JPS6344917A - Ceramic filter - Google Patents

Ceramic filter

Info

Publication number
JPS6344917A
JPS6344917A JP18823486A JP18823486A JPS6344917A JP S6344917 A JPS6344917 A JP S6344917A JP 18823486 A JP18823486 A JP 18823486A JP 18823486 A JP18823486 A JP 18823486A JP S6344917 A JPS6344917 A JP S6344917A
Authority
JP
Japan
Prior art keywords
tube
ceramic
micropores
sintered
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18823486A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Makoto Furuguchi
古口 誠
Masao Nishimura
西村 真雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18823486A priority Critical patent/JPS6344917A/en
Publication of JPS6344917A publication Critical patent/JPS6344917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a ceramic filter of superb quality and performance for treating liquid and gas by distributing micropores of different diameters in the order of diameter sizes in the radius direction between inner and outer circumferences of a porous ceramic sintering tube. CONSTITUTION:Micropores of different pore diameters are distributed between inner and outer circumferences of a ceramic sintering tube in the order of diameter sizes, namely large-medium-small or small-medium-large. The diameters of these micropores are within a range of 0.001-1mum. Said ceramic sintering tube is manufactured by piling up pure SiO2 fine particles in the shape of a tube and sintering the same. By this process, the product contains a very small quantity of impurities, and has high quality, sufficient mechanical properties, acid resistance, and alkali resistance. Such oblique pore diameters can be prepared by varying the sintering temperature of inner and outer circumferential faces. The higher the sintering temperature, the smaller the pore diameter.

Description

【発明の詳細な説明】 「産業上の利用分野1 本発明は液体処理、気体処理などに用いて好適なセラミ
ックスフィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field 1" The present invention relates to a ceramic filter suitable for use in liquid processing, gas processing, etc.

「従来の技術J 高度の水処理、ガス分離などを行なうとき、精密かつ高
品質のフィルタに依存するところが大きく、現状におい
てこれらフィルタを支えているのは、高分子膜に関する
技術である。
``Conventional Technology J'' Advanced water treatment, gas separation, etc. are highly dependent on precision and high-quality filters, and the technology that currently supports these filters is technology related to polymer membranes.

かかる高分子−膜フィルタの場合、一般的な排水処理、
空気浄化などにおいて応分の成果をあげているが、バイ
オケミストリなどの先端技術分野では、より厳しいスペ
ックが要求されるほか、実際にも強酸、強アルカリ水で
処理する必要が生じるので、品分Y−膜フィルタでは対
応が困難となる。
In the case of such polymer-membrane filters, general wastewater treatment,
Although it has achieved reasonable results in areas such as air purification, cutting-edge technology fields such as biochemistry require stricter specifications and actually require treatment with strong acid and strong alkaline water, so product Y -Membrane filters are difficult to deal with.

これに対処するため、セラミックス製のフィルタが検討
され、実用化への試みがなされている。
In order to deal with this, ceramic filters are being considered and attempts are being made to put them into practical use.

ちなみに、セラミックスフィルタとして多孔質セラミッ
クス焼結管を作製するとき、はじめ、金属酸化物粉、添
加剤、バインダ(有機物、低融点無機物)をボールミル
内に入れ、これらを混練してスラリをつくり、つぎに、
スラリなダイスにより加圧成形して未焼結管をつくり、
その後、未焼結管を電気炉内で焼結してセラミックス焼
結管をず1■る。
By the way, when producing a porous ceramic sintered tube as a ceramic filter, first, metal oxide powder, additives, and binder (organic substances, low melting point inorganic substances) are placed in a ball mill, and these are kneaded to create a slurry. To,
Pressure molded with a slurry die to create an unsintered tube.
Thereafter, the unsintered tube is sintered in an electric furnace to form a ceramic sintered tube.

