JPS6344319A - Production of perpendicular magnetic recording medium - Google Patents

Production of perpendicular magnetic recording medium

Info

Publication number
JPS6344319A
JPS6344319A JP18935786A JP18935786A JPS6344319A JP S6344319 A JPS6344319 A JP S6344319A JP 18935786 A JP18935786 A JP 18935786A JP 18935786 A JP18935786 A JP 18935786A JP S6344319 A JPS6344319 A JP S6344319A
Authority
JP
Japan
Prior art keywords
recording medium
layer
perpendicular magnetic
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18935786A
Other languages
Japanese (ja)
Inventor
Osamu Kitagami
修 北上
Hideo Fujiwara
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP18935786A priority Critical patent/JPS6344319A/en
Publication of JPS6344319A publication Critical patent/JPS6344319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a perpendicular magnetic recording medium having multi- layered structure in which the perpendicular coercive force increases from the lower layer part toward the surface layer part by forming perpendicularly magnetized layers nearer a nonmagnetic substrate under the higher atmospheric pressures. CONSTITUTION:The lower layer parts nearer the nonmagnetic substrate 20 are formed under the relatively higher atmospheric pressures and the layers are formed under the lower atmospheric pressure on progression toward the surface layer. The atmospheric pressures are changed within a 1X10<-4>-5X10<-7>Torr range. The regulation of the atmospheric pressure at the time of forming the films of the respective magnetized layers is executed by; for example, introducing an inert gas such as N2 into a vacuum vessel. The perpendicular magnetic recording medium having the multi-layered structure in which the perpendicular coercive force increases from the lower layer part toward the surface layer part is thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は改良された記録磁性層を仔する磁気記録媒体の
製造方法に関する。史に、:を細には、本発明は記録再
生特性に優れた垂直磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium having an improved recording magnetic layer. In particular, the present invention relates to a method for manufacturing a perpendicular magnetic recording medium with excellent recording and reproducing characteristics.

[従来の技術] 垂直磁気記録方式は記録媒体をその膜面に対し、垂直方
向に磁化することにより記録を行う記録方式である。従
って、垂直記録方式による記録媒体には、記録された磁
化が垂直方向に安定に存在することが要求される。
[Prior Art] Perpendicular magnetic recording is a recording method that performs recording by magnetizing a recording medium in a direction perpendicular to its film surface. Therefore, a recording medium using the perpendicular recording method is required to have recorded magnetization stably present in the perpendicular direction.

しかし、一般に磁性層の磁化が垂直方向に安定に存在す
るためには、膜の飽和磁化値にもよるが、垂直方向の保
磁力が高くなければならない。
However, in general, in order for the magnetization of the magnetic layer to exist stably in the perpendicular direction, the coercive force in the perpendicular direction must be high, although it depends on the saturation magnetization value of the film.

一方、磁気ヘッドが発生する記録磁界強度は、記録媒体
表面から膜厚深さ方向に進むにしたがい減少する。従っ
て、従来の垂直磁気記録媒体のように、膜厚方向で一様
な垂直方向保磁力分布を有する記録媒体の場合には、そ
の保磁力が小さい時に再生出力も低いが、保磁力の増加
と共に再生出力は増加する。これは、東向方向保磁力の
増加と共に記録磁化が垂直方向に一層安定に存在するよ
うになるためであろう。
On the other hand, the strength of the recording magnetic field generated by the magnetic head decreases as it progresses from the surface of the recording medium in the depth direction of the film thickness. Therefore, in the case of a recording medium that has a uniform perpendicular coercive force distribution in the film thickness direction, such as a conventional perpendicular magnetic recording medium, when the coercive force is small, the reproduction output is low, but as the coercive force increases, Reproduction output increases. This is probably because the recorded magnetization becomes more stable in the perpendicular direction as the eastward coercive force increases.

しかし、記録磁性層の垂直方向保磁力が更に増大すると
、再生出力は一定の保磁力で極大値を示し、それ以上に
保磁力が増加すると、むしろ再生出力は低下する。この
現象は、前記のように磁気ヘッドの記録磁界強度が膜厚
深さ方向に進むにしたがい減少するために、記録磁性層
の表層部付近のみ記録され、上層部では記録が行えない
ことによる。
However, when the perpendicular coercive force of the recording magnetic layer increases further, the reproduction output shows a maximum value at a constant coercive force, and when the coercive force increases beyond that, the reproduction output actually decreases. This phenomenon occurs because, as described above, the recording magnetic field strength of the magnetic head decreases as it increases in the depth direction of the film, so that recording is performed only near the surface layer of the recording magnetic layer, and recording cannot be performed in the upper layer.

