JP2004330023A - Fluid filter - Google Patents

Fluid filter Download PDF

Info

Publication number
JP2004330023A
JP2004330023A JP2003127248A JP2003127248A JP2004330023A JP 2004330023 A JP2004330023 A JP 2004330023A JP 2003127248 A JP2003127248 A JP 2003127248A JP 2003127248 A JP2003127248 A JP 2003127248A JP 2004330023 A JP2004330023 A JP 2004330023A
Authority
JP
Japan
Prior art keywords
fluid filter
fluid
regions
average pore
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003127248A
Other languages
Japanese (ja)
Other versions
JP4066878B2 (en
Inventor
Toshihiro Yamamoto
智弘 山元
Hisashi Mori
久 森
Yasunari Shigyo
康成 執行
Tadashi Kuwabara
正 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003127248A priority Critical patent/JP4066878B2/en
Publication of JP2004330023A publication Critical patent/JP2004330023A/en
Application granted granted Critical
Publication of JP4066878B2 publication Critical patent/JP4066878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid filter having low pressure loss and high dust capturing ratio. <P>SOLUTION: In the fluid filter 1, areas 12, 32, 52, 60 having an average bore diameter and areas 11, 20, 31, 40, 51 having a large average bore diameter are alternately arranged in a circulation direction of the fluid and/or a direction of crossing the circulation direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気等の流体を濾過して除塵するための、セラミック多孔体よりなる流体フィルタに関する。
【0002】
【従来の技術】
従来より、内部連通空間を有する3次元網状骨格構造の合成樹脂発泡体、例えばセル膜のない軟質ポリウレタンフォームをセラミックスラリーに浸漬し、セラミックをポリウレタンフォームの骨格に付着させ、これを乾燥、焼成することによって得られた3次元網状骨格を有するセラミック多孔体が知られている(例えば、特開平11−285782号、特開2000−109376号)。
【0003】
このセラミック多孔体は、かさ比重が小さく、耐熱性が高く、不活性で、通気抵抗、即ち圧力損失が低い等の特徴を有するため、厨房用グリスフィルター、触媒担体、通気性断熱材、溶融金属ろ過材等に用いられているが、これらの用途に使用するにあたっては圧力損失ができるかぎり低いことが求められている。
【0004】
従来、圧力損失を小さくするには、ポリウレタンフォームへのセラミックスラリーの付着度合いを少なくし、目づまりをほとんどなくすことが行われていたが、セラミック多孔体の見かけ比重が小さくなり、強度面で問題があった。
【0005】
また、セラミックスラリー中へ種々の有機系の界面活性剤、解膠剤などを添加して泥漿特性を調節する方法が採用されており、この方法によれば、骨格は太くなり、強度も大きくなるが、目づまりが多少生じ、圧力損失は十分には下がらないという問題がある。しかも、セラミック原料土のほか可燃消失の有機成分が多いため、得られたセラミック多孔体は気孔が多く残り、ポーラスな構造となる。このため、例えば含塵ガスのフィルタとして用いた場合、粉塵がセラミック多孔体の骨格に侵入し、経時的に圧損が上昇する。更に、ポーラスな骨格のため、強度面で問題になる恐れがある。
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、除塵性能に優れると共に圧力損失が低いセラミック多孔体よりなる流体フィルタを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の流体フィルタは、流体が一方の面から他方の面に向って流通するセラミック多孔体よりなる流体フィルタにおいて、該流体の流通方向及び/又は該流通方向と交叉方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されていることを特徴とするものである。
【0008】
本発明の流体フィルタでは、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されているため、流体フィルタに流入した流体は、フィルタ内部を通過する際、フィルタ流入面から流出面まで直線的に通過することができなくなり、濾過長が長くなり、粉塵等の捕集効果が向上する。また、含塵流体が平均孔径の小さい領域において流れ方向を変えられる際に、流体よりも比重の高い粉塵等は遠心力、慣性等により、この平均孔径の小さい領域に捕集される。このように、含塵流体から、遠心力、慣性を利用して粉塵の分離・捕集を行うため、含塵流体は平均孔径の大きい領域を選択的に通過し、圧力損失の低減が可能となる。
【0009】
本発明の流体フィルタでは、流体の流出面側に平均孔径の小さい領域を配置しておくことが好ましく、これにより、上述の遠心力、慣性等による捕集性能では捕集し得なかった粉塵をこの流出面側の平均孔径の小さい領域で捕集することができるようになる。
【0010】
本発明の流体フィルタは、具体的には、次のような構成とすることができる。
▲1▼ 平板状であり、流体の流通方向は平板状流体フィルタの厚み方向であり、該厚み方向及び厚み方向と直交方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されている流体フィルタ。
▲2▼ 筒状であり、流体の流通方向は径方向であり、該筒状の流体フィルタの筒軸心線と平行方向及び径方向において、平均孔径の大きい領域と平均孔径の小さい領域とが交互に配置されている流体フィルタ。
【0011】
本発明のセラミック多孔体は、内部連通空間を有する3次元網状骨格構造の合成樹脂発泡体をセラミックスラリーに浸漬して上記合成樹脂発泡体にセラミックを付着せしめた後、乾燥、焼成して得られる3次元網状骨格構造のセラミック多孔体であることが好ましい。
【0012】
本発明の流体フィルタは、空気などのガスを除塵処理するのに好適である。
【0013】
【発明の実施の形態】
以下に本発明の流体フィルタの実施の形態を詳細に説明する。
【0014】
