JPS6344493B2 - - Google Patents

Info

Publication number
JPS6344493B2
JPS6344493B2 JP54163492A JP16349279A JPS6344493B2 JP S6344493 B2 JPS6344493 B2 JP S6344493B2 JP 54163492 A JP54163492 A JP 54163492A JP 16349279 A JP16349279 A JP 16349279A JP S6344493 B2 JPS6344493 B2 JP S6344493B2
Authority
JP
Japan
Prior art keywords
stage
fluid
pressure
fillet
displacement detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54163492A
Other languages
Japanese (ja)
Other versions
JPS5687318A (en
Inventor
Ryohei Yokoyama
Yoshihiko Yamamoto
Tadao Hirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16349279A priority Critical patent/JPS5687318A/en
Publication of JPS5687318A publication Critical patent/JPS5687318A/en
Publication of JPS6344493B2 publication Critical patent/JPS6344493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 この発明は、移動テーブルに係り、特にサブミ
クロンオーダの微小な移動量が要求される微動テ
ーブルの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moving table, and particularly to an improvement in a fine moving table that requires a minute movement on the order of submicrons.

従来、LSI、その他の高密度化されたエレクト
ロニクス部品の高精度位置決めに用いられる微動
テーブルは、ボールネジ等のネジ類によつて機械
的に微動を行うか、あるいは弾性変形を利用した
り、その他圧電素子、磁歪素子などを用いて行つ
ていた。しかしながら、上記ネジ類では、固体摩
擦の影響により、なめらかな微動が困難であつ
た。また、弾性変形を利用する場合では、被加工
物を載置するステージの平面度の精度を保つたま
ま移動させることは、特に移動量が若干多くなる
につれて難かしかつた。さらに、圧電素子や磁歪
素子では発生する熱のため精度維持が困難であつ
た。
Conventionally, fine movement tables used for high-precision positioning of LSIs and other high-density electronic components have been used to perform fine movement mechanically using screws such as ball screws, or by using elastic deformation or other types of piezoelectric This was done using elements such as magnetostrictive elements. However, with the above-mentioned screws, smooth micro-movement is difficult due to the influence of solid friction. Furthermore, when using elastic deformation, it is difficult to move the stage on which the workpiece is placed while maintaining the flatness accuracy, especially as the amount of movement increases. Furthermore, it has been difficult to maintain accuracy in piezoelectric elements and magnetostrictive elements due to the heat generated.

この発明は、被加工物を載置するテーブルを、
流体で浮上し、かつ、テーブルの各側面から加え
る流体の圧力のバランスを崩すことにより、熱発
生および摩擦を無視して微細に移動できるテーブ
ルを提供するにある。
This invention provides a table on which a workpiece is placed,
To provide a table that floats on fluid and can be moved minutely while ignoring heat generation and friction by unbalancing the pressure of the fluid applied from each side of the table.

以下、実施例を示す図面に基いてこの発明を説
明する。
Hereinafter, the present invention will be explained based on drawings showing embodiments.