1発明が解決しようとする問題点J 上述したセラミックスフィルタ、すなわち多孔質セラミ
ックス焼結管の場合、つぎのような問題がある。
1. Problems to be Solved by the Invention J In the case of the above-mentioned ceramic filter, that is, the porous ceramic sintered tube, there are the following problems.

その一つば、製法に起因したものであり、スラリ作製時
にバインダ等を混入するので、フィルタ中に不純物がか
なり多く残存し、かかる不純物が例えば高純度水をつく
る際に悪影響をおよぼす。
One of these is due to the manufacturing method; since binders and the like are mixed in when making the slurry, a considerable amount of impurities remain in the filter, and these impurities have an adverse effect, for example, when producing high-purity water.

他の一つば、フィルタの各微小孔径がほぼ一定となって
いることであり、そのため、粒径の異なる除去対象物が
効果的に捕捉できない。
Another problem is that the diameter of each micropore in the filter is approximately constant, and therefore objects to be removed having different particle sizes cannot be effectively captured.

本発明は」二記の問題点に鑑み、品質、性能に優れる多
孔質セラミックス焼結管部のセラミックスフィルタを提
供しようとするものである。
In view of the above two problems, the present invention aims to provide a ceramic filter having a porous ceramic sintered tube portion that is excellent in quality and performance.

r問題点を解決するための手段1 本発明は、多数の微小孔を有する多孔質セラミックス焼
結管部のセラミックスフィルタにおいて、上記多孔質セ
ラミックス焼結管の内外周面間には、当該焼結管の半径
方向にわたり、それぞれ孔径の異なる微小孔が、その孔
径順に分布していることを特徴として所期の目的を達成
する。
Means for Solving Problem 1 The present invention provides a ceramic filter having a porous sintered ceramic tube portion having a large number of micropores, in which the sintered The desired purpose is achieved by having micropores having different diameters distributed in the order of diameter in the radial direction of the tube.

1作用1 本発明に係るセラミックスフィルタは、上述のごとく、
セラミックス焼結管の内外周面間にわたり、それぞれ孔
径の異なる微小孔が、大→中峠小あるいは小→中→大の
ように、その孔径順に分布している。
1 Effect 1 As mentioned above, the ceramic filter according to the present invention has the following features:
Between the inner and outer circumferential surfaces of the ceramic sintered tube, micropores with different diameters are distributed in order of diameter, such as large → medium to small or small → medium → large.

かかるセラミックス焼結管を介して流体を処理するとき
、セラミ・ンクス焼結管の外周面から内周面に向けて、
あるいはセラミックス焼結管の内周面から外周面に向け
て、流体を透過させるのであり、この際、流体中に含ま
れる各種火きさの除去 ゛対象物が、孔径の異なる各微
小孔により、段階的にかつ効率よく捕捉されて除去され
る。
When processing fluid through such a ceramic sintered tube, from the outer peripheral surface of the ceramic sintered tube toward the inner peripheral surface,
Alternatively, the fluid is passed from the inner circumferential surface to the outer circumferential surface of the ceramic sintered tube, and at this time, various types of sparks contained in the fluid are removed. It is captured and removed step by step and efficiently.

L述したセラミックス焼結管は、純S i02微粒子を
管状に堆積し、これを焼結することにより得られるので
、不純物の含有量がきわめて少なく、高品質のセラミッ
クスフィルタとなり得る。
The ceramic sintered tube described above is obtained by depositing pure Si02 fine particles in a tubular shape and sintering the same, so the content of impurities is extremely small and it can be a high-quality ceramic filter.

もちろん、かかるフィルタはセラミックス製であるから
、十分な機械的特性、耐酸性、耐アルカリ性を有する。
Of course, since such a filter is made of ceramics, it has sufficient mechanical properties, acid resistance, and alkali resistance.

1実 施 例1 以F、本発明に係るセラミックスフィルタの実施例につ
き、図面を参照して説明する。
1 Example 1 Hereinafter, examples of the ceramic filter according to the present invention will be described with reference to the drawings.