本発明のセラミック多孔体は、好ましくは、上述したように、内部連通空間を有する3次元網状骨格構造の合成樹脂発泡体を基材として作られるものである。
【0015】
このような合成樹脂発泡体としては、内部連通空間を有する3次元網状骨格構造を有すればいずれのものも使用できるが、軟質ポリウレタンフォーム、特にセル膜のない軟質ポリウレタンフォームが好適に使用できる。このセル膜のないポリウレタンフォームとしては、発泡時のコントロールによりセル膜をなくしたもの、あるいはアルカリ処理、熱処理、水圧処理等によりセル膜を除去したものが使用でき、セル数、空孔率その他の物性は用途に応じて選択することができる。
【0016】
セラミック多孔体は、上述した合成樹脂発泡体をセラミックスラリーに浸漬し、合成樹脂発泡体にセラミックスラリーを付着せしめた後、乾燥、焼成し、該合成樹脂発泡体を熱分解又は焼却して得られる。
【0017】
セラミックとしては、アルミナ、シリカ、コーディエライト等の酸化物セラミックのほか、炭化珪素、窒化珪素などの非酸化物セラミック、あるいはサイアロン等が挙げられる。
【0018】
なお、セラミックスラリーの安定性を増加させるため粘土を配合することができる。この粘土としては、例えば木節粘土、蛙目粘土などが使用できる。また、配合量は全セラミック成分に対し0〜15%とすることが好ましい。15%より多く配合するとチクソトロピー指数が変化して目づまりの原因となる。
【0019】
そのほかセラミックスラリーには必要に応じポリビニルアルコール、カルボキシルメチルセルロース等の結合剤を配合することによりチクソトロピー性を調整することもできる。
【0020】
なお、セラミックスラリーの粘度は目的とするセラミック多孔体のセルの大きさなどに応じ、水の添加量を加減して調節することができる。
【0021】
次に、上述したセラミックスラリーに3次元網状骨格構造の合成樹脂発泡体を浸漬し、余剰泥漿を除去し、乾燥し、焼成炉で1000〜1500℃程度の温度で焼成することにより、合成樹脂発泡体に対応したセル構造の内部連通空間を有する3次元網状骨格構造のセラミック多孔体を得ることができる。
【0022】
本発明の流体フィルタは、流体の流通方向及び/又は該流通方向と交叉方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されている。
【0023】
このように平均孔径の異なる領域を交互に配置するには、平均孔径が異なる、即ち目の粗さが異なる3次元網状骨格構造の合成樹脂発泡体筒状体を所定の配置となるように組み合わせて一体化した前駆体を製作し、この前駆体をセラミックスラリーに浸漬し、余剰泥漿を除去し、乾燥し、焼成炉で焼成すればよい。
【0024】
本発明の流体フィルタにおいて、平均孔径の小さい領域の平均孔径及び平均孔径の大きい領域の平均孔径には特に制限はなく、流体フィルタの形状や用途(処理流体の種類)、平均孔径の小さい領域及び平均孔径の大きい領域の配置や当該領域の大きさ等に応じて適宜決定されるが、平均孔径の小さい領域は、捕集性能の確保のために平均孔径が0.1〜1.5mm程度であることが好ましく、一方、平均孔径の大きい領域は、圧力損失の低減のために、平均孔径が1.0〜5.0mm程度であることが好ましい。特に、平均孔径の小さい領域と平均孔径の大きい領域とは、その平均孔径において、差が大きい方が平均孔径の小さい領域と平均孔径の大きい領域とを交互に配置することによる本発明の効果を十分に得ることができ、好ましい。従って、平均孔径の大きい領域の平均孔径は、平均孔径の小さい領域の平均孔径の1.2倍以上であることが好ましい。流体フィルタの設計上、平均孔径の大きい領域の平均孔径は、平均孔径の小さい領域の平均孔径の2〜4倍であることが特に好ましい。
【0025】
なお、本発明の流体フィルタにあっては、平均孔径の小さい領域と平均孔径の大きい領域との2種類の平均孔径の異なる領域を交互に配置したものに限らず、平均孔径の小さい領域及び平均孔径の大きい領域と、これらの領域の平均孔径の中間の平均孔径を有する領域の3種類以上の領域を組み合わせて配置しても良い。
【0026】
本発明の流体フィルタにおいては、流体の流通方向及び/又は該流通方向と交叉方向に平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されている場合、この流体フィルタの流体の流通方向に沿う断面における平均孔径の小さい領域の面積割合(該断面における平均孔径の小さい領域が占める面積の総和を、該断面の総面積で除した割合の百分率。以下「細目領域比」と称す場合がある。)は枠部を除く濾過部のみにおいて20〜80%、特に30〜60%程度であることが好ましい。この割合が20%未満では捕集性能が不足し、80%を超えると圧力損失が大きくなり、好ましくない。
【0027】
本発明の流体フィルタにおいて、流体の流通方向と交叉方向に平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されている場合、この流体フィルタの流体の流通方向と交叉方向に沿う断面における細目領域比についても枠部を除く濾過部のみにおいて20〜80%、特に40〜60%程度であることが好ましい。この割合が20%未満では捕集性能が不足し、80%を超えると圧力損失が大きくなり、好ましくない。
【0028】
以下に図面を参照して本発明の流体フィルタの具体的な構成を説明する。
【0029】
図1は実施の形態に係る流体フィルタ1を示すものであり、(a)図は流体フィルタの平面図、(b)図は正面図、(c)図は(a)図のC−C線断面図、(d)図は(c)図のD−D線断面図である。図2,3は別の実施の形態に係る流体フィルタを示す図であり、図2(a)は平面図、図2(b)は正面図、図3(a)は図2(a)のA−A線断面図、図3(b)は図3(a)のB−B線断面図である。
【0030】
図1の流体フィルタ1は、方形平板形状のものであり、平均孔径の小さい(以下、「細目」ということがある。)領域と平均孔径の大きい(以下、「粗目」ということがある。)領域とが混在している。
【0031】
この流体フィルタ1は、細目の枠部2と、該枠部2内に流体フィルタ1の厚さ方向に重なり合う層状に形成された第1層10、第2層20、第3層30、第4層40、第5層50及び第6層60を有する。第2,4,6層20,40,60は、いずれも全体として細目である。第1,3,5層10,30,50は、厚さ方向と直方する一方向(図1(a),(c)の左右方向)において細目の領域と粗目の領域とが交互に設けられている。
【0032】
第1層10にあっては、流体フィルタの一側辺(図1(c)の左側辺)から他側辺(図1(c)の右側辺)に向って粗目領域11と細目領域12とが交互に配置されている。第3層30にあっては、該一側辺から他側辺に向って細目領域32と粗目領域31とが交互に配置されている。第5層50にあっては、第1層10と同様に、該一側辺から他側辺に向って粗目領域51と細目領域52とが交互に配置されている。各粗目領域11,31,51及び細目領域12,32,52の幅は略同一である。
【0033】
第3層30のみが細目領域と粗目領域との配列が第1,5層10,50と逆になっているので、第1,5層の細目領域12,52間には第3層の粗目領域31が配置され、第1,5層の粗目領域11,51間には第3層の細目領域32が配置されている。
【0034】
図1の流体フィルタ1は、通常1辺の長さが50〜200mm程度で厚さが20〜100mm程度の板状であることが好ましい。また、細目領域12,32,52及び粗目領域11,31,51の流体流入面方向の幅は5〜30mmであることが好ましく、フィルタの厚さ方向の高さは5〜30mm程度であることが好ましい。なお、細目領域及び粗目領域の幅や高さは均一である必要はなく、細目領域と粗目領域とで異なっていても良く、配置箇所によって異なる大きさであっても良い。