従って、膜厚深さ方向で一様な垂直方向保磁力の分布を
有する記録媒体の場合には、ある保磁力で最大の再生出
力を示すが、それより低保磁力の領域では、記録磁化が
反磁場の影響で垂直方向から傾くためtlT生出力出力
く、高保磁力の領域では記録層の下層まで磁化反転を起
こすに足る磁場が与えられないため飽和記録が行えず、
逆に出力も低下する。
Therefore, in the case of a recording medium that has a uniform perpendicular coercive force distribution in the film thickness depth direction, the maximum reproduction output will be achieved at a certain coercive force, but in the region of lower coercive force, the recorded magnetization will decrease. The tlT raw output is tilted from the perpendicular direction due to the influence of the demagnetizing field, and in the high coercive force region, saturation recording cannot be performed because a magnetic field sufficient to cause magnetization reversal to the lower layer of the recording layer is not applied.
Conversely, the output also decreases.

こうした問題を軽減し、より高いilT生出力出力l)
る手段として、特開昭60−95720−す公報には、
磁性層の東向方向保磁力が、磁気記録表面付近で高く、
膜厚深さ方向に進にしたがい減少するような構造の記録
磁性層を有す゛る垂直磁気記録媒体が開示されている。
Alleviate these issues and increase the ILT raw power output l)
As a means of
The eastward coercive force of the magnetic layer is high near the magnetic recording surface.
A perpendicular magnetic recording medium is disclosed that has a recording magnetic layer having a structure in which the thickness decreases as the thickness increases in the depth direction.

+FI記公報によれば、垂直方向保磁力の変化は、積層
時の基板〆」度を変えることによりイ“tわれる。
According to the +FI publication, changes in the perpendicular coercive force can be suppressed by changing the degree of substrate closing during lamination.

従って、上記構造の記録磁性層を得るためには、各層の
積層毎に順次基板温度を−Lげていく必要があった。
Therefore, in order to obtain a recording magnetic layer having the above structure, it was necessary to sequentially lower the substrate temperature by -L for each laminated layer.

ところが、このように基板温度を上げていくと、先に形
成した垂直磁化層の特性が熱の影響で、当初の設計特性
から逸脱してしまうという問題が生じた。
However, when the substrate temperature was raised in this way, a problem arose in that the characteristics of the previously formed perpendicular magnetic layer deviated from the originally designed characteristics due to the influence of heat.

[発明が解決しようとする問題点コ この発明は、前記のような従来技術の自する欠点を解決
するために、垂直方向保磁力の異なる多層構造垂直磁気
記録媒体の新規な製造方法を提供することを目的とする
[Problems to be Solved by the Invention] This invention provides a new method for manufacturing a multilayer perpendicular magnetic recording medium having different perpendicular coercive forces in order to solve the drawbacks of the prior art as described above. The purpose is to

[問題点を解決するための手段コ 前記の問題点は、非磁性基体−1−に垂直方向保磁力の
小さい垂直磁化層を第1層として積層し、該層1ユに順
次保磁力の大きい層を積層して成る多層構造の垂直磁気
記録媒体を製造する際、非磁性基体に近い垂直磁化層は
ど高い雰囲気圧力で形成することにより解決される。
[Means for solving the problem] The above problem is solved by laminating a perpendicular magnetization layer with a small perpendicular coercive force as the first layer on the non-magnetic substrate -1-, and sequentially layering one layer with a large coercive force. When manufacturing a perpendicular magnetic recording medium with a multilayer structure consisting of laminated layers, this problem can be solved by forming the perpendicular magnetic layer near the nonmagnetic substrate at a high atmospheric pressure.