第1図は本発明に係るセラミックスフィルタの一実施例
であり、この実施例セラミックスフィルタは、単一の多
孔質セラミックス焼結管1からなる。
FIG. 1 shows an example of a ceramic filter according to the present invention, and this example ceramic filter is composed of a single porous ceramic sintered tube 1. As shown in FIG.

かかるセラミックス焼結管1は実質的に5i07製であ
り、これに含まれる金属不順物の量は100pP鵬以下
とごく少量である。
The ceramic sintered tube 1 is substantially made of 5i07, and the amount of metal impurities contained therein is very small, 100 pP or less.

上述したセラミックス焼結管lは、多孔質構造を有する
ゆえ、互いに連続した多数の微小孔を有するが、これら
微小孔の孔径は一定でなく、孔径の大きいもの、孔径の
小さいものが、当該焼結管lの管壁内に分布している。
Since the ceramic sintered tube l described above has a porous structure, it has a large number of interconnected micropores, but the pore diameters of these micropores are not constant, and those with a large pore diameter and those with a small pore diameter are Distributed within the canal wall of tubule l.

その具体的−例として、セラミックス焼結管1の内周面
側にある微小孔の孔径が最も小さく、該焼結管1の外周
面側に向うにしたがい、微小孔の孔径が順次大きくなっ
ている。
As a specific example, the diameter of the micropores on the inner peripheral surface of the sintered ceramic tube 1 is the smallest, and the diameter of the micropores gradually increases toward the outer peripheral surface of the sintered tube 1. There is.

他の具体的−例として、セラミックス焼結管lの外周面
側にある微小孔の孔径が最も小さく、該焼結管lの内周
面側に向うにしたがい、微小孔の孔径が順次大きくなつ
いている。
As another specific example, the diameter of the micropores on the outer peripheral surface of the sintered ceramic tube l is the smallest, and the diameter of the micropores gradually increases toward the inner peripheral surface of the sintered tube l. Attached.

セラミックス焼結管1の各微小孔は、これらの孔径が0
.001〜17zmφの範囲内にある。
Each micropore of the ceramic sintered tube 1 has a diameter of 0.
.. It is within the range of 001 to 17zmφ.

第2図は本発明に係るセラミックスフィルタの他実施例
であり、この実施例のセラミ・ンクスフィルタは、管径
の異なる複数(二木以L)の多孔質セラミックス焼結管
lが屯ね合わされた重管構造を41するが、その内側管
の内周面から外側管の外周面にわたる各微小孔は、前記
と同様、犬→中→小、あるいは小→中→大のように、そ
の孔径順に分布している。
Fig. 2 shows another embodiment of the ceramic filter according to the present invention, and the ceramic filter of this embodiment has a plurality of porous ceramic sintered tubes l having different diameters (from Niki to L) stacked together. A double tube structure 41 is used, but each micropore extending from the inner circumferential surface of the inner tube to the outer circumferential surface of the outer tube changes in diameter as described above, such as dog→medium→small or small→medium→large. They are distributed in order.

つぎに、1;配装孔質性セラミックス焼結管1の製造方
法につき、第3図、第4図を参照して説明する。
Next, 1: A method of manufacturing the arranged porous ceramic sintered tube 1 will be explained with reference to FIGS. 3 and 4.

第3図は、外イ・1法による多孔質スート層の作製1程
を示したものである。
FIG. 3 shows the first step in the preparation of a porous soot layer by the method A.1.

この[程では、バブリング槽11内に液状原料として5
iC1a を収容しておき、そのバブリング槽11内に
不活性ガス(例えばAr)を吹きこんでL記各原料を蒸
発さぜた後、その気相原料たる5iCIaをキャリアガ
ス(Ar)により担持して多重管構造のバーナ12へ供
給する。
In this process, 50% of the liquid raw material is added to the bubbling tank 11.
iC1a is stored, and after blowing an inert gas (for example, Ar) into the bubbling tank 11 to evaporate each raw material listed in L, the gas phase raw material 5iCIa is supported by a carrier gas (Ar). and is supplied to the burner 12 having a multi-tube structure.