【0035】
また、流体フィルタ1の流体流出面側に配置する細目領域(第6層60)の厚さは1〜30mm程度であることが好ましい。
【0036】
なお、図1では、厚み方向と直交方向において細目領域と粗目領域とが交互に配置された層が、厚み方向に合計3層設けられているが、この層の数はこれに限定されず、2又は4層以上であってもよい。また、第2,4層20,40は粗目領域とされているが、前述の好適な細目領域比を満たす範囲において、これらは細目領域としても良い。流体流出面側となる第6層60については細目領域とすることが捕集性能の面で好ましい。また、枠部2についても流体フィルタの強度の確保の点及び含塵ガスのリーク防止の為にも細目領域とすることが好ましい。
【0037】
この流体フィルタ1は、軟質ポリウレタンフォーム製の前駆体を、前述の如く、セラミックスラリーに浸漬し、余剰のスラリーを除去し、乾燥後、焼成することにより製造された多孔質セラミック製である。この焼成により、前躯体は焼失除去される。この前駆体の構成について図4を参照して説明する。
【0038】
この前駆体は、枠部2を形成するための方形の枠体3の底部に第6層60を形成するための底板4を嵌合させて桝形状体とし、この枡形状体内に第5層50を形成するための角棒体5,6を左右に隣接させて交互に敷き並べ、その上に第4層40を形成するための平板7を敷き、その上に第3層30を形成するための角棒体6,5を敷き並べ、その上に第2層形成用の平板7を敷き、最後に、この上に、第1層10を形成するための角棒体5,6を敷き並べたものである。枠体3、底板4、及び角棒体5は細目の軟質ポリウレタンフォームよりなる。角棒体6及び平板7は粗目の軟質ポリウレタンフォームよりなる。角棒体5,6は同一寸法であり、それらの長さは枠体3の内寸と同一となっている。底板4及び平板7は同一寸法である。角棒体6及び平板7が粗目であるので、焼成により得られる流体フィルタは粗目領域11,31,51及び第2層20と第4層40が粗目であり、その他は細目となる。
【0039】
図1の流体フィルタ1は、側面から流体を吸い込まれないようにケーシング内に配置され、図1(c)に矢印で示す流通方向に流体が流れるように、流体の流出側を吸引することにより、流入した流体を濾過して除塵する。
【0040】
図2,3の流体フィルタ70は、円筒形であり、流体は放射方向(求心方向と逆方向)に流通する。
【0041】
この流体フィルタ70は、外周側から内周側に向って同軸状に積層状に配置された第1層71〜第8層78の8層よりなる。第1層71は細目領域のみよりなり、第3,5,7層73,75,77は粗面領域のみよりなり、第2,4,6,8層72,74,76,78は粗目領域72a,74a,76a,78aと細目領域72b,74b,76b,78bとを有する。
【0042】
これらの粗目領域72a,74a,76a,78a及び細目領域72b,74b,76b,78bはいずれも流体フィルタ70を周回する環状である。各領域72a,72b,74a,74b,76a,76b,78a,78bの流体フィルタ軸心線と平行方向の幅員は同一である。
【0043】
第2層72及び第6層76は、一端面(図3(a)の上端面)から他端面(図3(a)の下端面)に向って細目領域72b,76bと粗目領域72a,76aとが交互に配置されている。第4層74及び第8層78にあっては、該一端面から他端面に向って粗目領域72a,78aと細目領域72b,78bとが交互に配置されている。流体フィルタ70の両端面はいずれも細目となっている。
【0044】
第2層及び第6層の粗目領域72a,76a及び細目領域72b,76bの配置と、第4層及び第8層の粗目領域74a,78a及び細目領域74b,78bの配置を逆としているため、求心方向において第2層及び第6層の粗目領域72a,76aと第4層及び第8層の細目領域74b,78bとが重なり合い、第2層及び第6層の細目領域72b,76bと第4層及び第8層の粗目領域74a,78aとが重なり合う。
【0045】
図2,3の流体フィルタ70は、通常、外径120〜300mm、内径40〜160mm、厚さ((外径−内径)/2)40〜100mm、高さ50〜150mm程度の円筒形であることが好ましく(図2,3に記載される寸法の数値の単位はmmである。)、細目領域及び粗目領域の高さや幅、流体流出面側の細目領域の厚さについては、図1の流体フィルタの説明において前述した値と同程度とすることが好ましい。
【0046】
なお、図3では、周方向において細目領域と粗目領域とが交互に配置された層が、径方向に合計4層設けられているが、この層の数はこれに限定されず、3層以下であっても5層以上であってもよい。また、第3,5,7層73,75,77は粗目領域とされているが、これらは、前述の好適な細目領域比を満たす範囲において、細目領域としても良い。両端面については流体フィルタの強度の確保の点及び含塵ガスのリーク防止の為にも細目領域とすることが好ましい。
【0047】
この流体フィルタ70も、軟質ポリウレタンフォーム製の前駆体を、セラミックスラリーに浸漬した後、余剰のセラミックスラリーを除去し、乾燥及び焼成することにより製造されたものである。この前駆体は、第1層形成用の筒状の細目のポリウレタンフォームと第3,5,7層形成用の筒状の粗目のポリウレタンフォームと、粗目領域72a,74a,76a,78a形成用の粗目の環状ポリウレタンフォームと、細目領域72b,74b,76b,78b形成用の細目の環状軟質ポリウレタンフォームと、流体フィルタの両端面形成用の環板状の細目の軟質ポリウレタンフォームとを組み合わせて形成される。
【0048】
図2,3の流体フィルタ70は、両端面から流体を吸い込まれないようにケーシング内に配置され、図2(a)に矢印で示す流通方向に流体が流れるように流体の流出側(円筒形流体フィルタの外側部分)を吸引することにより、流入した流体を濾過して除塵する。なお、この流体フィルタ70は、内周側を吸引して、外周面から内周面へ流体を流通させるようにしても良い。ただし、この時は、外周側の細目領域を内周側に配置することとする。
【0049】
図1及び図2,3のいずれの流体フィルタであっても、流体フィルタに流入した流体は細目領域と粗目領域とが交互に配置された流体フィルタ内部を通過する間に、効率的に除塵され、また、粗目領域の存在で、圧力損失が低減し、長期に亘り低い圧力損失で除塵処理を行うことができる。
【0050】
【実施例】
図1に示す流体フィルタ1と、比較例に係る流体フィルタとについて行った粉塵捕集率と圧力損失の測定結果を次に説明する。
【0051】
実施例のセラミック多孔体は次のようにして製造されたものである。
【0052】
即ち、バイヤー法アルミナ95重量部と、木節粘土5重量部と、ポリビニルアルコール4重量部と、水20重量部とを混合してセラミックスラリーを調製した。
【0053】
また、1インチ(25mm)当たりセル数が30個の細目領域形成用のセル膜のない3次元網状骨格構造の軟質ポリウレタンフォームと、1インチ(25mm)当たりセル数が10個の粗目領域形成用のセル膜のない3次元網状骨格構造の軟質ポリウレタンフォームとを図2に示すように組み合わせて嵌め合わせ、前駆体を製作した。この前駆体を上記スラリーに浸漬した後、余分なスラリーを除去し、十分に乾燥し、次いで1300℃で10時間焼成を行ってセラミック多孔体を得た。
【0054】
このセラミックス多孔体よりなる流体フィルタは、150mm×150mm×45mm厚さ(枠部を含んだ外形の大きさ)の平板形状であり、細目領域の平均孔径は0.50mm、粗目領域の平均孔径は1.90mmで、各部の寸法は次の通りである。
【0055】

