JPS62107935A - Automatic correcting mechanism for surface grinder - Google Patents

Automatic correcting mechanism for surface grinder

Info

Publication number
JPS62107935A
JPS62107935A JP24638785A JP24638785A JPS62107935A JP S62107935 A JPS62107935 A JP S62107935A JP 24638785 A JP24638785 A JP 24638785A JP 24638785 A JP24638785 A JP 24638785A JP S62107935 A JPS62107935 A JP S62107935A
Authority
JP
Japan
Prior art keywords
mounting surface
inclination
grinding wheel
workpiece mounting
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24638785A
Other languages
Japanese (ja)
Inventor
Fumio Watanabe
文雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP24638785A priority Critical patent/JPS62107935A/en
Publication of JPS62107935A publication Critical patent/JPS62107935A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To detect and correct an error in parallelism whenever there is any error by providing a sensor for detecting the inclination of a grinding wheel surface to a reference surface, and a sensor for detecting the inclination of a workpiece mounting surface to said reference surface. CONSTITUTION:Four non-contact type distance sensors 21 are provided opposite to the periphery of the top surface of an air spindle 3, i.e., the mounting surface of a workpiece 1. Sensors 21 are also provided opposite to the surface of a grinding wheel 14. And, by calculating the inclination of a workpiece mounting surface to a reference surface and the inclination of a wheel surface to the reference surface, the parallelism between the workpiece mounting surface and the wheel surface can be calculated based on the calculated values of the inclinations. Then, voltage is applied to a piezo-electric element 7 to control the posture of a table unit in the direction of making the parallelism between the workpiece mounting surface and the wheel surface zero.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平面研削盤における砥石面と被加工物取付面
との平行度狂いを自動的に補正する装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a device that automatically corrects the misparallelism between a grinding wheel surface and a workpiece mounting surface in a surface grinder.

〔従来技術〕[Prior art]

回転軸と垂直に構成された被加工物取付面と、上記回転
軸と平行に設けられた回転軸と垂直に構成された砥石面
とを対向せしめた平面研削盤において、精密な研削を行
うには前記被加工物取付面と砥石面との平行度を高精度
に維持しなければならない。ところが、上記双方の回転
軸はそれぞれ重力荷重、加速度荷重の他に研削力の反力
を受けるので微小な変形を避は難い。その上、モータの
発熱等に因る熱歪も発生する。
For precision grinding, a surface grinder has a workpiece mounting surface configured perpendicular to the rotation axis and a grinding wheel surface configured perpendicular to the rotation axis, parallel to the rotation axis, facing each other. The parallelism between the workpiece mounting surface and the grinding wheel surface must be maintained with high precision. However, since both of the rotating shafts are subjected to the reaction force of the grinding force in addition to the gravity load and the acceleration load, it is difficult to avoid slight deformation. Furthermore, thermal distortion occurs due to heat generated by the motor.

このため1回転軸の剛性を増加させたり軸受の耐圧荷重
を増加させるだけでは1例えば半導体ウェハなどのよう
に超高精度を要する製品の研削加工については、従来技
術の範囲内での精度向上が限界に達していた。
For this reason, simply increasing the rigidity of the shaft of one rotation or the pressure load of the bearing cannot improve the accuracy within the range of conventional technology, for example, for grinding products that require ultra-high precision such as semiconductor wafers. I had reached my limit.

これ以上の超高精度で砥石面と被加工物取付面の平行度
を改善するには、回転軸支承方向の自動補正が必要であ
る。
In order to improve the parallelism between the grinding wheel surface and the workpiece mounting surface with even higher precision, automatic correction of the rotary shaft support direction is required.

上記の自動補正機構を開発するためには、(a)  双
方の面の平行度を、運転状態で測定する機構と、 (b)  上記の測定値に基づいて回転軸の軸受の支承
方向を調整する機構と、 上記(a)、 (b)双方の機構を必要とする。
In order to develop the above automatic correction mechanism, we needed (a) a mechanism that measures the parallelism of both surfaces during operation, and (b) an adjustment of the bearing direction of the rotating shaft based on the above measured values. (a) and (b) above.

これらの内の(b)項、回転軸受の支承方向の調節につ
いては、直交3軸x、y、zを想定し、Z軸方向のテー
ブル軸を支承するテーブルユニットを構成して該テーブ
ルユニットをY方向の軸によってサブベースに対して枢
支すると共に、上記のサブベースをX方向の軸によって
ベース部材に対して支承し、前記テーブルユニット及び
サブベースをそれぞれY軸及びX軸の回りに微小角Δθ
Regarding item (b) of these, adjustment of the supporting direction of the rotary bearing, assume three orthogonal axes x, y, and z, and construct a table unit that supports the table axis in the Z-axis direction. The table unit and the sub-base are pivoted to the sub-base by an axis in the Y direction, and the sub-base is supported to the base member by an axis in the X-direction, and the table unit and the sub-base are rotated minutely around the Y-axis and the angle Δθ
.