多重管構造のバーナ12は、複数かつ相互に同心状の流
路を有し、かかるバーナ12の各流路には、前述した気
相原料のほか、水素(H2)、酸素(02)、シールガ
ス(Ar)が供給され、当該バーナ12を介した各ガス
の火炎加水分解反応により、5i02微粒子が生成され
る。
The burner 12, which has a multi-tube structure, has a plurality of mutually concentric flow paths, and each flow path of the burner 12 contains hydrogen (H2), oxygen (02), and seals in addition to the gas phase raw material described above. Gas (Ar) is supplied, and 5i02 fine particles are generated by a flame hydrolysis reaction of each gas via the burner 12.

こうして生成された5i02微粒子は、バーナ12から
堆積部材13の外周に噴射かつ堆積されるが、この際の
バーナ12が堆積部材13の長丁方向沿いに往復動する
ため、当該堆積部材13の外周には所定長さ、厚さの多
孔質スート層14が形成される。
The 5i02 fine particles generated in this way are injected and deposited from the burner 12 onto the outer periphery of the deposition member 13. At this time, since the burner 12 reciprocates along the longitudinal direction of the deposition member 13, the outer periphery of the deposition member 13 is A porous soot layer 14 having a predetermined length and thickness is formed.

なお、」−記堆積部材13は、つぎのII程において通
電加熱する必要から、これが可能な材質のものが採用さ
れ、その具体的−例として、第3図ではカーボンロッド
が採用されている。
Since the deposition member 13 needs to be heated with electricity in the next step II, a material capable of this is used, and as a specific example, a carbon rod is used in FIG. 3.

第4図は、電気炉15による多孔質スート層14の焼結
工程を示したものである。
FIG. 4 shows the sintering process of the porous soot layer 14 using the electric furnace 15.

この工程では、電気炉15の内部、すなわち外周に電気
ヒータ16を有する炉心管17内に多孔質スート層14
が回転状態で挿入かつ降ドされ、当該多孔質スート層1
4がそれぞれ通電加熱状態の電気ヒータ1G、堆積部材
13を介して焼結されるが、かかる焼結時、電気ヒータ
ー6による加熱温度が低温、堆積部材13による加熱温
度が高温となるように、これらの温度が相対的に設定さ
れる。
In this step, a porous soot layer 14 is formed inside the electric furnace 15, that is, inside the furnace core tube 17 having the electric heater 16 on the outer periphery.
is inserted and lowered in a rotating state, and the porous soot layer 1 is
4 are sintered through the electric heater 1G and the deposition member 13, which are heated with electricity, respectively. During such sintering, the heating temperature by the electric heater 6 is low and the heating temperature by the deposition member 13 is high. These temperatures are set relatively.

・般に、多孔質スート層14を焼結して多孔質セラミッ
クス焼結管1を得るとき、その微小孔の平均孔径は焼結
時の温度により定まり、焼結温度が高いほど、微小孔の
孔径が小さくなり、焼結温度が低いほど、微小孔の孔径
が大きくなる。
- Generally, when the porous soot layer 14 is sintered to obtain the porous ceramic sintered tube 1, the average pore diameter of the micropores is determined by the temperature during sintering, and the higher the sintering temperature, the smaller the micropores are. The smaller the pore size and the lower the sintering temperature, the larger the micropore size.

