JPS6344281B2 - - Google Patents
Info
- Publication number
- JPS6344281B2 JPS6344281B2 JP56209313A JP20931381A JPS6344281B2 JP S6344281 B2 JPS6344281 B2 JP S6344281B2 JP 56209313 A JP56209313 A JP 56209313A JP 20931381 A JP20931381 A JP 20931381A JP S6344281 B2 JPS6344281 B2 JP S6344281B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- conductor
- coil
- heat treatment
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004020 conductor Substances 0.000 claims description 24
- 238000005452 bending Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 229910000765 intermetallic Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 10
- 238000004804 winding Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
本発明は超電導コイルに関する。詳しくは、本
発明はコイル状に巻かれたNb3Sn,V3Ga等の化
合物超電導導体の曲げ歪みの緩和に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to superconducting coils. Specifically, the present invention relates to the relaxation of bending strain in a compound superconducting conductor such as Nb 3 Sn or V 3 Ga wound into a coil.
核融合炉、加速器等の大型装置に超電導コイル
が適用されているが、最近、これらの装置に対し
て、高磁界化の強い要求からNb3Sn等の化合物超
電導コイルの開発が精力的に進められている。し
かし、これらの化合物超電導導体はNb―Ti等の
合金系超電導導体に比べて機械的に脆く又、導体
に歪みを加えると臨界電流値は減少することが認
められている。 Superconducting coils are used in large-scale equipment such as nuclear fusion reactors and accelerators, but recently the development of compound superconducting coils such as Nb 3 Sn has been actively promoted due to the strong demand for higher magnetic fields for these equipment. It is being However, these compound superconducting conductors are mechanically more fragile than alloy-based superconducting conductors such as Nb-Ti, and it has been recognized that the critical current value decreases when strain is applied to the conductor.
すなわち、第1図に示すように導体1の超電導
物質(Nb3Snフイラメント)部2の径方向の厚み
2t、巻線径をRwとすると、曲げ歪みt/Rwが
0.005以上になると、臨界電値は急激に減少する。
特に、大電流容量の導体で小型のコイルではt/
Rwが大きくなるので、この現象は超電導コイル
を作る上で大きな障壁となる。 That is, as shown in Fig. 1, the radial thickness of the superconducting material (Nb 3 Sn filament) portion 2 of the conductor 1
2t, and the winding diameter is Rw, the bending strain t/Rw is
When it becomes 0.005 or more, the critical electric value decreases rapidly.
In particular, for conductors with large current capacity and small coils, t/
Since Rw increases, this phenomenon becomes a major barrier to creating superconducting coils.
本発明の目的はこのような曲げ歪みによる超電
導導体の劣化現象を改良した超電導コイルを提供
することである。 An object of the present invention is to provide a superconducting coil that improves the phenomenon of deterioration of superconducting conductors caused by such bending strain.
一般にNb3Sn導体は、Cu―Sn合金の母材の中
にフイラメント状のNbを数百〜数千本埋込んだ
ものを任意の温度と時間で熱処理してNb3Sn層を
生成することによつて作られる。従つて、曲げ歪
みはこのNb3Sn層を生成された時点からコイルの
巻線径までの過程に依存する。それ故に、Nb3Sn
層の生成をコイルに巻いた後行えば、導体に加わ
る曲げ歪みはほとんど零である。しかし、大型の
超電導コイルでは、大型の熱処理炉の必要性およ
び熱処理後の導体巻線精度の点から、Nb3Sn層を
生成した後、巻線する方法が好ましいとされてい
る。 In general, Nb 3 Sn conductors are made by embedding hundreds to thousands of Nb filaments in a Cu-Sn alloy base material and then heat-treating them at a desired temperature and time to form an Nb 3 Sn layer. made by. Therefore, the bending strain depends on the process from the time when the Nb 3 Sn layer is formed to the winding diameter of the coil. Therefore, Nb 3 Sn
If the layers are formed after being wound into a coil, the bending strain applied to the conductor is almost zero. However, for large superconducting coils, it is considered preferable to form a Nb 3 Sn layer and then wind the coil, in view of the need for a large heat treatment furnace and the accuracy of conductor winding after heat treatment.
従来用いられてきたこの方法によると、正味の
曲げ歪みはt/Rwとなり非常に大きな値とな
る。 According to this conventionally used method, the net bending strain is t/Rw, which is a very large value.