Δφ回動せしめてテーブル軸の軸心方向を調整し得るよ
うに構成し、前記テーブルユニットとサブベースとの間
、及び、サブテーブルとベース部材との間にそれぞれ圧
電素子及び距離センサを介装し、上記圧電素子に印加す
る電圧を制御して、前記の微小角Δθ、Δφをそれぞれ
調整し得るように構成することが考えられる。
The table is configured to rotate by Δφ to adjust the axial direction of the table shaft, and a piezoelectric element and a distance sensor are interposed between the table unit and the sub-base and between the sub-table and the base member, respectively. However, it is conceivable to control the voltage applied to the piezoelectric element to adjust the minute angles Δθ and Δφ, respectively.

上記の構成は本発明者が創作して別途に出願中の発明(
以下、先願の装置と言う)である。第4図は上記先願の
調整装置の説明図である。
The above configuration is an invention created by the present inventor and filed separately (
(hereinafter referred to as the device of the prior application). FIG. 4 is an explanatory diagram of the adjusting device of the prior application.

この第1図において、1は被加工物で回転するチャック
テーブル2に真空吸着されている。3はチャックテーブ
ル2を回転させるエアースピンドルである。
In FIG. 1, a workpiece 1 is vacuum-adsorbed onto a rotating chuck table 2. As shown in FIG. 3 is an air spindle that rotates the chuck table 2.

エアースピンドル3を支えているテーブルユニット4は
微調整用の支点としてその一端をY軸方向のヒンジピン
9によってサブベース11に対して枢支されており、他
端は微調用アクチュエータである圧電素子9で受け、ボ
ルト24で締結されている。
The table unit 4 supporting the air spindle 3 has one end pivoted to the sub-base 11 by a hinge pin 9 in the Y-axis direction as a fulcrum for fine adjustment, and the other end is a piezoelectric element 9 which is an actuator for fine adjustment. and is fastened with bolts 24.

上記のサブベース11はX軸方向のヒンジピン8によっ
てベース部材12に対して枢支され、圧電素子IOを介
してボルトz5で締結されている。13は定盤である。
The above sub-base 11 is pivoted to the base member 12 by a hinge pin 8 in the X-axis direction, and is fastened with a bolt z5 via a piezoelectric element IO. 13 is a surface plate.

16はヘッドで、コラム18の案内部材19によって上
下に案内される。このヘッド16にZ軸方向のエアース
ピンドル17が設けられ、x−y平面に平行な回転円板
15を介して砥石14を支承している。
A head 16 is guided up and down by a guide member 19 of a column 18. This head 16 is provided with an air spindle 17 extending in the Z-axis direction, and supports the grindstone 14 via a rotating disk 15 parallel to the xy plane.

この先願の装置(第4図)によれば、圧電素子7.10
に電圧を印加して伸縮させると、テーブルユニット4が
ヒンジピン9.8回りに微小角度回動せしめられ、被加
工物1の取付面がX−Y平面に平行となるよう、更に詳
しくは砥石14の下面と平行となるように調節すること
ができる。
According to the device of this earlier application (FIG. 4), the piezoelectric element 7.10
When a voltage is applied to expand and contract the table unit 4, the table unit 4 is rotated by a small angle around the hinge pin 9.8, and the grinding wheel 14 is rotated so that the mounting surface of the workpiece 1 is parallel to the X-Y plane. It can be adjusted so that it is parallel to the bottom surface of.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記先願の装置(第4図)の実用価値を発揮させるため
には、前述の(a)の機構、すなわち被加工物の取付面
と砥石面との平行度を運転状態で検出し得る機構の開発
が切望される。本発明の目的はこの要請に応えようとす
るものである。
In order to demonstrate the practical value of the device of the earlier application (Fig. 4), it is necessary to use the mechanism (a) mentioned above, that is, a mechanism that can detect the parallelism between the mounting surface of the workpiece and the grinding wheel surface during operation. development is desperately needed. The object of the present invention is to meet this need.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成する為、本発明の補正機構は。 In order to achieve the above object, the correction mechanism of the present invention is as follows.