したがって、に述のごとく焼結温度を設定して多孔質ス
ー]・層14を焼結するとき、堆積部材13による加熱
温度が高温、電気ヒーター6による加熱温度が低温であ
るため、多孔質スート層14の半径方向にわたる温度分
布が内周面高温、外周面低温となる勾配をもつようにな
り、かかる分布の焼結温度にて焼結された多孔質スート
層14、すなわちセラミックス焼結管1は、その内周面
側にある微小孔の孔径が最も小さく仕−にがるとともに
、その外周面側に向うにしたがい、微小孔の孔径が順次
大きく仕りがる。
Therefore, when the porous soot layer 14 is sintered by setting the sintering temperature as described above, since the heating temperature by the deposition member 13 is high and the heating temperature by the electric heater 6 is low, the porous soot The temperature distribution in the radial direction of the layer 14 has a gradient of high temperature on the inner peripheral surface and low temperature on the outer peripheral surface, and the porous soot layer 14, that is, the ceramic sintered tube 1, is sintered at the sintering temperature of this distribution. The diameter of the micropores on the inner peripheral surface side is the smallest, and the diameter of the micropores gradually becomes larger toward the outer peripheral surface side.

その後、多孔質セラミックス焼結管1は堆積部材13か
ら離脱され、かくてポーラスな構造をイJするセラミッ
クスフィルタが得られる。
Thereafter, the porous ceramic sintered tube 1 is separated from the deposition member 13, and thus a ceramic filter having a porous structure is obtained.

具体例 第3図、第4図の各り程により、セラミックスフィルタ
を製造するとき、第3図のL程を表1の条件で実施し、
第4図の工程を表2の条件で実施した。
Specific Example When manufacturing a ceramic filter according to the steps shown in FIGS. 3 and 4, step L in FIG. 3 is carried out under the conditions shown in Table 1,
The process shown in FIG. 4 was carried out under the conditions shown in Table 2.

表   1 第4流路は同バーナの最外周流路である。)表   2 に記各工程により得られた多孔質セラミックス製(Si
02)焼結管は、外径10.5mmφ、内径8+wmφ
であり、その゛V、径方向にわたり分布している各微小
孔の孔径がつぎのように相違していた。
Table 1 The fourth passage is the outermost passage of the burner. ) Porous ceramics (Si
02) The sintered tube has an outer diameter of 10.5 mmφ and an inner diameter of 8+wmφ.
, and the pore diameters of the micropores distributed in the radial direction were different as follows.

すなわち、相対的に高温で焼結されたセラミックス焼結
管の内周部には、0.01 gtaφの小さい微小孔が
分布しており、相対的に高温で焼結されたセラミックス
焼結管の外周部には、0.07用+11φの大きい微小
孔が分布しており、これらの間も各微小孔の孔径が段階
的に変化していた。
In other words, small micropores of 0.01 gtaφ are distributed on the inner circumference of a ceramic sintered tube sintered at a relatively high temperature. On the outer periphery, large micropores of 0.07 mm + 11φ were distributed, and the pore diameter of each micropore was changing stepwise among these.

ちなみに、」−記微小孔の孔径と上記焼結温度との相対
関係を示すと、第5図のようになる。
Incidentally, the relative relationship between the diameter of the micropores and the sintering temperature is shown in FIG.

第5図はデータは、前記第3図の工程により得られた各
試料(多孔質スート)を第4図の工程で焼結するとき、
その焼結を表3の条件で実施して採取した。
Figure 5 shows the data when each sample (porous soot) obtained in the process in Figure 3 is sintered in the process in Figure 4.
The samples were sintered under the conditions shown in Table 3.

この際、堆積部材の通電加熱は行なわず、電気炉の電気
ヒータ1Bのみにより炉心管内の焼結温度を設定した。
At this time, the deposition member was not electrically heated, and the sintering temperature in the furnace tube was set only by the electric heater 1B of the electric furnace.