第1図乃至第3図において、1はウエハあるい
はその他の被測定物、被加工物を載置する円盤形
状のステージで、このステージ1の外側面2の4
箇所に等間隔でフイレツト3a,3b,3cおよ
び3dが突設されている(これらのうち、フイレ
ツト3c,3dはフイレツト3a,3bよりも長
くなつている。)。4は、基台で固定テーブルある
いはステージ1と一体に移動するXYテーブルの
一部をなすもので、その中央部には、ステージ1
の外形より若干大(20〜30μm程度)の円形の凹
部5が形成され、この凹部5にフイレツト3a〜
3dを除くステージ1の下端面が嵌装されてい
る。上記凹部5には、ステージ1を浮上させる第
1の流体噴出機構Aの一部として、その底部6に
開く多数の気孔7………が穿設されている。これ
ら気孔7………は、基台4の内部に形成されてい
る流体通路8に連通し、この通路8を通つて送ら
れてくる圧縮空気等の加工流体の噴出口となつて
いる。一方、ステージ1の回転および水平方向の
移動を行うために、第2の流体噴出機構Bとし
て、基台4上にL形ブロツク9a〜9hが設置さ
れている。各フイレツト3a〜3dは、二個を一
対にしたこれらL形ブロツク9a〜9hによつて
僅かな間隙(10〜15μm程度)で挾装されてい
る。上記各L形ブロツク9a〜9hは、フイレツ
ト3a〜3dの側面に向けて圧縮空気等の流体を
噴出する流体噴出孔10a〜10hを有してい
る。また、上記第1、第2の流体噴出機構A,B
は、第3図に示すように、それぞれの流体の圧力
を制御する圧力調整機構Cに流体的に接続されて
いる。圧力調整機構Cは、流体噴出孔10a〜1
0hに各別に流体的に接続され流体圧力を電磁駆
動による弁の開閉により調整する圧力調整弁30
a〜30h及び流体通路8に流体的に接続され流
体圧力を電磁駆動による弁の開閉により調整する
圧力調整弁31からなつている。これら圧力調整
弁30a〜30h,31は、例えばマイクロコン
ピユータなどの演算制御部Dに接続されて制御信
号SA,………,SIを印加することにより、後述
の圧力調整を行うようになつている。さらに、演
算制御部Dは、変位検出機構Eに電気的に接続さ
れている。この変位検出機構Eは、フイレツト3
dの先端面に対向して基台4に取付けられステー
ジ1のX方向の変位量を示す検出信号SJを出力
する容量形のX変位検出センサ40と、フイレツ
ト3bの先端面に対向して基台4に取付けられス
テージ1のY方向の変位量を示す検出信号SKを
出力する容量形のY変位検出センサ41と、フイ
レツト3cの一側面50に対向にて基台4に取付
けられた第1変位検出センサ42及びフイレツト
3dの一側面51に対向して基台4に取付けられ
た第2変位検出センサ43からなりステージ1の
θ方向の回転を示す検出信号SL,SMを出力する
回転角検出部44とからなつている。
1 to 3, reference numeral 1 denotes a disk-shaped stage on which a wafer or other object to be measured or a workpiece is placed;
Fillets 3a, 3b, 3c and 3d are protruded at equal intervals (among these, fillets 3c and 3d are longer than fillets 3a and 3b). 4 is a base that is a fixed table or forms part of an XY table that moves together with stage 1.
A circular recess 5 is formed which is slightly larger (approximately 20 to 30 μm) than the outer diameter of the fillet 3a.
The lower end surface of the stage 1 except 3d is fitted. The recessed portion 5 is provided with a large number of air holes 7 that open at its bottom 6 as part of the first fluid ejection mechanism A that levitates the stage 1. These air holes 7 communicate with a fluid passage 8 formed inside the base 4, and serve as an outlet for processing fluid such as compressed air sent through this passage 8. On the other hand, in order to rotate and move the stage 1 in the horizontal direction, L-shaped blocks 9a to 9h are installed on the base 4 as a second fluid ejection mechanism B. Each of the fillets 3a to 3d is sandwiched between a pair of L-shaped blocks 9a to 9h with a small gap (about 10 to 15 μm). Each of the L-shaped blocks 9a to 9h has fluid ejection holes 10a to 10h that eject fluid such as compressed air toward the side surfaces of the fillets 3a to 3d. Further, the first and second fluid ejection mechanisms A and B
are fluidly connected to a pressure regulating mechanism C that controls the pressure of each fluid, as shown in FIG. The pressure adjustment mechanism C includes fluid ejection holes 10a to 1
Pressure regulating valves 30 that are individually fluidly connected to 0h and adjust fluid pressure by opening and closing the valves by electromagnetic drive.
It consists of a pressure regulating valve 31 which is fluidly connected to a to 30h and the fluid passage 8 and adjusts the fluid pressure by opening and closing the valve by electromagnetic driving. These pressure regulating valves 30a to 30h, 31 are connected to an arithmetic control unit D such as a microcomputer and apply control signals SA, . . . , SI to perform pressure regulation as described below. . Further, the calculation control section D is electrically connected to the displacement detection mechanism E. This displacement detection mechanism E is based on the fillet 3.
A capacitive type X displacement detection sensor 40 is mounted on the base 4 facing the end surface of the fillet 3b and outputs a detection signal SJ indicating the amount of displacement of the stage 1 in the X direction. A capacitive Y displacement detection sensor 41 is attached to the base 4 and outputs a detection signal SK indicating the amount of displacement of the stage 1 in the Y direction, and a first Y displacement detection sensor 41 is attached to the base 4 opposite to one side 50 of the fillet 3c. The rotation angle detection unit is composed of a displacement detection sensor 42 and a second displacement detection sensor 43 mounted on the base 4 facing one side 51 of the fillet 3d, and outputs detection signals SL and SM indicating rotation of the stage 1 in the θ direction. It consists of part 44.