本発明者らが長年にわたり広範な研究と試作を続けた結
果、垂直磁化層の成膜時の雰囲気圧力の低下とともに垂
直磁化層の保磁力が増大する事実を発見した。この発見
に基づき、上層部を相対的に高い雰囲気圧力で作成し、
表層に進につれて低い雰囲気圧力で作成したところ、保
磁力が下層部から表層部に向かって増大する多層構造垂
直磁気記録媒体を得ることに成功した。
As a result of extensive research and prototyping carried out over many years, the present inventors discovered the fact that the coercive force of the perpendicularly magnetized layer increases as the atmospheric pressure during the formation of the perpendicularly magnetic layer decreases. Based on this discovery, the upper layer was created at a relatively high atmospheric pressure,
When the magnetic recording medium was produced at a lower atmospheric pressure as it progressed toward the surface layer, we succeeded in obtaining a multilayer perpendicular magnetic recording medium in which the coercive force increases from the lower layer toward the surface layer.

下層から表層へ複数の層を積層させて多層構造の垂直磁
化層を形成させる際の各層の成膜雰囲気圧力は1xlO
−q−5xlO−7Torrの範囲内で変化される。
When stacking multiple layers from the bottom layer to the surface layer to form a perpendicular magnetization layer with a multilayer structure, the film forming atmosphere pressure for each layer is 1xlO.
-q-5xlO-7 Torr.

各磁化層を成膜する際の雰囲気圧力調整は、例えば、真
空槽内にN2のような不活性ガスを導入することにより
行われる。
Atmospheric pressure adjustment when forming each magnetized layer is performed, for example, by introducing an inert gas such as N2 into the vacuum chamber.

保磁力の異なる磁化層を2層以上積層させることもでき
るが、基体側から連続的に垂直方向保磁力を大きくして
いくこともできる。
Although it is possible to laminate two or more magnetized layers having different coercive forces, it is also possible to continuously increase the perpendicular coercive force from the base side.

基体側から連続的に垂直方向保磁力を変化させるには、
雰囲気圧力を連続的に変化させながら成膜すればよい。
To change the vertical coercive force continuously from the base side,
The film may be formed while continuously changing the atmospheric pressure.

なお、本発明の製造方法を適用しうる、垂直磁化膜材料
としては、成膜した時に膜を構成するコラム表面に非磁
性元素が偏析し非磁性層を形成しやすいものが好ましい
The perpendicularly magnetized film material to which the manufacturing method of the present invention can be applied is preferably one in which nonmagnetic elements are segregated on the surface of the columns constituting the film when the film is formed, so that a nonmagnetic layer is easily formed.

例えば、Co−Cr5 Co−Mo1Co−Re1Co
−WなどCOを主成分とする合金、あるいはFe−Cr
なとFeを主成分とする合金なとが特に好ましい材料と
して挙げられる。
For example, Co-Cr5 Co-Mo1Co-Re1Co
-Alloys mainly composed of CO such as W, or Fe-Cr
Particularly preferred materials include alloys containing iron and Fe as main components.

本発明の製造方法はいわゆるベーパー・デポジション法
と呼ばれる薄膜形成法令てに適用できる。
The manufacturing method of the present invention can be applied to a thin film forming method called a so-called vapor deposition method.

Uペーパー・デボンション法”とは気体または真空空間
中で、析出させようとする物質あるいは化合物等を蒸気
またはイオン化蒸気として気体上に析出させる方法を意
味する。この方法には、真空蒸着法、イオン−ブレーテ
ィング法、高周波イオン・ブレーティング法、イオン・
クラスタービーム法、イオンビームデポジション法、ス
パッタリング2去、CVI]去などがある。
"U paper debonding method" means a method in which a substance or compound to be deposited is deposited on a gas as vapor or ionized vapor in a gas or vacuum space.This method includes vacuum evaporation method, Ion-brating method, high-frequency ion-brating method, ion-brating method,
Examples include cluster beam method, ion beam deposition method, sputtering method, and CVI method.

本発明の方法により製造される磁気記録媒体に使用され
る非磁性基体としては、ポリイミド、ポリエチレンテレ
フタレート等の高分子フィルム。
Examples of the nonmagnetic substrate used in the magnetic recording medium produced by the method of the present invention include polymer films such as polyimide and polyethylene terephthalate.

ガラス類、セラミック、アルミ、陽極酸化アルミ。Glass, ceramic, aluminum, anodized aluminum.

黄銅などの金属板、Si単結晶板9表面を熱酸化処理し
たS i ’P−結晶板などがある。
There are metal plates such as brass, Si'P-crystal plates whose surfaces are subjected to thermal oxidation treatment, and the like.