表   3 なお、前記衣1.2の条件で作製された多孔質セラミッ
クス焼結管の効果を確認するため、当該焼結管の外部か
ら内部に向けて汚水を通したところ、その外層部におい
て粒径的1g、mφ程度の粘土無機物を除去することが
でき、その中間層部において約0.1gmφまでの大き
さの細菌を除去することができ、その内層部において0
.01gmφ以1−のコロイド物質を除去することがで
きた。
Table 3 In order to confirm the effectiveness of the porous ceramic sintered tube manufactured under the conditions of 1.2 above, when dirty water was passed from the outside to the inside of the sintered tube, particles were found in the outer layer. It is possible to remove clay inorganic substances with a diameter of about 1 g and mφ, and in the middle layer it is possible to remove bacteria with a size of up to about 0.1 gmφ, and in the inner layer it is possible to remove 0.1 gmφ.
.. It was possible to remove colloidal substances of 0.01 gmφ or more.

かかる結果からして、当該多孔質セラミックス焼結管が
、水処理用フィルタとして、きわめて有効であることが
わかる。
These results show that the porous ceramic sintered tube is extremely effective as a water treatment filter.

もちろん上記フィルタは、排気ガス中の微細な粉塵を捕
捉して除去するための集塵用フィルタ、その他各種のフ
ィルタに適用できる。
Of course, the above filter can be applied to a dust collection filter for capturing and removing fine dust in exhaust gas, and other various filters.

本発明に係るセラミックスフィルタを作製するとき、前
述した第3図の工程ではカーボンロッド製の堆積部材1
3を用い、その外周面にSi02微粒子を堆積させて多
孔質スート層を作製したが、これとは逆に、カーボンパ
イプからなる堆積部材13の内周面にS i07微粒子
を堆積させる内材法により多孔質スート層を作製し、そ
の多孔質スート層を第4図と同様の工程で焼結しても、
多孔質セラミックス焼結管すなわちセラミックスフィル
タが得られる。
When manufacturing the ceramic filter according to the present invention, in the step shown in FIG.
3 was used to create a porous soot layer by depositing Si02 fine particles on the outer circumferential surface of the porous soot layer.On the contrary, the inner material method deposited Si07 fine particles on the inner circumferential surface of the deposition member 13 made of a carbon pipe. Even if a porous soot layer is prepared by and sintered in the same process as shown in Fig. 4,
A porous ceramic sintered tube, that is, a ceramic filter is obtained.

かかる手段で得られた多孔質セラミックス焼結管は、多
孔質スート層段階での半径方向にわたる温度分布が内周
面高温、外周面低温のごとき勾配をもつので、その外周
面側にある微小孔の孔径が最も小さく仕上がり、その内
周面側に向うにしたがい、微小孔の孔径が順次大きく仕
上がる。
In the porous ceramic sintered tube obtained by this method, the temperature distribution in the radial direction at the stage of the porous soot layer has a gradient such that the inner peripheral surface is high temperature and the outer peripheral surface is low temperature. The diameter of the micropores is the smallest, and the diameter of the micropores gradually increases toward the inner peripheral surface.

上記外付法、内材法のいずれかを介して多孔質スート層
を堆積形成するとき、その堆積層の表面温度を変えると
か、所定厚さのスート層が形成されるごと、焼結温度を
変化させなから該各スート層を焼結してもよく、これら
の手段によっても、多孔質セラミックス焼結管の半径方
向にわたる各微小孔の孔径を変化させることができる。
When depositing a porous soot layer using either the external method or the internal method described above, the surface temperature of the deposited layer may be changed, or the sintering temperature may be changed each time a soot layer of a predetermined thickness is formed. Each soot layer may be sintered without changing the soot layer, and the pore diameter of each micropore extending in the radial direction of the porous sintered ceramic tube can also be changed by these means.

その他、多孔質スート層を形成するためのS i02微
粒子は、有機金属化合物のゾル書ゲル法によっても得ら
れる。
In addition, Si02 fine particles for forming the porous soot layer can also be obtained by a sol-gel method using an organometallic compound.

1発明の効果J 以上説明した通り、本発明に係るセラミックスフィルタ
は、セラミックス焼結管の内外周面間。
1. Effects of the Invention J As explained above, the ceramic filter according to the present invention has a sintered ceramic tube between the inner and outer circumferential surfaces.