上記の構成において、演算制御部Dからの制御
信号SIを入力することにより圧力調整弁31が起
動し、ステージ1を、気孔7………から矢印T方
向に噴出する流体の作用で基台4から浮上させ
る。この場合、流体通路8を通つて送られる流体
の圧力を一定にすることにより、底部6からの浮
上距離は一定にされる。上記のように、基台4か
ら浮上した状態で、ステージ1のXY方向の微動
は次のように行われる。すなわち、図中X方向に
移動するには、制御信号SE〜SHを圧力調整弁3
0e〜30hに印加することにより、流体噴出孔
10e〜10hからの流体の給気圧を一定に保持
するとともに、制御信号SA〜SDを圧力調整弁3
0a〜30dに印加することにより、流体噴出孔
10aおよび10cからの流体の給気圧と、流体
噴出孔10bおよび10dの給気圧との間に差圧
を生ぜしめ、ステージ1は給気圧の低いX方向へ
平行に移動される。このときのX方向の移動量
は、X変位検出センサ40からの検出信号SJに
より検出し、演算制御部Dにては、この検出信号
SJに基づいて制御信号SA〜SDの出力を適時に停
止することにより、ステージ1のX方向の位置決
めを行う。他方、Y方向への移動は、流体噴出孔
10e〜10hの給気圧を上記X方向の移動で行
つたように調整すればよい。また、ステージ1を
所定の回転角に回動する場合は、第1及び第2変
位検出センサ42,43からの検出信号SL,SM
に基づいて演算制御部Dにてステージ1の回転角
を演算し、この演算結果に基づいて流体噴出孔1
0a,10g,10dおよび10fを一方の組に
し、残りの噴出孔10b,10h,10cおよび
10eを他方の組にし、両者に差圧を生ぜしめ、
所望位置までステージ1を回動させればよい。
In the above configuration, the pressure regulating valve 31 is activated by inputting the control signal SI from the arithmetic control unit D, and the stage 1 is moved to the base 4 by the action of the fluid ejected from the air holes 7 in the direction of the arrow T. float from. In this case, by keeping the pressure of the fluid sent through the fluid passage 8 constant, the flying distance from the bottom 6 is kept constant. As described above, while floating from the base 4, the stage 1 makes slight movements in the XY directions as follows. In other words, to move in the X direction in the figure, control signals SE to SH are sent to the pressure regulating valve 3.
By applying signals 0e to 30h, the supply pressure of the fluid from the fluid jet holes 10e to 10h is maintained constant, and the control signals SA to SD are applied to the pressure regulating valves 3.
0a to 30d, a differential pressure is created between the supply pressure of the fluid from the fluid ejection holes 10a and 10c and the supply pressure of the fluid ejection holes 10b and 10d. is moved parallel to the direction. The amount of movement in the X direction at this time is detected by the detection signal SJ from the X displacement detection sensor 40, and the calculation control unit D uses this detection signal.
The stage 1 is positioned in the X direction by stopping the output of the control signals SA to SD in a timely manner based on SJ. On the other hand, when moving in the Y direction, the supply pressure of the fluid ejection holes 10e to 10h may be adjusted in the same way as when moving in the X direction. In addition, when rotating the stage 1 to a predetermined rotation angle, detection signals SL and SM from the first and second displacement detection sensors 42 and 43 are transmitted.
The rotation angle of the stage 1 is calculated by the calculation control unit D based on
0a, 10g, 10d, and 10f are set as one set, and the remaining jet holes 10b, 10h, 10c, and 10e are set as the other set, and a pressure difference is created between the two,
The stage 1 may be rotated to a desired position.