[作用] 前記のように、本発明の製造方法によれば多層構造の垂
直磁気媒体を製造する際、各層の成膜雰囲気圧力を非磁
性基体に近い層はど高い値に設定する。
[Function] As described above, according to the manufacturing method of the present invention, when manufacturing a multilayered perpendicular magnetic medium, the film forming atmosphere pressure of each layer is set to a higher value for the layer closer to the nonmagnetic substrate.

このような製造方法により基板温度を変えずとも、保磁
力の異なる取直磁化層を形成することができるようにな
り、その結果、先に述へたような垂直磁化層の熱による
磁気特性の変化が大きく緩和される。
This manufacturing method makes it possible to form perpendicularly magnetized layers with different coercive forces without changing the substrate temperature, and as a result, the magnetic properties of the perpendicularly magnetized layer due to heat can be improved as described above. Changes will be greatly eased.

[実施例コ 以下、図面を参照しながら本発明の−・実施例について
更に詳細に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

第1図に示される真空蒸着装置を用いて多層構造型垂直
磁気記録媒体を製造した。
A multilayer perpendicular magnetic recording medium was manufactured using the vacuum evaporation apparatus shown in FIG.

まず、真空槽l内を3xlO−7Torrの圧力まで排
気ダクト3から排気した後、ヒーター5によりガラス基
板7を150°Cにまで加熱する。
First, the inside of the vacuum chamber 1 is evacuated from the exhaust duct 3 to a pressure of 3xlO-7 Torr, and then the glass substrate 7 is heated to 150° C. by the heater 5.

その後、バリアプルリークバルブ10よりN2ガスを導
入し、真空槽内の圧力を5xlO”−6Torrまで上
昇させる。
Thereafter, N2 gas is introduced through the barrier pull leak valve 10, and the pressure inside the vacuum chamber is increased to 5xlO''-6 Torr.

この状態で、蒸発源12のCoy7Cr?合金を膜厚0
.12μm蒸?′tし、更に実験の都合1ユ、この合金
層のにに蒸発源14から5i02を膜厚0゜01μmま
で積層させる。なお、このようにして形成されるCo−
Cr膜のCr含有率は、22wt%である。
In this state, the Coy7Cr of the evaporation source 12? Alloy film thickness 0
.. 12 μm steaming? Furthermore, for the convenience of the experiment, 5i02 was laminated from the evaporation source 14 to this alloy layer to a film thickness of 0.01 μm. Note that the Co-
The Cr content of the Cr film is 22 wt%.

5i02非磁性層を介在させる理由は各磁性層を磁気的
に絶縁するためである。
The reason for intervening the 5i02 nonmagnetic layer is to magnetically insulate each magnetic layer.

次に、第2磁性層を積層する前に、第1磁性層の磁気特
性を確認するため、一部を切りだし、残りを再びセット
した。
Next, before laminating the second magnetic layer, in order to confirm the magnetic properties of the first magnetic layer, a part was cut out and the rest was set again.

第2磁性層の形成条件は、N2ガスを導入せず、真空槽
内の圧力を8X10−7Torrとして蒸着した以外、
第1@性槽の場合と全く同じである。
The second magnetic layer was formed under the following conditions, except that N2 gas was not introduced and the pressure in the vacuum chamber was 8X10-7 Torr.
It is exactly the same as the case of the first @ sex tank.

このようにして製造した多層構造型垂直磁気記録媒体の
断面構造を第2図に示す。
FIG. 2 shows the cross-sectional structure of the multilayer perpendicular magnetic recording medium manufactured in this manner.

第2図に示されるように、非磁性基体20の上に第1磁
性層22が積層され、この上に5i02非磁性層24が
積層され、更に第2磁性層26が積層された構造になっ
ている。
As shown in FIG. 2, a first magnetic layer 22 is laminated on a nonmagnetic substrate 20, a 5i02 nonmagnetic layer 24 is laminated thereon, and a second magnetic layer 26 is further laminated. ing.

一法外 本発明の方法により製造された多層構造型垂直磁気記録
媒体の磁気特性を特開昭80−95720号公報に開示
された記録媒体の磁気特性と比較するため、この公報に
記載された、温度を変化させる方法により同じ構造の多
層型垂直磁気記録媒体を製造した。
In order to compare the magnetic properties of the multilayer perpendicular magnetic recording medium produced by the method of the present invention with the magnetic properties of the recording medium disclosed in JP-A-80-95720, A multilayer perpendicular magnetic recording medium with the same structure was manufactured using a method of varying temperature.