すなわち当該焼結鎖管の半径方向にわたり、それぞれ孔
径の異なる微小孔が、その孔径順に分布しているから、
液体処理用、気体処理用のフィルタとして品質、性能を
共に満足させる。
In other words, micropores with different pore diameters are distributed in the radial direction of the sintered chain tube in the order of their pore diameters.
Satisfies both quality and performance as a filter for liquid processing and gas processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未発ゆ1に係るセラミックスフィルタの一実施
例を小した斜視図、第2図は同上の他実施例を小した斜
視図、第3図、第4図は本発明に係るセラミックスフィ
ルタの製造下程を略示した説明図、第5図は多孔質セラ
ミックス焼結管における微小孔の4i均孔径とその焼結
温度との関係を示した説明図である。 1・・・・・・多孔質セラミックス焼結管代理人 弁理
士 斎 藤 義 雄 第1図 12図 第5図 ・汁!1.!農&(’ 第 3 図 5IN4図
FIG. 1 is a perspective view of a smaller embodiment of a ceramic filter according to unexploited oil 1, FIG. 2 is a smaller perspective view of another embodiment of the same, and FIGS. 3 and 4 are ceramic filters according to the present invention. FIG. 5 is an explanatory diagram schematically showing the manufacturing process of the filter, and FIG. 5 is an explanatory diagram showing the relationship between the 4i average pore diameter of micropores in a porous ceramic sintered tube and its sintering temperature. 1... Porous Ceramic Sintered Pipe Agent Patent Attorney Yoshio Saito Figure 1 Figure 12 Figure 5 - Juice! 1. ! Agriculture&(' Figure 3 Figure 5IN4

Claims (6)

【特許請求の範囲】[Claims] (1)多数の微小孔を有する多孔質セラミックス焼結管
製のセラミックスフィルタにおいて、上記多孔質セラミ
ックス焼結管の内外周面間には、当該焼結管の半径方向
にわたり、それぞれ孔径の異なる微小孔が、その孔径順
に分布していることを特徴とするセラミックスフィルタ
(1) In a ceramic filter made of a porous sintered ceramic tube having a large number of micropores, between the inner and outer peripheral surfaces of the porous sintered ceramic tube, there are micropores with different diameters extending in the radial direction of the sintered tube. A ceramic filter characterized in that pores are distributed in order of pore diameter.
(2)多孔質セラミックス焼結管の内周面側にある微小
孔の孔径が最も小さく、その焼結管の外周面側に向うに
したがい、微小孔の孔径が順次大きくなっている特許請
求の範囲第1項記載のセラミックスフィルタ。
(2) A patent claim in which the diameter of the micropores on the inner peripheral surface of the porous ceramic sintered tube is the smallest, and the diameter of the micropores gradually increases toward the outer peripheral surface of the sintered tube. Ceramic filter according to scope 1.
(3)多孔質セラミックス焼結管の外周面側にある微小
孔の孔径が最も小さく、その焼結管の内周面側に向うに
したがい、微小孔の孔径が順次大きくなっている特許請
求の範囲第1項記載のセラミックスフィルタ。
(3) A patent claim in which the diameter of the micropores on the outer peripheral surface of the porous ceramic sintered tube is the smallest, and the diameter of the micropores gradually increases toward the inner peripheral surface of the sintered tube. Ceramic filter according to scope 1.
(4)多孔質セラミックス焼結管の各微小孔は、これら
の孔径が0.001〜1μmφの範囲内にある特許請求
の範囲第1項ないし第3項いずれかに記載のセラミック
スフィルタ。
(4) The ceramic filter according to any one of claims 1 to 3, wherein each micropore of the porous ceramic sintered tube has a diameter within a range of 0.001 to 1 μmφ.
(5)多孔質セラミックス焼結管が実質的にSiO_2
からなり、該焼結管中の金属不順物含有量が100pp
m以下である特許請求の範囲第1項ないし第4項いずれ
かに記載のセラミックスフィルタ。
(5) The porous ceramic sintered tube is substantially SiO_2
The content of metal impurities in the sintered tube is 100pp.
The ceramic filter according to any one of claims 1 to 4, wherein the ceramic filter has a diameter of less than m.
(6)多孔質セラミックス焼結管が重管構造を有する特
許請求範囲第1項ないし第5項いずれかに記載のセラミ
ックスフィルタ。
(6) The ceramic filter according to any one of claims 1 to 5, wherein the porous ceramic sintered tube has a double tube structure.
JP18823486A 1986-08-11 1986-08-11 Ceramic filter Pending JPS6344917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18823486A JPS6344917A (en) 1986-08-11 1986-08-11 Ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18823486A JPS6344917A (en) 1986-08-11 1986-08-11 Ceramic filter