なお、上記の実施例では、ステージ1の浮上高
さ、すなわちZ方向は一定状態の下で微動を行つ
たが、流体通路8からの給気圧を変えることで、
上記X・Y方向の移動および回動に同期して微動
できることは言うまでもない。また、フイレツト
の数も、単に回動だけである場合は一個でよく、
X・Yどちらか一方への移動であれば二個を対向
して設ければよい。
In the above embodiment, the flying height of the stage 1, that is, the Z direction, was slightly moved under a constant condition, but by changing the supply pressure from the fluid passage 8,
It goes without saying that fine movements can be made in synchronization with the movement and rotation in the X and Y directions. In addition, the number of fillets is only one if it is only for rotation.
If the movement is in either the X or Y direction, two may be provided facing each other.

このように、ステージは、流体の作用で浮上し
た状態で移動されるので、ステイツク・スリツプ
の発生はもちろん熱を発生することもないので、
極めて正確に微動できる結果、ステージに載置さ
れている物体のサブミクロン・オーダでの超精密
位置決めが可能となる効果を奏する。
In this way, the stage is moved in a floating state due to the action of the fluid, so it does not generate any stick slip or heat.
As a result of being able to make extremely precise micro-movements, it is possible to perform ultra-precise positioning on the submicron order of objects placed on the stage.

なお、上記実施例では、ステージの形状は円
形、正方形にして行つたが、これに限定されるも
のではなく、三角形等の非円形の形状でも実施で
きるものであり、要旨を逸脱しない範囲で種々変
形できるものである。
In the above embodiments, the shape of the stage is circular or square, but it is not limited to this, and non-circular shapes such as triangles can also be used, and various shapes may be used without departing from the scope of the invention. It is something that can be transformed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す要部を切欠
した平面図、第2図は第1図の−線における
矢視断面図、第3図は圧力調整機構のブロツク
図、である。 1:ステージ、3a〜3d:フイレツト、4:
基台、5:凹部、A:第1の流体噴出機構、B:
第2の流体噴出機構、C:圧力調整機構、D:演
算制御部、E:変位検出機構。
FIG. 1 is a plan view showing an embodiment of the present invention with essential parts cut away, FIG. 2 is a sectional view taken along the - line in FIG. 1, and FIG. 3 is a block diagram of the pressure adjustment mechanism. 1: Stage, 3a-3d: Fillet, 4:
Base, 5: Recess, A: First fluid ejection mechanism, B:
Second fluid ejection mechanism, C: Pressure adjustment mechanism, D: Arithmetic control unit, E: Displacement detection mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 外側面に少なくとも一対対向して突設された
フイレツトを有し且つ物体を載置するステージ
と、このステージを回動自在に遊嵌する凹部が形
成された基台と、上記凹部において上記ステージ
の底面に向けて流体圧を加え上記ステージを浮上
させる第1の流体噴出機構と、上記フイレツト側
面に向けて流体圧を加え上記ステージの回転方向
あるいは水平方向の微小移動を選択的に行う第2
の流体噴出機構と、上記第1および第2の流体噴
出機構からの流体圧力を制御する圧力調整機構
と、上記ステージの回動量および水平方向の移動
量を検出する変位検出機構と、この変位検出機構
から出力された検出信号に基づいて上記圧力調整
機構に制御信号を出力し上記流体圧力の調整によ
り上記物体の位置決めを行う演算制御部とを具備
することを特徴とする微動テーブル。
1. A stage having at least one pair of opposing fillets protruding from an outer surface and on which an object is placed; a base having a recess into which the stage is rotatably and loosely fitted; a first fluid jetting mechanism that applies fluid pressure toward the bottom surface of the fillet to levitate the stage; and a second fluid jet mechanism that applies fluid pressure toward the side surface of the fillet to selectively move the stage minutely in the rotational direction or horizontal direction.
a fluid ejection mechanism, a pressure adjustment mechanism that controls the fluid pressure from the first and second fluid ejection mechanisms, a displacement detection mechanism that detects the amount of rotation and horizontal movement of the stage, and this displacement detection mechanism. A fine movement table comprising: an arithmetic control section that outputs a control signal to the pressure adjustment mechanism based on a detection signal output from the mechanism and positions the object by adjusting the fluid pressure.
JP16349279A 1979-12-18 1979-12-18 Finely movable table Granted JPS5687318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16349279A JPS5687318A (en) 1979-12-18 1979-12-18 Finely movable table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16349279A JPS5687318A (en) 1979-12-18 1979-12-18 Finely movable table