本発明の記録媒体の製造に使用された装置と同じ装置葭
を用いて対照記録媒体を製造する。
A control recording medium is manufactured using the same equipment used to manufacture the recording medium of the present invention.

まず、真空槽内を3XIC)” To r rまで排気
した後、ヒーター5によりガラス基板7を90℃にまで
加熱する。
First, after evacuating the inside of the vacuum chamber to 3XIC)'' Torr, the glass substrate 7 is heated to 90° C. by the heater 5.

この状態で実施例と同様に膜厚0.12μmのCo−C
r層と膜厚0.OIIlmの5i02層を積層した。
In this state, Co-C with a film thickness of 0.12 μm was prepared as in the example.
r layer and film thickness 0. A 5i02 layer of OIIlm was laminated.

そして、基板温度を270°Cに上げ膜厚0.12μm
のCo−Cr層を積層した。
Then, the substrate temperature was raised to 270°C and the film thickness was 0.12 μm.
Co--Cr layers were laminated.

CoとCrの組成比率およびCr含f’T率は実施例に
おける本発明の記録媒体と同一である。
The composition ratio of Co and Cr and the Cr content f'T ratio are the same as those of the recording medium of the present invention in the example.

本発明の方法により製造された記録媒体の磁気特性と特
開昭60−95720号公報に開示された方法により製
造された記録媒体の磁気特性をド記の表に要約して示す
The magnetic properties of the recording medium manufactured by the method of the present invention and the magnetic properties of the recording medium manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 60-95720 are summarized in the table below.

前記の結果から明らかなように、本発明の方法によれば
第1磁性層の保磁力は第2磁性層を積層する前と後では
殆ど変化がない。これに対して、特開昭60−9572
0号公報に開示された方法により製造された記録媒体で
は、第2磁性層を積層する前と後で第1磁性層の保磁力
が大きく変化し、設定目標値から著しく逸脱しているこ
とが理解される。
As is clear from the above results, according to the method of the present invention, there is almost no change in the coercive force of the first magnetic layer before and after laminating the second magnetic layer. On the other hand, JP-A-60-9572
In the recording medium manufactured by the method disclosed in Publication No. 0, the coercive force of the first magnetic layer changes significantly before and after laminating the second magnetic layer, and deviates significantly from the set target value. be understood.

なお、第2磁性層を積層した後の第1磁性層の特性は、
第2磁性層を化学エツチング法により取り除いてii[
l+定した。
The characteristics of the first magnetic layer after laminating the second magnetic layer are as follows:
The second magnetic layer is removed by chemical etching and ii[
l+ was determined.

以」−1本発明の方法を、強磁性体のみからなる磁性層
について説明してきたが、磁性層は強磁性体と有機物と
の複合膜であることもできる。
Hereinafter, the method of the present invention has been described with respect to a magnetic layer made only of a ferromagnetic material, but the magnetic layer can also be a composite film of a ferromagnetic material and an organic material.

このような目的に使用できる有機物は例えば、ポリエチ
レン、ポリエチレンテレフタレート、ポリプロピレン、
ポリスチレン、ポリテトラフルオロエチレン、ポリブタ
ンエン、ポリ塩化ビニル。
Examples of organic materials that can be used for this purpose include polyethylene, polyethylene terephthalate, polypropylene,
Polystyrene, polytetrafluoroethylene, polybutane, polyvinyl chloride.

ポリウレタンなどの高分子及びそれらを構成する弔頃体
(モノマー)及び中量体から誘導される低分子量(例え
ば、オリゴマー)のものなどが好ましい。これら以外の
化合物も使用できる。
Low molecular weight (for example, oligomers) derived from polymers such as polyurethane and their constituent monomers and intermediates are preferred. Compounds other than these can also be used.

有機物を併用する場合、これらの強磁性体と有機物とを
適当な比率で混合し、垂直磁化層を形成させる。垂直磁
化層に含まれる強磁性体の好ましい体積比率は、大体4
Qvo1%〜95vol″Aの範囲内である。
When an organic material is used in combination, the ferromagnetic material and the organic material are mixed in an appropriate ratio to form a perpendicular magnetic layer. The preferred volume ratio of the ferromagnetic material contained in the perpendicular magnetization layer is approximately 4.
Qvol is within the range of 1% to 95vol''A.