Publications (1)

Publication Number Publication Date
JPS6344917A true JPS6344917A (en) 1988-02-25

Family

ID=16220134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18823486A Pending JPS6344917A (en) 1986-08-11 1986-08-11 Ceramic filter

Country Status (1)

Country Link
JP (1) JPS6344917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020037A1 (en) * 1994-12-27 1996-07-04 Yuugengaisya Mikazuki Bunkakaikan Porous ceramic filter, method of manufacturing the same, extrusion molding die for manufacturing the same, and extrusion molding machine using the same
JP2007222865A (en) * 2006-01-27 2007-09-06 Kyocera Corp Ceramic filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020037A1 (en) * 1994-12-27 1996-07-04 Yuugengaisya Mikazuki Bunkakaikan Porous ceramic filter, method of manufacturing the same, extrusion molding die for manufacturing the same, and extrusion molding machine using the same
US5989420A (en) * 1994-12-27 1999-11-23 Yuugengaisya Mikazuki Bunkakaikan Porous ceramic filter, method of manufacturing the same, ceramic filter manufacturing extrusion molding die and extrusion molding apparatus using the die
JP2007222865A (en) * 2006-01-27 2007-09-06 Kyocera Corp Ceramic filter

Similar Documents

Publication Publication Date Title
US7578865B2 (en) Method of forming a porous substrate having inorganic bonds
US5707584A (en) Method for the production of ceramic hollow fibres
JPH0349608B2 (en)
EP1951637A2 (en) System for extruding a porous substrate
CN113105223B (en) Preparation and application of whisker-shaped ceramic membrane with low cost and high permeability
EP2265557A2 (en) Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
AU2007284302B2 (en) An extruded porous substrate having inorganic bonds
JPH08173771A (en) Porous monolithic support body for filteration film
JP3712785B2 (en) Exhaust gas filter and exhaust gas purification device
Zhou et al. Novel interface enhancement strategy enables SiC fiber membrane for high-temperature gas/solid filtration
JPS6344917A (en) Ceramic filter
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
JP2009220039A (en) Porous film complex structure and manufacturing method of micropore in porous body
JPH01145377A (en) Silicon carbide honeycomb structure and production thereof
DE10343438B4 (en) Process for the production of ceramic particle filters and ceramic particle filters
Ohzawa et al. Preparation of gas-permeable SiC shape by pressure-pulsed chemical vapour infiltration into carbonized cotton-cloth preforms
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
JPS62289213A (en) Production of ceramic filter for separating fine particle
JP2001276533A (en) Porous silicon carbide filter
CN1036636C (en) Polyethylene-glass fibre porous sintered pipes and their production
JPH02149482A (en) Highly aluminous porous sintered body and its production
JP3113713B2 (en) Method for producing silica glass filter unit
JP3194016B2 (en) Silica glass filter
JP2004330023A (en) Fluid filter
JPS62289215A (en) Ceramic filter for separating fine particle and its production