Publications (2)

Publication Number Publication Date
JPS5687318A JPS5687318A (en) 1981-07-15
JPS6344493B2 true JPS6344493B2 (en) 1988-09-05

Family

ID=15774885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16349279A Granted JPS5687318A (en) 1979-12-18 1979-12-18 Finely movable table

Country Status (1)

Country Link
JP (1) JPS5687318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590931U (en) * 1992-05-07 1993-12-10 ニチコン株式会社 Capacitor device for DIN rail

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937026A (en) * 1982-08-26 1984-02-29 Matsushita Electric Ind Co Ltd Slide table
JPS5963727A (en) * 1982-10-05 1984-04-11 Toshiba Corp Table device for holding sample
JPS6160107A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd X-y stage
US5015157A (en) * 1990-01-10 1991-05-14 Dennis Pinkerton Pump with multi-port discharge
JP4319882B2 (en) 2003-09-29 2009-08-26 大日本印刷株式会社 Decorative sheet, decorative molded product, and injection molding simultaneous decoration method
JP4740605B2 (en) * 2005-01-28 2011-08-03 ピー・エス・シー株式会社 Gas control rotary movement device and gas control actuator
JP4794900B2 (en) * 2005-05-02 2011-10-19 ピー・エス・シー株式会社 Gas control rotary movement device and gas control actuator
NL2003846A (en) * 2008-12-19 2010-06-22 Asml Netherlands Bv Lithographic apparatus with gas pressure means for controlling a planar position of a patterning device contactless.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114886U (en) * 1974-07-17 1976-02-03
JPS5730035Y2 (en) * 1977-03-04 1982-07-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590931U (en) * 1992-05-07 1993-12-10 ニチコン株式会社 Capacitor device for DIN rail

Also Published As

Publication number Publication date
JPS5687318A (en) 1981-07-15

Similar Documents

Publication Publication Date Title
US5899798A (en) Low profile, low hysteresis force feedback gimbal system for chemical mechanical polishing
CA1142276A (en) Wafer orienting apparatus
US4093378A (en) Alignment apparatus
JPS6344493B2 (en)
US20040011231A1 (en) Method and apparatus for accurate, micro-contact printing
EP0527739A1 (en) Servo guided stage system.
US10958194B2 (en) Piezoelectric drive device, piezoelectric motor, robot, electronic component transport apparatus, and printer
US6116990A (en) Adjustable low profile gimbal system for chemical mechanical polishing
JPH02504573A (en) compliant movement servo
US4198159A (en) Optical alignment system in projection printing
US20230331008A1 (en) Inkjet printer with substrate height position control
JP7098174B2 (en) Scribe head
US5156704A (en) Method for fabricating magnetic head air bearing sliders
JPS644252B2 (en)
JPS614638A (en) Carriage locking device
JPS62107935A (en) Automatic correcting mechanism for surface grinder
JP4113732B2 (en) Air bearing
WO2001096063A1 (en) Magnetic head grinding device and method
JP4740605B2 (en) Gas control rotary movement device and gas control actuator
JPH09269008A (en) Static pressure air bearing type guide device
JP4484298B2 (en) Low profile adjustable gimbal system for chemical mechanical polishing
JPH0746368Y2 (en) Roll coater
JPS5856741A (en) Device for feeding and locating stage
JPS6032168A (en) Feeding device
JPH0457670A (en) Tool for surface working of magnetic head slider