Figure 2004330023
【0056】
比較例1の流体フィルタは、全体が上記細目領域のセラミック多孔体であり、比較例2の流体フィルタは全体が上記細目領域よりも更に平均孔径の小さいセラミック多孔体(1インチ(25mm)当たりのセル数が40個のセル膜のない3次元網状骨格構造の軟質ポリウレタンフォームを前駆体として製造されたもの)である。比較例1,2のいずれのセラミック多孔体についても一辺の長さが100mm×100mmで表1に示す厚さのものについて各々測定を行った。
【0057】
各流体フィルタに5000L/minの流量で含塵空気を流通させて圧力損失及び粉塵捕集率を調べた。含塵空気としては、JIS−12種の粉塵(カーボンブラック)を0.2g/m含むものを用いた。結果を次の表1に示す。
【0058】
【表1】
Figure 2004330023
【0059】
表1より明らかなように、実施例1の本発明の流体フィルタは、比較例のうち、最も粉塵捕集率の高い比較例2の20mm厚みのものよりも更に捕集率は高く、また、圧力損失についてはその1/2程度に低減されている。
【0060】
【発明の効果】
以上の通り、本発明によると、圧力損失が低くしかも粉塵捕集率が高い流体フィルタが提供される。
【図面の簡単な説明】
【図1】実施の形態に係る流体フィルタ1を示すものであり、(a)図は流体フィルタの平面図、(b)図は正面図、(c)図は(a)図のC−C線断面図、(d)図は(c)図のD−D線断面図である。
【図2】別の実施の形態に係る流体フィルタを示す図であり、(a)図は平面図、(b)図は正面図である。
【図3】図3(a)は図2(a)のA−A線に沿う断面図、図3(b)は図3(a)のB−B線に沿う断面図である。
【図4】図1の流体フィルタを製造するための軟質ポリウレタンフォームピースの組み立て構造図である。
【符号の説明】
1,70 流体フィルタ
2 枠部
10 第1層
11,31,51,72a,74a,76a,78a 粗目領域
12,32,52,72b,74b,76b,78b 細目領域
20 第2層
30 第3層
30 第3層
40 第4層
50 第5層
60 第6層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid filter made of a porous ceramic body for filtering a fluid such as air to remove dust.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space, for example, a soft polyurethane foam without a cell membrane is immersed in a ceramic slurry, the ceramic is adhered to a skeleton of the polyurethane foam, and dried and fired. A ceramic porous body having a three-dimensional network skeleton obtained as described above is known (for example, JP-A-11-285578, JP-A-2000-109376).
[0003]
Since the ceramic porous body has characteristics such as low bulk specific gravity, high heat resistance, inertness, and low airflow resistance, that is, low pressure loss, a grease filter for a kitchen, a catalyst carrier, a gas-permeable heat insulating material, a molten metal, Although it is used as a filter material, it is required that the pressure loss be as low as possible when used for these applications.
[0004]
Conventionally, to reduce the pressure loss, the degree of adhesion of the ceramic slurry to the polyurethane foam was reduced to almost eliminate clogging.However, the apparent specific gravity of the porous ceramic body was reduced, and there was a problem in strength. there were.
[0005]
In addition, a method of adding various organic surfactants, peptizers, and the like to the ceramic slurry to adjust the slurry properties has been adopted. According to this method, the skeleton becomes thicker and the strength becomes larger. However, there is a problem that clogging occurs to some extent and the pressure loss is not sufficiently reduced. In addition, since there is a large amount of combustible-dissipating organic components in addition to the ceramic raw material soil, the obtained ceramic porous body has many pores and has a porous structure. For this reason, for example, when used as a filter for dust-containing gas, dust enters the skeleton of the porous ceramic body, and the pressure loss increases with time. Further, the porous skeleton may cause a problem in strength.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fluid filter made of a porous ceramic body having excellent dust removal performance and low pressure loss.
[0007]
[Means for Solving the Problems]
The fluid filter of the present invention is a fluid filter made of a porous ceramic body in which a fluid flows from one surface to the other surface, and has a small average pore diameter in a flow direction of the fluid and / or in a direction crossing the flow direction. The region and the region having a large average pore diameter are alternately arranged.
[0008]
In the fluid filter of the present invention, the regions having a small average pore size and the regions having a large average pore size are alternately arranged, so that the fluid flowing into the fluid filter passes from the filter inflow surface to the outflow surface when passing through the inside of the filter. It cannot pass straight, and the filtration length becomes longer, and the effect of collecting dust and the like is improved. When the direction of flow of the dust-containing fluid is changed in a region having a small average pore diameter, dust and the like having a higher specific gravity than the fluid are collected in the region having a small average pore size due to centrifugal force, inertia, and the like. In this way, dust is separated and collected from the dust-containing fluid using centrifugal force and inertia, so that the dust-containing fluid can selectively pass through a region with a large average pore diameter and reduce pressure loss. Become.
[0009]
In the fluid filter of the present invention, it is preferable to arrange a region having a small average pore size on the outflow surface side of the fluid, whereby the above-described centrifugal force, dust that could not be collected by the collection performance due to inertia or the like is removed. It becomes possible to collect in a region having a small average pore diameter on the outflow surface side.
[0010]
Specifically, the fluid filter of the present invention can have the following configuration.
{Circle around (1)} The plate has a flat shape, and the flow direction of the fluid is the thickness direction of the flat fluid filter. In the thickness direction and a direction perpendicular to the thickness direction, regions having a small average pore size and regions having a large average pore size are alternately arranged. Is a fluid filter.
{Circle around (2)} The flow direction of the fluid is a radial direction, and a region having a large average pore diameter and a region having a small average pore diameter are in a direction parallel to the cylinder axis of the cylindrical fluid filter and in the radial direction. Fluid filters alternately arranged.
[0011]
The porous ceramic body of the present invention is obtained by immersing a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space in a ceramic slurry to allow the ceramic to adhere to the synthetic resin foam, followed by drying and firing. It is preferably a ceramic porous body having a three-dimensional network skeleton structure.
[0012]
INDUSTRIAL APPLICABILITY The fluid filter of the present invention is suitable for removing dust such as air.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the fluid filter of the present invention will be described in detail.
[0014]
As described above, the porous ceramic body of the present invention is preferably formed using a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space as a base material.
[0015]
As such a synthetic resin foam, any one having a three-dimensional network skeleton structure having an internal communication space can be used, but a flexible polyurethane foam, particularly a flexible polyurethane foam having no cell membrane can be suitably used. As the polyurethane foam without the cell membrane, those in which the cell membrane is eliminated by control during foaming, or those in which the cell membrane is removed by alkali treatment, heat treatment, water pressure treatment, or the like can be used, and the number of cells, porosity, etc. Physical properties can be selected according to the application.
[0016]
The ceramic porous body is obtained by immersing the above-described synthetic resin foam in a ceramic slurry, attaching the ceramic slurry to the synthetic resin foam, drying and firing, and thermally decomposing or burning the synthetic resin foam. .
[0017]
Examples of the ceramic include oxide ceramics such as alumina, silica and cordierite, non-oxide ceramics such as silicon carbide and silicon nitride, and sialon.
[0018]
In addition, clay can be blended in order to increase the stability of the ceramic slurry. As this clay, for example, Kibushi clay, Frog-eye clay and the like can be used. Further, the blending amount is preferably 0 to 15% with respect to all the ceramic components. If the content is more than 15%, the thixotropic index changes and causes clogging.
[0019]
In addition, a thixotropic property can be adjusted by blending a binder such as polyvinyl alcohol and carboxymethylcellulose as needed with the ceramic slurry.
[0020]
The viscosity of the ceramic slurry can be adjusted by adjusting the amount of water to be added according to the size of the target cell of the ceramic porous body.
[0021]
Next, a synthetic resin foam having a three-dimensional network skeleton structure is immersed in the above-described ceramic slurry to remove excess slurry, dried, and fired at a temperature of about 1000 to 1500 ° C. in a firing furnace to obtain a synthetic resin foam. A ceramic porous body having a three-dimensional network skeleton structure having an internal communication space having a cell structure corresponding to the body can be obtained.
[0022]
In the fluid filter of the present invention, regions having a small average pore size and regions having a large average pore size are alternately arranged in the flow direction of the fluid and / or the direction crossing the flow direction.
[0023]