強磁性体含有率が40vo1%以−ドになると、高密度
記録に於いてドロ、プアウトが増し、またSZN的にも
低ドする。−・力、強磁性体の体積比率が95volX
を越えると、町とう性が著しく乏しくなり、また、磁気
ヘッドの摺動に対しても傷つきやすくなる。
When the ferromagnetic material content exceeds 40 vol%, drop and pull-out increase in high-density recording, and SZN also decreases. -・Volume ratio of force and ferromagnetic material is 95volX
If it exceeds this value, the rigidity will be extremely poor and the magnetic head will be easily damaged by sliding.

有機物を併用する場合、M着打機物の付着力を高め、か
つ、機械的耐久性を高めるため、プラズマ中に何機物蒸
気流を通したり、また、有機物析出中または析出後、電
子線や、α線、β線などの電離線、または、マイクロ彼
、紫外線、X線、γ線などの電磁線、または、陽子線、
中性子線を照射し、何機物の重合を促進させることが好
ましい。
When an organic material is used in combination, in order to increase the adhesion of the M-deposited material and increase its mechanical durability, a vapor flow of some material may be passed through the plasma, or an electron beam may be applied during or after the organic material precipitation. , ionizing rays such as α-rays, β-rays, electromagnetic rays such as micro-rays, ultraviolet rays, X-rays, γ-rays, or proton beams,
It is preferable to irradiate with neutron beams to promote polymerization of some substances.

また、非磁性基体と第1磁性層との間には軟磁性下地層
を介在させることもできる。軟磁性下地層を介在させる
と、得られた媒体の耐久性や磁気ヘッドとの接触性が良
好となる。このような目的に使用される軟磁性下地層は
例えば、強磁性体と有機物との複合膜から構成できる。
Furthermore, a soft magnetic underlayer may be interposed between the nonmagnetic substrate and the first magnetic layer. By interposing the soft magnetic underlayer, the durability of the obtained medium and the contactability with the magnetic head are improved. The soft magnetic underlayer used for this purpose can be composed of, for example, a composite film of a ferromagnetic material and an organic material.

前記軟磁性下地層は、ペーパー拳デポジション法により
、何機物と強磁性体を同時に基板上に析出させるか、も
しくは、非磁性基体−Lに有機物のモノマーガスを吹き
つけながら強磁性体をペーパーΦデポジンヨン法により
堆積させた後、膜表面に電γ線、電離線、電磁線等の励
起線を照射することにより形成させることができる。
The soft magnetic underlayer can be formed by simultaneously depositing a ferromagnetic material on the substrate using a paper fist deposition method, or by depositing a ferromagnetic material while blowing an organic monomer gas onto a non-magnetic substrate L. After the film is deposited by the paper Φ deposition method, it can be formed by irradiating the film surface with excitation rays such as electric gamma rays, ionizing rays, and electromagnetic rays.

[発明の効果] 以上説明したように、本発明の製造方法によれば多層構
造の垂直磁気媒体を製造する際、各層の成膜雰囲気用力
を非磁性基体に近い層はど高い値に設定する。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, when manufacturing a multilayer perpendicular magnetic medium, the film forming atmosphere power of each layer is set to a higher value for the layer near the non-magnetic substrate. .