回転軸と垂直に構成された被加工物取付面と、上記回転
軸と平行に設けられた回転軸と垂直に構成された砥石面
とを対向せしめた平面研削盤において、前記被加工物取
付面及び砥石面に平行な基準面を設定し、上記の基準面
に対する砥石面の傾きを検出するセンサ、及び、前記基
準面に対する被加工物取付面の傾きを検出するセンサを
設けると共に、前記双方のセンサの検出信号を入力せし
めて砥石面と被加工物取付面との傾斜角を算出する自動
演算装置を設け、かつ、前記2個の回転軸の少なくとも
何れか一方に該回転軸の支承方向を調整する装置を設け
、前記の傾斜角を零ならしめる方向に上記の調整装置を
自動的に作動せしめる制御手段を設けたことを特徴とす
る。
In a surface grinding machine in which a workpiece mounting surface configured perpendicularly to a rotating shaft and a grinding wheel surface configured perpendicularly to the rotating shaft provided parallel to the rotating shaft face each other, the workpiece mounting surface and a reference plane parallel to the grinding wheel surface, a sensor for detecting the inclination of the grinding wheel surface with respect to the reference plane, and a sensor for detecting the inclination of the workpiece mounting surface with respect to the reference plane, and both of the above. An automatic calculation device is provided to calculate the inclination angle between the grinding wheel surface and the workpiece mounting surface by inputting the detection signal of the sensor, and the supporting direction of the rotary shaft is set on at least one of the two rotary shafts. The present invention is characterized in that an adjusting device is provided, and a control means is provided for automatically operating the adjusting device in a direction to make the inclination angle zero.

〔実施例〕 次に1本発明の一実施例について、第1図乃至第3図を
参照しつつ説明する。
[Embodiment] Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

本実施例は第4図に示した先願の装置に本発明を適用し
て改良した一例であって、本実施例における第1図は、
先願の装置(第1図)の1−1断面に相当する個所を描
いたものである。
This embodiment is an example in which the present invention is applied and improved to the device of the previous application shown in FIG. 4, and FIG. 1 in this embodiment is as follows.
This figure depicts a portion corresponding to the 1-1 cross section of the device of the prior application (FIG. 1).

第2図は第1図を矢印■方向に見た側面図である。FIG. 2 is a side view of FIG. 1 as viewed in the direction of the arrow ■.

第3図は、被加工物1を吸着保持したチャックテーブル
2と、砥石を取り付ける円板15との関係位置を説明す
るため模式的に描いた平面図である。
FIG. 3 is a plan view schematically drawn to explain the relative position between the chuck table 2 holding the workpiece 1 by suction and the disc 15 to which the grindstone is attached.

本実施例においては、X−Y平面に平行な面を基準面と
する。
In this embodiment, a plane parallel to the X-Y plane is used as a reference plane.

第1図に示すように、エアースピンドル3の頂面(被加
工物1の取付面)の周囲に対向せしめて。
As shown in FIG. 1, it is opposed to the periphery of the top surface of the air spindle 3 (the mounting surface of the workpiece 1).

4個の非接触形距離センサ21(本第1図には2側視わ
れている)を設ける。22はセンサ支承用のアーム、2
3は同じくアンバである。
Four non-contact distance sensors 21 (two sides are shown in FIG. 1) are provided. 22 is an arm for supporting the sensor, 2
3 is also amba.

7は第4図で説明した圧電素子、20はデジマイクロで
ある。
7 is the piezoelectric element explained in FIG. 4, and 20 is a digital micro.

前記のセンサ21の検出出力信号は自動演算手段を介し
て中央制御装置(共に図示せず)に入力させ。
The detection output signal of the sensor 21 is inputted to a central control device (both not shown) via automatic calculation means.

基準面に対する被加工物取付面の傾きを算定する。Calculate the inclination of the workpiece mounting surface with respect to the reference surface.

第2図に示す如く、前記の構成(第1図)と同様に、砥
石14の面に対向せしめてセンサ21を設ける。本例に
おいては、センサ21を砥石14の取付面に対向せしめ
である。このようにして砥石14の面の基準面に対する
傾きを算定する。
As shown in FIG. 2, a sensor 21 is provided facing the surface of the grinding wheel 14, similar to the configuration described above (FIG. 1). In this example, the sensor 21 is opposed to the mounting surface of the grindstone 14. In this way, the inclination of the surface of the grindstone 14 with respect to the reference plane is calculated.

基準面に対する被加工物取付面の傾きと、基準面に対す
る砥石面の傾きとを算定すれば、この算定値に基づいて
被加工物取付面と砥石面との平行度を算定することがで
きる。
By calculating the inclination of the workpiece attachment surface with respect to the reference plane and the inclination of the grindstone surface with respect to the reference plane, the parallelism between the workpiece attachment surface and the grindstone surface can be calculated based on the calculated values.