本願発明者は上記の目的を達成するため鋭意研
究の結果、コイルの最小曲げ径の、2倍の状態で
熱処理した後、直線状にし、それから巻線作業を
行うことにより曲げ歪み緩和し得ることを見出し
本発明に至つた。すなわち、本発明の超電導コイ
ルは金属間化合物超電導導体中で、最終熱処理後
の超電導物質の占める半径方向の厚みを2tとし、
その導体で巻かれる超電導コイルの最小曲げ半径
をRwとし、この比t/Rwが0.005以上となる超
電導コイルを作る場合、上記超電導導体をRwの
1.5倍から4倍の範囲の曲げ半径で超電導物質の
生成のための最終熱処理を施し、これを最終的な
Rwに巻いて成ることを特徴とする超電導コイル
である。 In order to achieve the above object, the inventor of the present application has conducted intensive research and found that bending strain can be alleviated by heat-treating the coil at twice the minimum bending diameter, making it straight, and then winding the coil. This discovery led to the present invention. That is, in the superconducting coil of the present invention, the thickness in the radial direction occupied by the superconducting material after final heat treatment is 2t in the intermetallic compound superconducting conductor,
The minimum bending radius of a superconducting coil wound with the conductor is Rw, and when making a superconducting coil with this ratio t/Rw of 0.005 or more, the superconducting conductor is
The final heat treatment for the production of superconducting materials is carried out with bending radii ranging from 1.5 to 4 times, and this is then applied to the final
This is a superconducting coil characterized by being wound in Rw.
次に本発明の超電導コイルにおける導体の熱処
理から巻線作業までの過程を従来のものと比較し
て第2図に示す。 Next, the process from heat treatment of the conductor to winding work in the superconducting coil of the present invention is shown in FIG. 2 in comparison with the conventional one.
(a)は従来の方法で、超電導導体中をほぼ直線で
熱処理した後、矢印で示す巻線作業して最終曲げ
径の超電導コイルを得る過程を示している。(b)は
本発明における方法で、超電導導体を曲げ径の状
態で熱処理して、超電導導体をはさんで2本の矢
印で示すごとく、直線状にして巻線作業を行つて
最終曲げ径の超電導コイルを得る過程を示してい
る。第3図は本発明の有益性を示す実測例を示す
ものである。本発明による方法では臨界電流値の
劣化が急激に生じ始めるt/Rwの値は従来の方
法での約2倍である。第4図はt/Rwが0.005以
上の値をもつ導体に対して、熱処理を行う曲げ径
RHとコイルの最小曲げ径Rwの比を臨界電流値の
劣化度との関係で示したものである。RH/Rwが
2〜3にあるときは臨界電流値の劣化は生じな
い。 (a) shows the process of heat-treating a superconducting conductor in a substantially straight line using the conventional method, and then winding the superconducting coil as indicated by the arrow to obtain a superconducting coil with the final bending diameter. (b) is the method according to the present invention, in which the superconducting conductor is heat-treated in the state of the bending diameter, and the superconducting conductor is sandwiched between the superconducting conductors and made into a straight line as shown by the two arrows, and the winding operation is performed to obtain the final bending diameter. It shows the process of obtaining a superconducting coil. FIG. 3 shows an actual measurement example showing the usefulness of the present invention. In the method according to the present invention, the value of t/Rw at which the critical current value begins to deteriorate rapidly is about twice that in the conventional method. Figure 4 shows the bending diameter for heat treatment for conductors with t/Rw of 0.005 or more.
The ratio of R H to the minimum bending radius Rw of the coil is shown in relation to the degree of deterioration of the critical current value. When R H /Rw is between 2 and 3, no deterioration of the critical current value occurs.
以上のように、Nb3Sn,V3Ga等の金属間化合
物超電導体の超電導物質の占める部分での径方向
の厚み2tとその導体で巻かれるコイルの最小曲げ
径Rwとの間でt/Rwが0.005以上である超電導
コイルにおいて、上記超電導体に対して、Rwの
1.5から4倍の領域の曲げ半径の状態で、超電導
物質の生成のための熱処理を施すことにより、曲
げ歪みによる臨界電流値の劣化の少ない超電導コ
イルを作ることが出来る。 As mentioned above, there is a difference between t / In a superconducting coil whose Rw is 0.005 or more, the Rw of the above superconductor is
By performing heat treatment to generate superconducting material with a bending radius in the range of 1.5 to 4 times, it is possible to create a superconducting coil with less deterioration in critical current value due to bending strain.