このような製造方法により基板温度を変えずとも、保磁
力の異なる垂直磁化層を形成することかできるようにな
り、その結果、先に述べたような垂直磁化層の熱による
磁気特性の変化が大きく緩和される。
This manufacturing method makes it possible to form perpendicularly magnetized layers with different coercive forces without changing the substrate temperature, and as a result, the change in magnetic properties of the perpendicularly magnetized layer due to heat as described above is avoided. greatly relieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに使用される真空蒸
着装置の概要図であり、第2図は本発明の方法により製
造された多層型垂直磁気記録媒体の断面図である。
FIG. 1 is a schematic diagram of a vacuum evaporation apparatus used to carry out the method of the present invention, and FIG. 2 is a cross-sectional view of a multilayer perpendicular magnetic recording medium manufactured by the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)非磁性基体上に垂直方向の保磁力の小さい垂直磁
化層を第1層として積層し、該層上に順次保磁力の大き
い層を積層して成る多層構造の垂直磁気記録媒体の製造
方法において、非磁性基体に近い垂直磁化層ほど高い雰
囲気圧力で形成する事を特徴とする垂直磁気記録媒体の
製造方法。
(1) Manufacturing a perpendicular magnetic recording medium with a multilayer structure in which a perpendicular magnetization layer with a small perpendicular coercive force is laminated as a first layer on a nonmagnetic substrate, and layers with a large coercive force are successively laminated on this layer. A method for manufacturing a perpendicular magnetic recording medium, characterized in that a perpendicular magnetic layer closer to a nonmagnetic substrate is formed under a higher atmospheric pressure.
(2)特許請求の範囲第1項の記載において、雰囲気圧
力は1×10^−^4−5×10^−^7Torrの範
囲内で変化されることを特徴とする垂直磁気記録媒体の
製造方法。
(2) Manufacturing a perpendicular magnetic recording medium according to claim 1, characterized in that the atmospheric pressure is varied within the range of 1 x 10^-^4-5 x 10^-^7 Torr. Method.
(3)特許請求の範囲第1項または第2項の記載におい
て、垂直磁化層の積層はペーパーデポジション法により
行われることを特徴とする垂直磁気記録媒体の製造方法
(3) A method of manufacturing a perpendicular magnetic recording medium as set forth in claim 1 or 2, wherein the perpendicular magnetic layers are laminated by a paper deposition method.
(4)特許請求の範囲第1項から第3項のいずれかの記
載において、非磁性基体上には予め軟磁性下地層が積層
されていることを特徴とする垂直磁気記録媒体の製造方
法。
(4) A method for manufacturing a perpendicular magnetic recording medium according to any one of claims 1 to 3, characterized in that a soft magnetic underlayer is previously laminated on the nonmagnetic substrate.
JP18935786A 1986-08-12 1986-08-12 Production of perpendicular magnetic recording medium Pending JPS6344319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18935786A JPS6344319A (en) 1986-08-12 1986-08-12 Production of perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18935786A JPS6344319A (en) 1986-08-12 1986-08-12 Production of perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6344319A true JPS6344319A (en) 1988-02-25

Family

ID=16239969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18935786A Pending JPS6344319A (en) 1986-08-12 1986-08-12 Production of perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6344319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127365B2 (en) 2008-02-16 2015-09-08 HGST Netherlands B.V. Generation of multilayer structures in a single sputtering module of a multi-station magnetic recording media fabrication tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127365B2 (en) 2008-02-16 2015-09-08 HGST Netherlands B.V. Generation of multilayer structures in a single sputtering module of a multi-station magnetic recording media fabrication tool

Similar Documents

Publication Publication Date Title
US4260466A (en) Method of producing magnetic recording medium
JPS5883328A (en) Magnetic recording medium
US4713288A (en) Magnetic recording medium
JPS6344319A (en) Production of perpendicular magnetic recording medium
US4539264A (en) Magnetic recording medium
JPS61145722A (en) Magnetic recording medium
JPS5883327A (en) Magnetic recording medium
JPS5884411A (en) Magnetic recording medium
JPS59157826A (en) Production of magnetic recording medium
JPS63845B2 (en)
JPH0510732B2 (en)
JPH03265105A (en) Soft magnetic laminate film
JPH035644B2 (en)
JPH04285153A (en) Multi-layer magnetic film and its formation
JPS62204504A (en) Amorphous soft magnetic film and manufacture thereof
JPS601625A (en) Magnetic recording medium and its manufacture
JPS6224432A (en) Production of magnetic recording medium
JPH033743B2 (en)
JPS6226637A (en) Manufacture of vertical magnetic recording medium having thin soft magnetic &#39;permalloy(r)&#39; film
JPS63149848A (en) Apparatus for producing magneto-optical disk
JPS6224431A (en) Production of magnetic recording medium
JPH0744915A (en) Production of magneto-optical recording medium
Yamamoto et al. High‐rate‐deposition of Ni–Zn ferrite thin‐films using ECR sputtering with conic target
JPS62231440A (en) Photomagnetic recording medium
JPH09306776A (en) Magnetic thin film manufacture and magnetic head