そこで、前述の圧電素子7.10(第4図)に電圧を印
加し、前記両面の平行度を零ならしめる方向にテーブル
ユニット4の姿勢を制御する。
Therefore, a voltage is applied to the piezoelectric element 7.10 (FIG. 4) described above to control the attitude of the table unit 4 in a direction that brings the parallelism of both surfaces to zero.

第4図に黒丸で示した21と、破線で示した21とは、
それぞれセンサの配設個所を示している。点0はエアー
スピンドル3の回転中心であ、す、円板15に取り付け
た砥石14の円周は上記の点0を通過するように構成し
である。
21 shown with a black circle in FIG. 4 and 21 shown with a broken line are:
Each shows the location where the sensor is installed. Point 0 is the center of rotation of the air spindle 3, and the circumference of the grindstone 14 attached to the disc 15 is configured to pass through the above point 0.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の自動補正機構に、よれば
、平面研削盤における被加工物取付面と砥石面との平行
度を運転状態において検出することができ、本発明を先
願の装置に適用することにより上記平行度を自動制御す
ることができ、平面研削盤の加工精度向上に貢献すると
ころ多大である。
As explained above, according to the automatic correction mechanism of the present invention, the parallelism between the workpiece mounting surface and the grinding wheel surface in a surface grinding machine can be detected in the operating state. By applying this method, the parallelism can be automatically controlled, which greatly contributes to improving the machining accuracy of surface grinders.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の垂直断面図、第2図は第1
図の■矢視図である。第3図はセンサの配置の説明図で
ある。 第4図は先願の装置の部分破断斜視図である。 1・・・被加工物、2・・・チャックテーブル、3・・
・エアースピンドル、14・・・砥石、15・・・円板
、21・・・センサ、22・・・アンバー、13・・・
定盤。
FIG. 1 is a vertical sectional view of one embodiment of the present invention, and FIG.
It is a view in the direction of the ■ arrow in the figure. FIG. 3 is an explanatory diagram of the arrangement of sensors. FIG. 4 is a partially cutaway perspective view of the device of the prior application. 1...Workpiece, 2...Chuck table, 3...
・Air spindle, 14... Grindstone, 15... Disc, 21... Sensor, 22... Amber, 13...
Surface plate.

Claims (1)

【特許請求の範囲】[Claims] 回転軸と垂直に構成された被加工物取付面と、上記回転
軸と平行に設けられた回転軸と垂直に構成された砥石面
とを対向せしめた平面研削盤において、前記被加工物取
付面及び砥石面に平行な基準面を設定し、上記の基準面
に対する砥石面の傾きを検出するセンサ、及び、前記基
準面に対する被加工物取付面の傾きを検出するセンサを
設けると共に、前記双方のセンサの検出信号を入力せし
めて砥石面と被加工物取付面との傾斜角を算出する自動
演算装置を設け、かつ、前記2個の回転軸の少なくとも
何れか一方に該回転軸の支承方向を調整する装置を設け
、前記の傾斜角を零ならしめる方向に上記の調整装置を
自動的に作動せしめる制御手段を設けたことを特徴とす
る平面研削盤の自動補正機構。
In a surface grinder in which a workpiece mounting surface configured perpendicularly to a rotating shaft and a grinding wheel surface configured perpendicularly to the rotating shaft provided parallel to the rotating shaft face each other, the workpiece mounting surface and a reference plane parallel to the grinding wheel surface, a sensor for detecting the inclination of the grinding wheel surface with respect to the reference plane, and a sensor for detecting the inclination of the workpiece mounting surface with respect to the reference plane, and both of the above. An automatic calculation device is provided to calculate the inclination angle between the grinding wheel surface and the workpiece mounting surface by inputting the detection signal of the sensor, and the supporting direction of the rotary shaft is set on at least one of the two rotary shafts. An automatic correction mechanism for a surface grinder, characterized in that an adjusting device is provided, and a control means is provided for automatically operating the adjusting device in a direction to make the inclination angle zero.
JP24638785A 1985-11-05 1985-11-05 Automatic correcting mechanism for surface grinder Pending JPS62107935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24638785A JPS62107935A (en) 1985-11-05 1985-11-05 Automatic correcting mechanism for surface grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24638785A JPS62107935A (en) 1985-11-05 1985-11-05 Automatic correcting mechanism for surface grinder

Publications (1)

Publication Number Publication Date
JPS62107935A true JPS62107935A (en) 1987-05-19

Family

ID=17147772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24638785A Pending JPS62107935A (en) 1985-11-05 1985-11-05 Automatic correcting mechanism for surface grinder