In order to alternately arrange regions having different average pore diameters in this manner, synthetic resin foam cylindrical bodies having a three-dimensional network skeleton structure having different average pore diameters, that is, different coarsenesses, are combined in a predetermined arrangement. Then, an integrated precursor is manufactured, and this precursor is immersed in a ceramic slurry to remove excess slurry, dried, and fired in a firing furnace.
[0024]
In the fluid filter of the present invention, there is no particular limitation on the average pore diameter of the region having a small average pore diameter and the average pore diameter of the region having a large average pore diameter. It is appropriately determined according to the arrangement of the region having the large average pore diameter, the size of the region, and the like, but the region having the small average pore diameter has an average pore diameter of about 0.1 to 1.5 mm in order to secure trapping performance. On the other hand, in a region having a large average pore diameter, the average pore diameter is preferably about 1.0 to 5.0 mm in order to reduce pressure loss. In particular, the region having a small average pore size and the region having a large average pore size are different in the average pore size, and the effect of the present invention by alternately arranging the region having a small average pore size and the region having a large average pore size is larger in the difference. It can be obtained sufficiently and is preferable. Therefore, it is preferable that the average pore diameter in the region having the large average pore diameter is 1.2 times or more the average pore diameter in the region having the small average pore diameter. In terms of the design of the fluid filter, it is particularly preferable that the average pore size in the region having a large average pore size is 2 to 4 times the average pore size in the region having a small average pore size.
[0025]
In the fluid filter of the present invention, the two types of regions having different average pore diameters, that is, a region having a small average pore size and a region having a large average pore size, are not limited to those alternately arranged. Three or more types of regions, that is, a region having a large pore diameter and a region having an average pore diameter in the middle of these regions may be arranged in combination.
[0026]
In the fluid filter of the present invention, when regions having a small average pore size and regions having a large average pore size are alternately arranged in the flow direction of the fluid and / or the direction crossing the flow direction, the flow of the fluid in the fluid filter is Area ratio of a region having a small average pore diameter in a cross section along the direction (percentage of a ratio obtained by dividing the total area occupied by the region having a small average pore diameter in the cross section by the total area of the cross section. Is preferably 20 to 80%, particularly about 30 to 60% in only the filtration part except the frame part. If this ratio is less than 20%, the trapping performance is insufficient, and if it exceeds 80%, the pressure loss increases, which is not preferable.
[0027]
In the fluid filter of the present invention, when regions having a small average pore size and regions having a large average pore size are alternately arranged in the direction crossing the fluid flow direction, the cross section along the direction crossing the fluid flow direction of the fluid filter. Is also preferably about 20 to 80%, especially about 40 to 60% only in the filtration part except the frame part. If this ratio is less than 20%, the trapping performance is insufficient, and if it exceeds 80%, the pressure loss increases, which is not preferable.
[0028]
Hereinafter, a specific configuration of the fluid filter of the present invention will be described with reference to the drawings.
[0029]
1A and 1B show a fluid filter 1 according to an embodiment, in which FIG. 1A is a plan view of the fluid filter, FIG. 1B is a front view, and FIG. 1C is a line CC in FIG. FIG. 3D is a cross-sectional view taken along line DD of FIG. 2 and 3 are views showing a fluid filter according to another embodiment. FIG. 2 (a) is a plan view, FIG. 2 (b) is a front view, and FIG. 3 (a) is a view of FIG. 2 (a). FIG. 3B is a cross-sectional view taken along the line BB of FIG. 3A.
[0030]
The fluid filter 1 of FIG. 1 is of a rectangular flat plate shape, and has a region with a small average pore diameter (hereinafter sometimes referred to as “fine”) and a region with a large average pore diameter (hereinafter sometimes referred to as “coarse”). The area is mixed.
[0031]
The fluid filter 1 includes a thin frame portion 2, a first layer 10, a second layer 20, a third layer 30, and a fourth layer 10 formed in the frame portion 2 so as to overlap in the thickness direction of the fluid filter 1. It has a layer 40, a fifth layer 50 and a sixth layer 60. The second, fourth, and sixth layers 20, 40, and 60 are all fine as a whole. In the first, third, and fifth layers 10, 30, and 50, fine regions and coarse regions are alternately provided in one direction (the left-right direction in FIGS. 1A and 1C) perpendicular to the thickness direction. ing.
[0032]
In the first layer 10, the coarse area 11 and the fine area 12 are arranged from one side (the left side in FIG. 1C) to the other side (the right side in FIG. 1C) from the fluid filter. Are arranged alternately. In the third layer 30, the fine regions 32 and the coarse regions 31 are alternately arranged from the one side to the other side. In the fifth layer 50, as in the first layer 10, coarse areas 51 and fine areas 52 are alternately arranged from the one side to the other side. The widths of the coarse regions 11, 31, 51 and the fine regions 12, 32, 52 are substantially the same.
[0033]
Since only the third layer 30 has an arrangement of the fine region and the coarse region opposite to that of the first and fifth layers 10 and 50, the coarse layer of the third layer is located between the fine regions 12 and 52 of the first and fifth layers. An area 31 is arranged, and a third layer fine area 32 is arranged between the first and fifth coarse areas 11 and 51.
[0034]
It is preferable that the fluid filter 1 of FIG. 1 is usually a plate having a side length of about 50 to 200 mm and a thickness of about 20 to 100 mm. Further, the width of the fine regions 12, 32, 52 and the coarse regions 11, 31, 51 in the fluid inflow surface direction is preferably 5 to 30 mm, and the height of the filter in the thickness direction is about 5 to 30 mm. Is preferred. Note that the width and height of the fine region and the coarse region do not need to be uniform, and may be different between the fine region and the coarse region, or may be different sizes depending on the arrangement location.
[0035]
The thickness of the narrow region (sixth layer 60) arranged on the fluid outflow surface side of the fluid filter 1 is preferably about 1 to 30 mm.
[0036]
In FIG. 1, three layers in which fine regions and coarse regions are alternately arranged in the direction orthogonal to the thickness direction are provided in total in the thickness direction, but the number of layers is not limited thereto. Two or four or more layers may be used. Although the second and fourth layers 20 and 40 are coarse areas, they may be fine areas as long as the above-mentioned preferable fine area ratio is satisfied. It is preferable that the sixth layer 60 on the fluid outflow surface side be a fine region in terms of trapping performance. It is also preferable that the frame 2 be a fine region in order to secure the strength of the fluid filter and to prevent leakage of dust-containing gas.
[0037]
The fluid filter 1 is made of a porous ceramic manufactured by immersing a precursor made of a flexible polyurethane foam in a ceramic slurry, removing excess slurry, drying and firing as described above. By this firing, the precursor is burned off and removed. The configuration of this precursor will be described with reference to FIG.
[0038]
This precursor is formed into a square shape by fitting a bottom plate 4 for forming a sixth layer 60 to the bottom of a rectangular frame 3 for forming the frame portion 2 to form a square shape. Square rods 5 and 6 for forming 50 are laid alternately adjacently on the left and right sides, a flat plate 7 for forming the fourth layer 40 is laid thereon, and the third layer 30 is formed thereon. Square bars 6 and 5 are laid out, and a flat plate 7 for forming the second layer is laid thereon. Finally, square bars 5 and 6 for forming the first layer 10 are laid thereon. They are arranged. The frame 3, the bottom plate 4, and the square rod 5 are made of fine flexible polyurethane foam. The square rod 6 and the flat plate 7 are made of coarse flexible polyurethane foam. The square rods 5 and 6 have the same dimensions, and their lengths are the same as the inner dimensions of the frame 3. The bottom plate 4 and the flat plate 7 have the same dimensions. Since the square rod body 6 and the flat plate 7 are coarse, the fluid filter obtained by firing has coarse regions 11, 31, and 51, the second layer 20 and the fourth layer 40 are coarse, and the others are fine.
