 4 into 18 equal parts,
A heater with a total resistance of about 0.501Ω is formed, while
The auxiliary heater part 6 has a diameter of 5 mm and a length of 105
A heater with a total resistance of 1.886 Ω is formed by arranging 30 mm graphite round rods to be equally divided into 30 pieces and connecting them in series.
If a common single power supply of about 140V is applied to the heaters 6 and 6, the amount of heat generated by the main heater section 5 will be about 40KW, and the amount of heat generated by the auxiliary heater section will be about 10KW.

このように両ヒータ部5,6の発熱量の比は
4:1〜3:1程度が適当である。
As described above, the ratio of the calorific value of both heater parts 5 and 6 is suitably about 4:1 to 3:1.

叙上の構成になるHIP装置は不活性高圧ガス雰
囲気下で電気ヒータによる加熱を行つて、数百気
圧乃至千気圧、500℃乃至2000℃の圧力温度条件
で運転するが、高温低圧の輻射による熱伝達が主
体の場合は、処理室4内で炉床3上に存在する被
処理物は主ヒータ部5によつて囲繞されているの
で、主ヒータ部5の各部における表面温度が均等
であると、輻射熱量は上下によつて差が殆どない
ので、すぐれた均熱性が得られる。
The HIP device configured as described above performs heating with an electric heater in an inert high-pressure gas atmosphere and operates under pressure and temperature conditions of several hundred to 1,000 atmospheres and 500°C to 2000°C. When heat transfer is the main component, the workpiece present on the hearth 3 in the processing chamber 4 is surrounded by the main heater section 5, so the surface temperature in each part of the main heater section 5 is uniform. Since there is almost no difference in the amount of radiant heat between the top and bottom, excellent heat uniformity can be obtained.

この場合、補助ヒータ部6から輻射熱は直接被
処理物に放射されないので、局部加熱などの悪影
響につながることは全くなく、従つて全体的に均
熱性を確保した加熱運転が可能である。
In this case, since the radiant heat is not directly radiated from the auxiliary heater section 6 to the object to be processed, there is no adverse effect such as local heating, and therefore, heating operation can be performed while ensuring uniformity of temperature throughout.

一方、低温高圧の対流による熱伝達が主体とな
る場合は、対流がきわめて激しく多量の熱が処理
室4内の上方に運ばれて処理室4上部の温度が高
くなろうとするが、この温度の影響で主ヒータ部
5の電気抵抗が増加するために、それよりも低い
温度域における補助ヒータ部6の発熱量が相対的
に増加する結果、自己平衡的に下部の温度が上昇
することによつて均熱性を保つた加熱運転が行わ
れる。
On the other hand, when heat transfer is mainly due to low-temperature, high-pressure convection, the convection is extremely intense and a large amount of heat is carried upwards within the processing chamber 4, causing the temperature in the upper part of the processing chamber 4 to rise. As a result, the electrical resistance of the main heater section 5 increases, and as a result, the amount of heat generated by the auxiliary heater section 6 in a lower temperature range increases relatively, causing the temperature of the lower part to rise in a self-balancing manner. Heating operation is performed while maintaining uniform heat.

叙上の如く本考案によれば、輻射を主体とした
熱伝達が行われる場合は、処理室4の周囲に配置
される主ヒータ部5からの輻射が加熱に寄与し下
方部の補助ヒータ部6からの輻射は殆ど直接的な
熱伝達に寄与しないところから主ヒータ部5の各
部分の温度を等しく保たせることによつて上・下
部にむらなく等温を保持して均熱性を得ることが
でき、また、対流を主体とした熱伝達が行われる
場合は上部と下部との温度差を補助ヒータ部6の
発熱によつて無くすることができて同様に均熱性
能を発揮することが可能となり、かくして幅広い
温度圧力条件に対してすぐれた加熱運転を行わせ
得る。
As described above, according to the present invention, when heat transfer is performed mainly by radiation, the radiation from the main heater part 5 arranged around the processing chamber 4 contributes to heating, and the auxiliary heater part in the lower part Since the radiation from the main heater section 5 hardly contributes to direct heat transfer, by keeping the temperature of each part of the main heater section 5 equal, it is possible to maintain the same temperature evenly in the upper and lower parts and obtain thermal uniformity. In addition, when heat transfer is performed mainly by convection, the temperature difference between the upper and lower parts can be eliminated by the heat generated by the auxiliary heater section 6, and it is possible to achieve the same heat uniformity performance. Thus, excellent heating operation can be performed under a wide range of temperature and pressure conditions.