Country Status (1)

Country Link
JP (1) JPS62107935A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306637A (en) * 1987-06-08 1988-12-14 Nec Corp Mechanism for flattening semiconductor element
JPH07299700A (en) * 1994-05-11 1995-11-14 Yotaro Hatamura Attitude control system for machine tool and tool, and grinding system
JPH1110498A (en) * 1997-06-18 1999-01-19 Sumitomo Heavy Ind Ltd Machining device having face oscillation correction mechanism which employs solid actuator
JP2003025197A (en) * 2001-07-13 2003-01-29 Waida Seisakusho:Kk Device for adjusting relative position relationship between work and grinding wheel on grinder
JP2004042236A (en) * 2002-07-16 2004-02-12 Nachi Fujikoshi Corp Worktable inclination adjusting device
JP2005288550A (en) * 2004-03-31 2005-10-20 Tamura Seisakusho Co Ltd Precision grinding device and precision grinding method
JP2008012612A (en) * 2006-07-04 2008-01-24 Sumitomo Heavy Ind Ltd Machining method of double-disc machining device
JP2013141725A (en) * 2012-01-11 2013-07-22 Disco Corp Grinding device
JP2016140922A (en) * 2015-01-30 2016-08-08 株式会社東京精密 Wafer grinding device and wafer grinding method
JP2019115975A (en) * 2019-03-01 2019-07-18 株式会社東京精密 Wafer grinding device
JP2019147201A (en) * 2018-02-26 2019-09-05 株式会社ディスコ Measuring tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306637A (en) * 1987-06-08 1988-12-14 Nec Corp Mechanism for flattening semiconductor element
JPH07299700A (en) * 1994-05-11 1995-11-14 Yotaro Hatamura Attitude control system for machine tool and tool, and grinding system
JPH1110498A (en) * 1997-06-18 1999-01-19 Sumitomo Heavy Ind Ltd Machining device having face oscillation correction mechanism which employs solid actuator
JP2003025197A (en) * 2001-07-13 2003-01-29 Waida Seisakusho:Kk Device for adjusting relative position relationship between work and grinding wheel on grinder
JP2004042236A (en) * 2002-07-16 2004-02-12 Nachi Fujikoshi Corp Worktable inclination adjusting device
JP2005288550A (en) * 2004-03-31 2005-10-20 Tamura Seisakusho Co Ltd Precision grinding device and precision grinding method
JP2008012612A (en) * 2006-07-04 2008-01-24 Sumitomo Heavy Ind Ltd Machining method of double-disc machining device
JP2013141725A (en) * 2012-01-11 2013-07-22 Disco Corp Grinding device
JP2016140922A (en) * 2015-01-30 2016-08-08 株式会社東京精密 Wafer grinding device and wafer grinding method
JP2019147201A (en) * 2018-02-26 2019-09-05 株式会社ディスコ Measuring tool
JP2019115975A (en) * 2019-03-01 2019-07-18 株式会社東京精密 Wafer grinding device

Similar Documents

Publication Publication Date Title
US5816895A (en) Surface grinding method and apparatus
JP4384664B2 (en) High-precision dynamic alignment mechanism for sample inspection and processing
US9248535B2 (en) Machine tools and methods of operation thereof
JPS62107935A (en) Automatic correcting mechanism for surface grinder
JPH0985619A (en) Surface grinding method and device therefor
CN113075219A (en) Leveling and focusing device
JPS58196970A (en) Grinder
US7096751B2 (en) Measuring apparatus and accuracy analyzing apparatus having the same
JP4427000B2 (en) Workpiece holding device and workpiece holding position adjusting method
JP2014030035A (en) Semiconductor substrate bonding device and semiconductor substrate bonding method
US6443818B1 (en) Grinding machine
JPS59147444A (en) Method and apparatus for positioning tabular body
CN114871940A (en) Substrate back grinding method and grinding system
JPH09150355A (en) Grinding machine
JP3780470B2 (en) Method for aligning composite eccentric shafts
JP2557076B2 (en) Force sensor with posture change compensation function
KR100439564B1 (en) Surface grinding method and apparatus
JP7362787B2 (en) Bonding device and bonding method
JP7394638B2 (en) Grinding device and grinding method
JPH0639042B2 (en) Table drive
JP3313222B2 (en) Planar shape measuring device
JP2018128411A (en) Work dimension measurement device
JP2009088401A (en) Wafer position detector and semiconductor manufacturing apparatus with wafer position detector
JPH09290357A (en) Method and device for grinding plate-shaped material
JP3439174B2 (en) Tool measuring and re-grinding equipment installed on machine tools