[0039]
The fluid filter 1 of FIG. 1 is disposed in a casing so as not to suck the fluid from the side surface, and by suctioning the outflow side of the fluid so that the fluid flows in a flow direction indicated by an arrow in FIG. Then, the inflowing fluid is filtered to remove dust.
[0040]
The fluid filter 70 of FIGS. 2 and 3 has a cylindrical shape, and the fluid flows in the radial direction (the direction opposite to the centripetal direction).
[0041]
The fluid filter 70 includes eight layers of a first layer 71 to an eighth layer 78 which are coaxially arranged in a stacked manner from the outer peripheral side toward the inner peripheral side. The first layer 71 is composed of only the fine region, the third, fifth and seventh layers 73, 75 and 77 are composed of only the rough surface region, and the second, fourth, sixth and eighth layers 72, 74, 76 and 78 are of the coarse region. 72a, 74a, 76a, 78a and fine regions 72b, 74b, 76b, 78b.
[0042]
Each of the coarse regions 72a, 74a, 76a, 78a and the fine regions 72b, 74b, 76b, 78b is an annular shape surrounding the fluid filter 70. The width of each of the regions 72a, 72b, 74a, 74b, 76a, 76b, 78a, 78b in the direction parallel to the axis of the fluid filter is the same.
[0043]
The second layer 72 and the sixth layer 76 include fine regions 72b, 76b and coarse regions 72a, 76a from one end surface (upper surface of FIG. 3A) to the other surface (lower surface of FIG. 3A). And are alternately arranged. In the fourth layer 74 and the eighth layer 78, coarse regions 72a and 78a and fine regions 72b and 78b are alternately arranged from the one end surface to the other end surface. Both end faces of the fluid filter 70 are fine.
[0044]
Since the arrangement of the coarse regions 72a and 76a and the fine regions 72b and 76b of the second and sixth layers and the arrangement of the coarse regions 74a and 78a and the fine regions 74b and 78b of the fourth and eighth layers are reversed. In the centripetal direction, the coarse regions 72a and 76a of the second and sixth layers overlap the fine regions 74b and 78b of the fourth and eighth layers, and the fine regions 72b and 76b of the second and sixth layers and the fourth region. The layers and the coarse regions 74a, 78a of the eighth layer overlap.
[0045]
The fluid filter 70 of FIGS. 2 and 3 is usually a cylindrical shape having an outer diameter of 120 to 300 mm, an inner diameter of 40 to 160 mm, a thickness ((outer diameter−inner diameter) / 2) of 40 to 100 mm, and a height of about 50 to 150 mm. Preferably, the unit of the numerical value of the dimension described in FIGS. 2 and 3 is mm. Regarding the height and width of the fine region and the coarse region and the thickness of the fine region on the fluid outflow surface side, FIG. It is preferable that the value is substantially equal to the value described above in the description of the fluid filter.
[0046]
In FIG. 3, a total of four layers in which the fine regions and the coarse regions are alternately arranged in the circumferential direction are provided in the radial direction, but the number of layers is not limited to this, and three or less layers are provided. Or five or more layers. Although the third, fifth, and seventh layers 73, 75, and 77 are coarse areas, they may be fine areas as long as the above-described preferable fine area ratio is satisfied. It is preferable that both end surfaces be fine regions in order to secure the strength of the fluid filter and to prevent leakage of dust-containing gas.
[0047]
This fluid filter 70 is also manufactured by dipping a precursor made of a flexible polyurethane foam in a ceramic slurry, removing excess ceramic slurry, drying and firing. This precursor is formed of a cylindrical fine polyurethane foam for forming the first layer, a cylindrical coarse polyurethane foam for forming the third, fifth, and seventh layers, and coarse regions 72a, 74a, 76a, and 78a. It is formed by combining a coarse annular polyurethane foam, a thin annular flexible polyurethane foam for forming the narrow regions 72b, 74b, 76b, 78b, and an annular plate-like thin flexible polyurethane foam for forming both end surfaces of the fluid filter. You.
[0048]
The fluid filter 70 shown in FIGS. 2 and 3 is arranged in the casing so as not to suck the fluid from both end faces, and the fluid outlet side (cylindrical shape) so that the fluid flows in the flow direction shown by the arrow in FIG. By suctioning the outer part of the fluid filter), the inflowing fluid is filtered to remove dust. In addition, the fluid filter 70 may be configured such that the inner peripheral side is sucked and the fluid flows from the outer peripheral surface to the inner peripheral surface. However, at this time, the fine region on the outer peripheral side is arranged on the inner peripheral side.
[0049]
In any of the fluid filters shown in FIGS. 1, 2 and 3, the fluid flowing into the fluid filter is efficiently removed while passing through the inside of the fluid filter in which the fine regions and the coarse regions are alternately arranged. In addition, the presence of the coarse region reduces the pressure loss, so that the dust removing process can be performed over a long period of time with a low pressure loss.
[0050]
【Example】
Next, measurement results of the dust collection rate and the pressure loss performed on the fluid filter 1 shown in FIG. 1 and the fluid filter according to the comparative example will be described.
[0051]
The ceramic porous body of the example was manufactured as follows.
[0052]
That is, 95 parts by weight of alumina by the Bayer method, 5 parts by weight of Kibushi clay, 4 parts by weight of polyvinyl alcohol, and 20 parts by weight of water were mixed to prepare a ceramic slurry.
[0053]
In addition, a flexible polyurethane foam having a three-dimensional network skeleton structure without a cell membrane for forming a fine region having 30 cells per inch (25 mm) and a coarse region having 10 cells per inch (25 mm) are formed. A flexible polyurethane foam having a three-dimensional network skeleton structure without a cell membrane was combined and fitted as shown in FIG. 2 to produce a precursor. After immersing the precursor in the slurry, the excess slurry was removed, dried sufficiently, and then fired at 1300 ° C. for 10 hours to obtain a porous ceramic body.
[0054]
The fluid filter made of the porous ceramic body has a flat plate shape with a thickness of 150 mm × 150 mm × 45 mm (the size of the outer shape including the frame portion). 1.90 mm, the dimensions of each part are as follows.
[0055]
Figure 2004330023
[0056]
The fluid filter of Comparative Example 1 is entirely a porous ceramic body having the above-described fine region, and the fluid filter of Comparative Example 2 is entirely a ceramic porous body having a smaller average pore diameter than the above-described fine region (per inch (25 mm)). A flexible polyurethane foam having a three-dimensional network skeleton structure without a cell membrane having 40 cells as a precursor). With respect to each of the ceramic porous bodies of Comparative Examples 1 and 2, the measurement was performed for each of the porous bodies having a side length of 100 mm × 100 mm and the thickness shown in Table 1.
[0057]
Dust-containing air was passed through each fluid filter at a flow rate of 5000 L / min, and pressure loss and dust collection rate were examined. As the dust-containing air, air containing 0.2 g / m 3 of JIS-12 type dust (carbon black) was used. The results are shown in Table 1 below.
[0058]
[Table 1]
Figure 2004330023
[0059]
As is clear from Table 1, the fluid filter of the present invention of Example 1 has a higher collection rate than that of Comparative Example 2 having the highest dust collection rate of 20 mm in the comparative examples. The pressure loss is reduced to about 1/2 of that.
[0060]
【The invention's effect】
As described above, according to the present invention, a fluid filter having a low pressure loss and a high dust collection rate is provided.
[Brief description of the drawings]
1A and 1B show a fluid filter 1 according to an embodiment, in which FIG. 1A is a plan view of a fluid filter, FIG. 1B is a front view, and FIG. FIG. 4D is a sectional view taken along line DD of FIG.
FIG. 2 is a diagram showing a fluid filter according to another embodiment, wherein FIG. 2 (a) is a plan view and FIG. 2 (b) is a front view.
3A is a cross-sectional view taken along line AA of FIG. 2A, and FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
FIG. 4 is an assembled structural view of a flexible polyurethane foam piece for manufacturing the fluid filter of FIG. 1;
[Explanation of symbols]
1, 70 Fluid filter 2 Frame part 10 First layer 11, 31, 51, 72a, 74a, 76a, 78a Coarse area 12, 32, 52, 72b, 74b, 76b, 78b Fine area 20 Second layer 30 Third layer 30 third layer 40 fourth layer 50 fifth layer 60 sixth layer