さらに本考案は主ヒータ部5に対し補助ヒータ
部6を同心的.同軸的に付設すると共に、並列に
接続するだけの簡単な構造であり、しかも全体と
して単一制御・単一電源供給方式であるので装置
コストは低廉におさまる経済面での利点も有して
いる。
Furthermore, the present invention has an auxiliary heater section 6 concentrically with respect to the main heater section 5. It has a simple structure of just installing it coaxially and connecting it in parallel, and it also has the economical advantage of keeping the equipment cost low because it has a single control and single power supply system as a whole. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の1実施例に係るHIP装置
の略示構造図、第2図は第1図における加熱装置
の結線図、第3図および第4図は本考案装置の各
実施例に係るHIP装置の略示構造図である。 4…処理室、5…主ヒータ部、6…補助ヒータ
部。
Fig. 1 is a schematic structural diagram of a HIP device according to one embodiment of the device of the present invention, Fig. 2 is a wiring diagram of the heating device in Fig. 1, and Figs. 3 and 4 are each embodiment of the device of the present invention. 1 is a schematic structural diagram of a HIP device according to the present invention. 4...Processing chamber, 5...Main heater section, 6...Auxiliary heater section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱間静水圧加圧装置の処理室4を加熱するため
の加熱装置を、正の抵抗温度係数を持つ材料から
なる電気ヒータを備えて、該電気ヒータに単一の
電源から電力供給を行なう構成にすると共に、前
記電気ヒータは、処理室4の周囲に主として配置
される主ヒータ部5と、処理室4の下方部に配置
され、かつ前記主ヒータ部5に比し抵抗が大きい
補助ヒータ部6とを並列に接続して有することを
特徴とする熱間静水圧加圧装置における加熱装
置。
A heating device for heating the processing chamber 4 of the hot isostatic pressurizing device is equipped with an electric heater made of a material having a positive temperature coefficient of resistance, and power is supplied to the electric heater from a single power source. In addition, the electric heater includes a main heater section 5 mainly arranged around the processing chamber 4, and an auxiliary heater section arranged below the processing chamber 4 and having a higher resistance than the main heater section 5. 6 connected in parallel, a heating device in a hot isostatic pressurizing device.
JP16636382U 1982-11-02 1982-11-02 Heating device in hot isostatic pressing equipment Granted JPS5970729U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16636382U JPS5970729U (en) 1982-11-02 1982-11-02 Heating device in hot isostatic pressing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16636382U JPS5970729U (en) 1982-11-02 1982-11-02 Heating device in hot isostatic pressing equipment

Publications (2)

Publication Number Publication Date
JPS5970729U JPS5970729U (en) 1984-05-14
JPS634503Y2 true JPS634503Y2 (en) 1988-02-05

Family

ID=30364226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16636382U Granted JPS5970729U (en) 1982-11-02 1982-11-02 Heating device in hot isostatic pressing equipment

Country Status (1)

Country Link
JP (1) JPS5970729U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001474A1 (en) * 1989-07-17 1991-02-07 Kabushiki Kaisha Kobe Seiko Sho Oxidizing atmosphere hot isotropic press

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076744B2 (en) * 1985-01-18 1995-01-30 株式会社神戸製鋼所 Hot isotropic pressure press
JP2002100459A (en) * 2000-09-22 2002-04-05 Hitachi Kokusai Electric Inc Heater device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001474A1 (en) * 1989-07-17 1991-02-07 Kabushiki Kaisha Kobe Seiko Sho Oxidizing atmosphere hot isotropic press

Also Published As

Publication number Publication date
JPS5970729U (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US3646321A (en) Infrared surface heating unit
CN101490491B (en) Device and method for heating semiconductor processing chamber
JPS634503Y2 (en)
ATE163500T1 (en) HEATER AND SENSOR FOR A STOVE PLATE
US3781527A (en) Electrical heater
CN210560730U (en) Microelectrode sample heating table of vacuum deposition system
JP3466673B2 (en) Vacuum furnace with movable heat reflector
JPS6224237Y2 (en)
JPS61158808A (en) Induction heating graphitization furnace and method for graphitization
JPH0839300A (en) Hot press method and hot press device
JPH0136883Y2 (en)
JPH04238872A (en) Molding apparatus made of composite material for performing hot pressing of member consisting of heat-resistant material
CN220585199U (en) Wafer baking device
JPS6348789A (en) Ceramic heater
JPH0533524U (en) Heater for single-wafer CVD equipment
CN220472309U (en) Roasting furnace with preheating atmosphere
JPH0413837B2 (en)
JPH09227232A (en) Graphitization method for carbonaceous molding
JPH02192592A (en) Vacuum heat treatment furnace
US3294949A (en) Apparatus for brazing super alloys and refractory metals
JP2000306917A (en) Substrate heater
JP2000063907A (en) Electric heating type pressure-sintering device
SU1199451A1 (en) High-temperature furnace of apparatus for forming by static pressure
JPH0210558B2 (en)
JPH0514158Y2 (en)