第1図はNb3Sn超電導導体の典型的な曲げ歪み
(横軸)に対する規格化された臨界電流値(縦軸)
を示す。第2図はNb3Sn導体のNb3Sn層の生成の
のための熱処理状態から巻線作業までの過程を示
す。aは従来の方法を示し、bは本発明による方
法を示す。第3図は、第2図に示したa,bそれ
ぞれの方法で実測された、曲げ歪み(横軸)と規
格化された臨界電流値(縦軸)を示す。第4図は
t/Rwが0.005以上の値をもつ化合物超電導導体
に対して、熱処理を行う曲げ径RHとコイルの最
小曲げ径Rwの比(横軸)と規格化された臨界電
流値(縦軸)との関係で示したものである。
Figure 1 shows the normalized critical current value (vertical axis) for typical bending strain (horizontal axis) of Nb 3 Sn superconducting conductor.
shows. FIG. 2 shows the process from the heat treatment for forming the Nb 3 Sn layer of the Nb 3 Sn conductor to the winding operation. a shows the conventional method and b shows the method according to the present invention. FIG. 3 shows the bending strain (horizontal axis) and the normalized critical current value (vertical axis), which were actually measured by the methods a and b shown in FIG. 2. Figure 4 shows the ratio (horizontal axis) of the bending radius R H subjected to heat treatment to the minimum bending radius Rw of the coil and the normalized critical current value ( (vertical axis).
Claims (1)
の超電導物質の占める半径方向の厚みを2tとし、
その導体で巻かれる超電導コイルの最小曲げ半径
をRwとし、この比t/Rwが0.005以上となる超
電導コイルを作る場合、上記超電導導体をRwの
1.5倍から4倍の範囲の曲げ半径で超電導物質の
生成のための最終熱処理を施し、これを最終的な
Rwに巻いて成ることを特徴とする超電導コイ
ル。1 In the intermetallic compound superconducting conductor, the radial thickness occupied by the superconducting material after final heat treatment is 2t,
The minimum bending radius of a superconducting coil wound with the conductor is Rw, and when making a superconducting coil with this ratio t/Rw of 0.005 or more, the superconducting conductor is
The final heat treatment for the production of superconducting materials is carried out with bending radii ranging from 1.5 to 4 times, and this is then applied to the final
A superconducting coil characterized by being wound in Rw.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56209313A JPS58111303A (en) | 1981-12-25 | 1981-12-25 | Superconducting coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56209313A JPS58111303A (en) | 1981-12-25 | 1981-12-25 | Superconducting coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58111303A JPS58111303A (en) | 1983-07-02 |
JPS6344281B2 true JPS6344281B2 (en) | 1988-09-05 |
Family
ID=16570881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56209313A Granted JPS58111303A (en) | 1981-12-25 | 1981-12-25 | Superconducting coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58111303A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253592A (en) * | 2005-03-14 | 2006-09-21 | Sumitomo Heavy Ind Ltd | Superconducting coil and its manufacturing method |
-
1981
- 1981-12-25 JP JP56209313A patent/JPS58111303A/en active Granted
Non-Patent Citations (1)
Title |
---|
IEEE TRANSACTIONS ON MAGNETICS=1981 * |
Also Published As
Publication number | Publication date |
---|---|
JPS58111303A (en) | 1983-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3983521A (en) | Flexible superconducting composite compound wires | |
AU683133B2 (en) | Method of making superconducting wind-and-react coils | |
US4652697A (en) | Aluminum-stabilized superconducting wire | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US3778894A (en) | PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE | |
US3836404A (en) | Method of fabricating composite superconductive electrical conductors | |
US4153986A (en) | Method for producing composite superconductors | |
JPS6344281B2 (en) | ||
US3857173A (en) | Method of producing a composite superconductor | |
Ando et al. | Development of 10 kA class Nb/sub 3/Al superconducting cable by jelly-roll process (for fusion magnets) | |
Ceresara et al. | Practical Nb 3 Al wires: Experimental behaviour of small scale solenoids | |
JP4013335B2 (en) | Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method | |
US4236297A (en) | Method of manufacturing a superconductor | |
JP3505894B2 (en) | Compound superconducting wire | |
AU739105B2 (en) | Superconducting magnetic coil | |
JPH05266726A (en) | Oxide superconducting wire | |
JPH06204029A (en) | Manufacture of superconducting coil | |
Britton | Niobium Tin and Related Superconductors | |
JPH09147635A (en) | Type a15 superconducting wire and its manufacture | |
JPH05198424A (en) | Superconductor coil and manufacture thereof | |
JPH05242742A (en) | Superconducting wire and its manufacture | |
Ohmatsu et al. | Multifilament superconducting wire of NB 3 AL | |
JP2001101938A (en) | Method of connecting oxide superconducting wire and superconducting equipment | |
JPH07176222A (en) | Nb3x superconductive wire material | |
JPH0982519A (en) | Solenoid coil for superconducting magnet, and oxide superconducting multicore wire |