Claims (6)

流体が一方の面から他方の面に向って流通するセラミック多孔体よりなる流体フィルタにおいて、
該流体の流通方向及び/又は該流通方向と交叉方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されていることを特徴とする流体フィルタ。
In a fluid filter composed of a ceramic porous body in which a fluid flows from one surface to the other surface,
A fluid filter, wherein regions having a small average pore size and regions having a large average pore size are alternately arranged in a flow direction of the fluid and / or a direction crossing the flow direction.
請求項1において、該流体の流通方向及び該流通方向と交叉方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されていることを特徴とする流体フィルタ。2. The fluid filter according to claim 1, wherein regions having a small average pore size and regions having a large average pore size are alternately arranged in a flow direction of the fluid and a direction crossing the flow direction. 請求項1又は2において、該流体の流出面側に平均孔径の小さい領域が配置されていることを特徴とする流体フィルタ。3. The fluid filter according to claim 1, wherein a region having a small average pore diameter is arranged on the outflow surface side of the fluid. 請求項1ないし3のいずれか1項において、該流体フィルタは平板状であり、該流通方向は平板状流体フィルタの厚み方向であり、該厚み方向及び厚み方向と直交方向において、平均孔径の小さい領域と平均孔径の大きい領域とが交互に配置されていることを特徴とする流体フィルタ。The fluid filter according to any one of claims 1 to 3, wherein the fluid filter is a flat plate, the flow direction is a thickness direction of the flat fluid filter, and an average pore diameter is small in the thickness direction and a direction orthogonal to the thickness direction. A fluid filter, wherein regions and regions having a large average pore diameter are alternately arranged. 請求項1ないし3のいずれか1項において、該流体フィルタは筒状であり、該流通方向は径方向であり、該筒状の流体フィルタの筒軸心線と平行方向及び径方向において、平均孔径の大きい領域と平均孔径の小さい領域とが交互に配置されていることを特徴とする流体フィルタ。The fluid filter according to any one of claims 1 to 3, wherein the fluid filter is cylindrical, the flow direction is a radial direction, and an average in a direction parallel to a cylindrical axis of the cylindrical fluid filter and in a radial direction. A fluid filter, wherein regions having a large pore size and regions having a small average pore size are alternately arranged. 請求項1ないし5のいずれか1項において、該セラミック多孔体が、内部連通空間を有する3次元網状骨格構造の合成樹脂発泡体をセラミックスラリーに浸漬して上記合成樹脂発泡体にセラミックを付着せしめた後、乾燥、焼成して得られる3次元網状骨格構造のセラミック多孔体であることを特徴とする流体フィルタ。The ceramic porous body according to any one of claims 1 to 5, wherein the ceramic porous body is formed by immersing a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space in a ceramic slurry to attach ceramic to the synthetic resin foam. A fluid filter characterized by being a ceramic porous body having a three-dimensional network skeleton structure obtained by drying, firing and drying.
JP2003127248A 2003-05-02 2003-05-02 Fluid filter Expired - Fee Related JP4066878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127248A JP4066878B2 (en) 2003-05-02 2003-05-02 Fluid filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127248A JP4066878B2 (en) 2003-05-02 2003-05-02 Fluid filter

Publications (2)

Publication Number Publication Date
JP2004330023A true JP2004330023A (en) 2004-11-25
JP4066878B2 JP4066878B2 (en) 2008-03-26

Family

ID=33503866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127248A Expired - Fee Related JP4066878B2 (en) 2003-05-02 2003-05-02 Fluid filter

Country Status (1)

Country Link
JP (1) JP4066878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326427A (en) * 2005-05-24 2006-12-07 National Institute Of Advanced Industrial & Technology Filter and its manufacturing method
JP2007098197A (en) * 2005-09-30 2007-04-19 Bridgestone Corp Manufacturing method of photocatalyst material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326427A (en) * 2005-05-24 2006-12-07 National Institute Of Advanced Industrial & Technology Filter and its manufacturing method
JP4576531B2 (en) * 2005-05-24 2010-11-10 独立行政法人産業技術総合研究所 Filter and manufacturing method thereof
JP2007098197A (en) * 2005-09-30 2007-04-19 Bridgestone Corp Manufacturing method of photocatalyst material

Also Published As

Publication number Publication date
JP4066878B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4367683B2 (en) Honeycomb filter
JP3756721B2 (en) Exhaust gas purification filter
KR100865101B1 (en) Porous honeycomb filter
US10335727B2 (en) Honeycomb filter
JP5270879B2 (en) Honeycomb structure
JP4805676B2 (en) Ceramic porous body and method for evaluating permeation performance thereof
JP2011179501A (en) Honeycomb structural body
CN110314711B (en) Honeycomb filter
CN110314682B (en) Honeycomb filter
US10300424B2 (en) Honeycomb filter
JP2001269522A (en) Filter made of porous ceramics sintered body
CN110314683B (en) Honeycomb filter
CN110314455B (en) Honeycomb filter
CN108686440B (en) Honeycomb filter
JP2018062871A (en) Plugged Honeycomb Structure
JP2011098337A (en) Honeycomb filter
JP2018167199A (en) Honeycomb filter
JP2018061926A (en) Plugged Honeycomb Structure
JP2020049428A (en) Honeycomb filter
JP2017064609A (en) Honeycomb structure
US11085342B2 (en) Honeycomb filter
JP4066878B2 (en) Fluid filter
JP4600826B2 (en) Ceramic honeycomb filter
CN110314450B (en) Ceramic porous body, method for producing same, and filter for dust collection
KR100402559B1 (en) Porous dust/water collecting filter comprising thermoplastic resin and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Effective date: 20071231

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees