JPS6344051B2 - - Google Patents

Info

Publication number
JPS6344051B2
JPS6344051B2 JP56162051A JP16205181A JPS6344051B2 JP S6344051 B2 JPS6344051 B2 JP S6344051B2 JP 56162051 A JP56162051 A JP 56162051A JP 16205181 A JP16205181 A JP 16205181A JP S6344051 B2 JPS6344051 B2 JP S6344051B2
Authority
JP
Japan
Prior art keywords
film
stretching
orientation
polyetheretherketone
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56162051A
Other languages
Japanese (ja)
Other versions
JPS5863417A (en
Inventor
Akifumi Katsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16205181A priority Critical patent/JPS5863417A/en
Publication of JPS5863417A publication Critical patent/JPS5863417A/en
Publication of JPS6344051B2 publication Critical patent/JPS6344051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明はポリエーテルエーテルケトンから成る
等方性配向フイルムの製造方法に関するものであ
る。ここに言う等方性とはフイルムの面内におけ
る方向の違いによつて機械強度などの特性が損な
わないことを意味している。 ポリエーテルエーテルケトンは、下記の構造単
位を繰返し有する熱可塑性樹脂であり、熱可塑性
樹脂の中で最も熱的に安定な樹脂である。 特に、構造的に炭素、水素、酸素以外の元素を
含まないために燃焼しても有害なガスを発生せ
ず、従来の耐熱性樹脂であるポリイミド類、ポリ
スルホン類、ポリフエニレンスルフイドなどにか
わる優れた耐熱絶縁材料として種々の検討がなさ
れている。特にこのポリエーテルエーテルケトン
からなるフイルムは、耐熱絶縁性フイルムとし
て、電線やマグネツトワイヤーなどの巻線用テー
プ、耐熱水性絶縁被覆テープ、原子炉用絶縁テー
プ、耐熱性フレキシブルプリント回路基材、電気
抵抗性面発熱体基材などにその応用が期待されて
いる。また金属、金属化合物、半導体などを真空
蒸着、スパツタリング、イオンプレーテイング、
プラズムCVDなどの方法で合成樹脂フイルム上
に薄膜状に堆積して電子素子、光学素子を作成す
る試みがなされているが、薄膜作成時に基材とな
る合成樹脂フイルムが高温にさらされて変形する
ことがあり、また、堆積される薄膜物質の機能特
性上、基材となる合成樹脂フイルムを加熱するこ
とが望ましい場合も多く、これらの理由から耐熱
性の高い合成樹脂フイルムが望まれている。しか
しながら、ポリエーテルエーテルケトンを、通常
の溶融押出法で成形したフイルムは熱変形温度が
130〜140℃と低く、また機械的強度も十分ではな
い。このような欠点は多くの熱可塑性樹脂におい
て延伸することにより改善されることが知られて
いる。 本発明者らも、溶融押出成形によつて得たポリ
エーテルエーテルケトンフイルムを延伸し、その
特性を改善すべく検討を行なつたが、通常の方法
では延伸による歪みが熱固定を行なつても残り、
高温時の寸法安定性が著しく劣る配向フイルムし
か得られなかつた。そこで、本発明者らは高温時
の寸法安定性を改善すべく延伸条件を検討したと
ころ、熱固定する前の延伸フイルムにおいて、両
内で直角をなす二方向における配向係数を実質的
に同等にした場合に、極めて効果的な熱固定が可
能となることを見出し、さらに、そのような熱固
定前の延伸フイルムを得る方法を鋭意検討した結
果、本発明に到達した。 すなわち本発明は、比重が1.276より小さく、
フイルムの厚み方向と面内で直角をなす二方向と
におけるそれぞれ配向係数がすべて0.3〜0.4の範
囲にあるフイルムを140〜180℃の範囲で第1次延
伸として1方向に1.5〜4倍に延伸した後、第1
次延伸方向と直角をなす方向へ150〜200℃の範囲
で第2次延伸として第1次延伸方向の配向係数
と、第2次延伸方向の配向係数の差が0.1以下、
和が0.7以上となるように延伸し、200℃以上融点
以下の温度雰囲気中において、20%以内の制限収
縮を許容する緊張下で1〜60秒間熱固定すること
を特徴とする等方性配向ポリエーテルエーテルケ
トンフイルムの製造法に関するものである。本発
明における比重1.276より小さく、フイルムの厚
み方向と、面内で直角をなす二方向とにおけるそ
れぞれの配向係数がすべて0.3〜0.4の範囲にある
フイルムは、キヤスト法により容易に得られる
が、延伸されるのに充分な厚みのあるフイルムを
作るためには溶融押出法で作ることが望ましい。
溶融押出法による上記未延伸フイルムは、ポリエ
ーテルエーテルケトンを380℃以上、450℃以下の
温度で溶融押出し後、ダイリツプから20cm以内の
距離にある表面温度140℃以下の冷却ロールによ
つて、引取りによるネツクインが、ダイリツプ巾
の20%を越えないように引取りながら急冷するこ
とによつて得られる。この場合面内で直角をなす
二方向には押出フイルムの機械方向と巾方向を選
ぶことができる。機械方向の配向係数をcos2φx、
巾方向の配向係数をcos2φy、厚さ方向の配向係
数をcos2φzとすると、cos2φx+cos2φy+cos2φz
=1の関係が成り立つ。完全に無配向な状態は
cos2φx=cos2φy=cos2φz=1/3である。上記の溶 融押出し法によつて得た未延伸フイルムは、すべ
ての配向係数が0.3〜0.4の範囲にはいり、実質的
に無配向として扱われる。この範囲をDesperの
正三角図表で示すと図1の斜線部分となる。この
領域をはずれると、降伏応力が大きくなり延伸は
困難になる。また、ダイリツプと冷却ロールの空
隙が20cm以上ある場合は押圧されたフイルムが空
中を進むことにより徐冷となり、部分的に結晶化
した斑状のフイルムとなる。さらに40cm以上はな
した場合全体が結晶化して灰黄色のフイルムとな
る。冷却ロール温度が140℃より高い場合も同様
な現象が見られる。 結晶化の進んだフイルムは降伏応力が大きく、
伸びが小さくなつて延伸には適さないばかりか透
明性が低下するため用途によつては致命的な欠点
となる。結晶化の度合は透明性によつて判断が付
くが、正確に扱うには比重を用いればよい。「ポ
リエーテルエーテルケトンの無定形部分の比重は
1.265で、結晶部分の比重は1.320である。」 結晶化度が低く実質的に無定形と同じ操作によ
つて延伸されるのは比重が1.276以下、さらに望
ましくは1.272以下のフイルムにおいてである。
上記の押出フイルム成形法によれば比重が1.270
以下の未延伸フイルムが得られる。 このように得られた未延伸フイルムは、まず第
1次の延伸として140〜180℃の範囲で1方向に
1.5〜4倍に延伸される。 この方向は未延伸フイルムを押出成形法で作成
した場合、フイルムの機械方向であつてよいし、
巾方向であつてよいが、一般的に逐次二軸延伸に
おいては、機械方向が第1次延伸方向となる。 第1次延伸倍率が1.5より小さい場合、第2次
延伸後に得られるフイルムの機械的強度に、十分
な改善が認められない。この場合フイルム面内の
2方向の配向係数の和は0.7より小さくなる。ま
た、第1次延伸において4倍以上延伸した場合、
第2次延伸の過程で、フイルムが破断しやすく、
安定に生産することができない。延伸温度が140
℃より低いと均一な延伸ができず、厚み精度の著
しく悪いフイルムとなる。延伸温度が180℃より
高い場合延伸されるよりも早く結晶化が進んで降
伏点応力が高くなり、延伸が困難になるばかりか
球晶の生成による不透明化が起こり好ましくな
い。 第1次延伸後に行なわれる第2次延伸では、第
1次延伸の方向と直角をなす方向へフイルムが延
伸される。第1次延伸を機械方向に行なつたロー
ルフイルムでは、第2次延伸の方向は巾方向とな
る。本発明における各延伸方向の配向係数の差を
0.1以内とする方法には第2次延伸後のフイルム
に、直接偏光をあてて、複屈折による位差差より
配向係数の差を算出し、延伸倍率の調整を行なう
方法がとられる。簡便法として、あらかじめ数種
類の延伸倍率の組み合わせで延伸したフイルムか
ら配向係数を算出してそれぞれの和が0.7以上で
差が0.1以下となる延伸条件を決定する方法もあ
るが、本発明による製造法は極めて高次であるた
め、条件出しのためのデータを数多く得ておかね
ばならず、あまり好ましくない。第1次延伸で
は、実質的に無配向のフイルムを延伸している
が、第2次延伸では配向しているフイルムを配向
方向に直角をなす方向へ延伸することになり、第
1次延伸と同じ条件で延伸を行なつても配向は等
方性とならない。配向により分子鎖が動きにくく
なつているため第2次延伸では第1次延伸よりや
や高い温度で延伸する方が好ましい。この延伸温
度によつても等方性配向を与える第2次延伸倍率
は変化するが、本発明における配向係数による制
御を行なえば、容易に等方性配向フイルムを得る
ことができる。第1次延伸、第2次延伸ともに延
伸速度は、300%/分以上なければ有効な配向係
数の変化が得られない。特に1000%/分以上が望
ましい。 このようにして得られた等方性配向フイルムは
寸法安定性を改善するために熱固定される。熱固
定は200℃以上融点以下で20%以内の制限収縮を
許容する緊張下で1〜60秒間フイルムを加熱する
ことによつてなされる。2つの延伸方向における
配向係数の和が0.7より小さいと、熱固定によつ
て球晶が生成し不透明化が見られるが、0.7以上
であれば透明性はほとんど変化しない。熱固定さ
れた等方性配向ポリエーテルエーテルケトンフイ
ルムの配向係数を正三角図表に示すと図2の斜線
部分に含まれる。つまり本発明は配向係数を監視
することによつて、特定の物性を与えられた未延
伸フイルムを延伸し、異なる特殊な物性を示す状
態に変換しようとする思想のもとに行なわれてい
る。 本発明によつて得られる等方性配向ポリエーテ
ルエーテルケトンフイルムは未延伸フイルムより
機械強度、耐熱性、耐薬品性が著しく優れてい
る。また、本発明によらない異方性配向ポリエー
テルエーテルケトンフイルムは熱時の寸法安定性
に劣り、エレクトロニクス用途において重大な欠
点となる。 本発明によつて得られる等方性配向ポリエーテ
ルエーテルケトンフイルムは、ポリエーテルエー
テルケトンのみからなるフイルムであつてよい
し、また、ポリエーテルエーテルケトンを主成分
とする複合組成物であつてもよい。複合組成物の
他の成分としては滑剤、補強剤、充填剤、顔料、
熱安定剤、紫外線吸収剤、帯電防止剤、すべり性
改良剤、増核剤などから選ばれる一種もしくは二
種以上の組み合わせであつてよい。 実施例1〜3、比較例1、2 ポリエーテルエーテルケトンを溶融押出法によ
つて厚さ0.2mmの無定形フイルムを作成した。フ
イルム密度は1.270、配向係数はcos2φx=0.355、
cos2φy=0.337、cos2φz=0.308であつた。このフ
イルムをまず機械方向にロール式縦延伸機によつ
て2倍に延伸した。延伸ロール温度は160℃、延
伸速度は2300%/分であつた。縦延伸後のフイル
ムの密度は1.275、配向係数はcos2φx=0.489、
cos2φy=0.265、cos2φz=0.246であつた。この縦
延伸フイルムをテンター式横延伸機によつて巾方
向に延伸した。延伸倍率はcos2φxとcos2φyが等
しくなる値を延伸後のフイルムの配向係数を測定
することによつて決定した。延伸温度と延伸速度
は表1に示すように変化させたが、いずれも容易
に等方性配向フイルムが得られた。 表1には、本発明によらない異方性配向フイル
ムについても比較例として示している。どの場合
も熱固定は270℃において定長下20秒間行なつて
いる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an isotropically oriented film made of polyetheretherketone. Isotropy here means that properties such as mechanical strength are not impaired due to differences in direction within the plane of the film. Polyetheretherketone is a thermoplastic resin having the following structural units repeatedly, and is the most thermally stable resin among thermoplastic resins. In particular, because it does not structurally contain any elements other than carbon, hydrogen, and oxygen, it does not generate harmful gases even when burned, and is suitable for conventional heat-resistant resins such as polyimides, polysulfones, and polyphenylene sulfides. Various studies have been conducted as alternative, superior heat-resistant insulating materials. In particular, this film made of polyetheretherketone is used as a heat-resistant insulating film for winding tapes such as electric wires and magnet wires, hot water-resistant insulation coating tape, insulating tape for nuclear reactors, heat-resistant flexible printed circuit substrates, electrical Applications are expected for resistive surface heating element substrates, etc. We also use vacuum evaporation, sputtering, ion plating, etc. for metals, metal compounds, semiconductors, etc.
Attempts have been made to create electronic and optical devices by depositing thin films on synthetic resin films using methods such as plasma CVD, but when creating thin films, the synthetic resin film that serves as the base material is exposed to high temperatures and deforms. In addition, it is often desirable to heat the synthetic resin film that serves as the base material in view of the functional characteristics of the thin film material to be deposited.For these reasons, a synthetic resin film with high heat resistance is desired. However, the heat distortion temperature of polyetheretherketone film formed by ordinary melt extrusion method is
The temperature is low at 130-140℃, and the mechanical strength is not sufficient. It is known that such defects can be improved by stretching many thermoplastic resins. The present inventors also stretched a polyetheretherketone film obtained by melt extrusion molding and conducted studies to improve its properties, but in the usual method, the distortion caused by stretching causes heat setting. remains,
Only oriented films with extremely poor dimensional stability at high temperatures could be obtained. Therefore, the present inventors investigated the stretching conditions in order to improve the dimensional stability at high temperatures, and found that the orientation coefficients in two directions perpendicular to each other in the stretched film before heat setting were substantially the same. It was discovered that very effective heat setting is possible when the film is heated, and as a result of intensive study on a method for obtaining such a stretched film before heat setting, the present invention was arrived at. That is, the present invention has a specific gravity smaller than 1.276,
A film whose orientation coefficients are all in the range of 0.3 to 0.4 in the thickness direction of the film and in two directions perpendicular to the plane is stretched 1.5 to 4 times in one direction at a temperature of 140 to 180°C as primary stretching. After that, the first
The difference between the orientation coefficient in the first stretching direction and the orientation coefficient in the second stretching direction is 0.1 or less as the second stretching in the direction perpendicular to the next stretching direction in the range of 150 to 200 ° C.
Isotropic orientation characterized by stretching so that the sum of The present invention relates to a method for producing a polyetheretherketone film. In the present invention, a film having a specific gravity smaller than 1.276 and having orientation coefficients in the range of 0.3 to 0.4 in the film thickness direction and in two directions perpendicular to each other in the film can be easily obtained by the casting method. In order to make a film thick enough to be used, it is desirable to make it by melt extrusion.
The above-mentioned unstretched film produced by the melt extrusion method is produced by melt extruding polyetheretherketone at a temperature of 380°C or higher and 450°C or lower, and then pulling it using a cooling roll with a surface temperature of 140°C or lower and located within 20 cm from the die lip. It can be obtained by rapidly cooling while taking off so that the amount of netukuin obtained by taking off does not exceed 20% of the die lip width. In this case, the machine direction and the width direction of the extruded film can be selected as two directions that are perpendicular to each other in the plane. The orientation coefficient in the machine direction is cos 2 φx,
If the orientation coefficient in the width direction is cos 2 φy and the orientation coefficient in the thickness direction is cos 2 φz, then cos 2 φx + cos 2 φy + cos 2 φz
The relationship =1 holds true. Completely unoriented state
cos 2 φx=cos 2 φy=cos 2 φz=1/3. The unstretched film obtained by the above melt extrusion method has all orientation coefficients within the range of 0.3 to 0.4, and is treated as substantially unoriented. If this range is shown in Desper's equilateral triangular diagram, it becomes the shaded area in Figure 1. Outside this region, the yield stress increases and stretching becomes difficult. Furthermore, if the gap between the die lip and the cooling roll is 20 cm or more, the pressed film moves through the air and slowly cools, resulting in a partially crystallized, patchy film. If it is further removed for more than 40 cm, the entire film will crystallize and become a grayish-yellow film. A similar phenomenon is observed when the cooling roll temperature is higher than 140°C. A highly crystallized film has a large yield stress;
Not only does the elongation decrease, making it unsuitable for stretching, but the transparency also decreases, which is a fatal drawback in some applications. The degree of crystallization can be judged by transparency, but specific gravity can be used to accurately measure the degree of crystallization. "The specific gravity of the amorphous part of polyetheretherketone is
1.265, and the specific gravity of the crystal part is 1.320. A film with a low crystallinity and a specific gravity of 1.276 or less, more preferably 1.272 or less, can be stretched by the same operation as a substantially amorphous film.
According to the above extrusion film forming method, the specific gravity is 1.270.
The following unstretched film is obtained. The unstretched film thus obtained is first stretched in one direction at a temperature of 140 to 180°C.
It is stretched 1.5 to 4 times. This direction may be the machine direction of the film when the unstretched film is made by extrusion molding, or
Although it may be the width direction, generally in sequential biaxial stretching, the machine direction is the primary stretching direction. When the first stretching ratio is less than 1.5, sufficient improvement is not observed in the mechanical strength of the film obtained after the second stretching. In this case, the sum of orientation coefficients in two directions within the film plane is smaller than 0.7. In addition, when stretching 4 times or more in the first stretching,
During the second stretching process, the film tends to break,
Unable to produce stably. Stretching temperature is 140
If the temperature is lower than ℃, uniform stretching will not be possible, resulting in a film with extremely poor thickness accuracy. If the stretching temperature is higher than 180° C., crystallization proceeds faster than stretching, resulting in a higher yield point stress, which not only makes stretching difficult but also causes opacity due to the formation of spherulites, which is undesirable. In the second stretching performed after the first stretching, the film is stretched in a direction perpendicular to the direction of the first stretching. In a rolled film in which the first stretching is performed in the machine direction, the direction of the second stretching is the width direction. The difference in orientation coefficient in each stretching direction in the present invention is
In order to achieve a value within 0.1, a method is used in which the film after the second stretching is directly irradiated with polarized light, the difference in orientation coefficient is calculated from the phase difference due to birefringence, and the stretching ratio is adjusted. As a simple method, there is a method in which the orientation coefficients are calculated from a film that has been stretched in advance with a combination of several types of stretching ratios, and stretching conditions are determined such that the sum of each is 0.7 or more and the difference is 0.1 or less, but the manufacturing method according to the present invention Since this is of extremely high order, it is necessary to obtain a large amount of data for determining the conditions, which is not very desirable. In the first stretching, a substantially non-oriented film is stretched, but in the second stretching, the oriented film is stretched in a direction perpendicular to the orientation direction. Even if stretching is performed under the same conditions, the orientation will not be isotropic. Since molecular chains become difficult to move due to orientation, it is preferable to perform the second stretching at a slightly higher temperature than the first stretching. Although the secondary stretching ratio that provides isotropic orientation varies depending on the stretching temperature, an isotropically oriented film can be easily obtained by controlling the orientation coefficient according to the present invention. In both the first stretching and the second stretching, unless the stretching speed is 300%/min or more, an effective change in the orientation coefficient cannot be obtained. In particular, 1000%/min or more is desirable. The isotropically oriented film thus obtained is heat set to improve its dimensional stability. Heat setting is carried out by heating the film for 1 to 60 seconds at a temperature above 200° C. and below the melting point under tension that allows limited shrinkage within 20%. If the sum of the orientation coefficients in the two stretching directions is less than 0.7, spherulites will be generated by heat setting and opacity will be observed, but if it is 0.7 or more, the transparency will hardly change. When the orientation coefficient of the heat-set isotropically oriented polyetheretherketone film is shown in an equilateral triangular diagram, it is included in the shaded area in FIG. In other words, the present invention is based on the idea that by monitoring the orientation coefficient, an unstretched film given specific physical properties is stretched and converted into a state exhibiting different specific physical properties. The isotropically oriented polyetheretherketone film obtained by the present invention has significantly better mechanical strength, heat resistance, and chemical resistance than an unstretched film. Furthermore, the anisotropically oriented polyetheretherketone film not according to the present invention has poor dimensional stability under heat, which is a serious drawback in electronics applications. The isotropically oriented polyetheretherketone film obtained by the present invention may be a film consisting only of polyetheretherketone, or may be a composite composition containing polyetheretherketone as a main component. good. Other components of the composite composition include lubricants, reinforcing agents, fillers, pigments,
It may be one or a combination of two or more selected from heat stabilizers, ultraviolet absorbers, antistatic agents, slipperiness improvers, nucleating agents, and the like. Examples 1 to 3, Comparative Examples 1 and 2 Amorphous films having a thickness of 0.2 mm were prepared from polyether ether ketone by melt extrusion. Film density is 1.270, orientation coefficient is cos 2 φx=0.355,
cos 2 φy=0.337, cos 2 φz=0.308. This film was first stretched twice in the machine direction using a roll-type longitudinal stretching machine. The stretching roll temperature was 160°C and the stretching speed was 2300%/min. The density of the film after longitudinal stretching is 1.275, the orientation coefficient is cos 2 φx = 0.489,
cos 2 φy=0.265, cos 2 φz=0.246. This longitudinally stretched film was stretched in the width direction using a tenter type horizontal stretching machine. The stretching ratio was determined by measuring the orientation coefficient of the film after stretching to determine the value at which cos 2 φx and cos 2 φy were equal. Although the stretching temperature and stretching speed were varied as shown in Table 1, an isotropically oriented film was easily obtained in each case. Table 1 also shows anisotropically oriented films not according to the present invention as comparative examples. In all cases, heat fixation was carried out at 270°C for a fixed length of 20 seconds. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明に使用する未延伸フイルムの配向
係数の範囲を示す正三角図表、図2は本発明によ
り得られた等方性配向ポリエーテルエーテルケト
ンフイルムの配向係数の範囲を示す正三角図表で
ある。
FIG. 1 is an equilateral triangular diagram showing the range of orientation coefficients of the unstretched film used in the present invention, and FIG. 2 is an equilateral triangular diagram showing the range of orientation coefficients of the isotropically oriented polyetheretherketone film obtained by the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 比重が1.276より小さく、フイルムの厚み方
向および、フイルム面内で直角をなす二方向にお
ける配向係数がそれぞれ0.3〜0.4であるポリエー
テルエーテルケトンを面内の一方向に140〜180℃
で1.5〜4倍に1次延伸後、面内で該延伸方向と
直角をなす方向に150〜200℃で該延伸方向の配向
係数との差が0.1以下で、かつ和が0.7以上となる
ように配向係数を制御して2次延伸後、200℃以
上融点以下の温度雰囲気中において、20%以内の
制限収縮を許容する緊張下で、1〜60秒間熱固定
することを特徴とする等方性配向ポリエーテルエ
ーテルケトンフイルムの製造方法。
1 Polyether ether ketone having a specific gravity smaller than 1.276 and an orientation coefficient of 0.3 to 0.4 in the film thickness direction and in two directions perpendicular to the film plane is heated at 140 to 180°C in one in-plane direction.
After primary stretching 1.5 to 4 times at After secondary stretching by controlling the orientation coefficient, heat setting is carried out for 1 to 60 seconds under tension that allows limited shrinkage within 20% in an atmosphere at a temperature of 200°C or higher and lower than the melting point. A method for producing a sexually oriented polyetheretherketone film.
JP16205181A 1981-10-13 1981-10-13 Preparation of isotropically oriented polyether either ketone film Granted JPS5863417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16205181A JPS5863417A (en) 1981-10-13 1981-10-13 Preparation of isotropically oriented polyether either ketone film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16205181A JPS5863417A (en) 1981-10-13 1981-10-13 Preparation of isotropically oriented polyether either ketone film

Publications (2)

Publication Number Publication Date
JPS5863417A JPS5863417A (en) 1983-04-15
JPS6344051B2 true JPS6344051B2 (en) 1988-09-02

Family

ID=15747155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16205181A Granted JPS5863417A (en) 1981-10-13 1981-10-13 Preparation of isotropically oriented polyether either ketone film

Country Status (1)

Country Link
JP (1) JPS5863417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162606A1 (en) * 2013-04-05 2014-10-09 倉敷紡績株式会社 Plastic film and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194376A (en) * 1982-05-07 1983-11-12 Agency Of Ind Science & Technol Thin film solar battery
JPS60191430A (en) * 1984-03-09 1985-09-28 Diafoil Co Ltd Magnetic recording medium
JPS60187529A (en) * 1984-03-07 1985-09-25 Mitsubishi Chem Ind Ltd Heat resistant sheet or film having high strength in longitudinal direction
JPH0619826B2 (en) * 1984-03-07 1994-03-16 三菱化成株式会社 Magnetic recording material and manufacturing method thereof
JPS6137417A (en) * 1984-07-31 1986-02-22 Sumitomo Bakelite Co Ltd Thermoplastic polyetherether ketone film
JPS6137419A (en) * 1984-07-31 1986-02-22 Sumitomo Bakelite Co Ltd Biaxially oriented thermoplastic polyetherether ketone film
JPS6392430A (en) * 1986-10-08 1988-04-22 Mitsui Toatsu Chem Inc Manufacture of crystallized polyether ether ketone film
US5223585A (en) * 1987-12-16 1993-06-29 Kureha Kagaku Kogyo K. K. Heat-resistant film and production process thereof
JPH0757819B2 (en) * 1987-12-16 1995-06-21 呉羽化学工業株式会社 Heat-resistant film and manufacturing method thereof
US4992485A (en) * 1988-10-11 1991-02-12 The Dow Chemical Company Microporous peek membranes and the preparation thereof
US4957817A (en) * 1988-11-25 1990-09-18 The Dow Chemical Film, fiber, and microporous membranes of poly(etheretherketone)dissolved in high boiling point polar organic solvents
DE69021583T2 (en) * 1990-08-21 1996-03-21 Mitsui Toatsu Chemicals METHOD FOR PRODUCING BIAXIALLY ORIENTED POLYETHERETHER KETONE FILM.
JP4895222B2 (en) * 2008-03-31 2012-03-14 信越ポリマー株式会社 Substrate storage container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1078234A (en) * 1963-07-16 1967-08-09 Union Carbide Corp Polyarylene polyethers
GB1414421A (en) * 1973-05-25 1975-11-19 Ici Ltd Aromatic polymers
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1078234A (en) * 1963-07-16 1967-08-09 Union Carbide Corp Polyarylene polyethers
GB1414421A (en) * 1973-05-25 1975-11-19 Ici Ltd Aromatic polymers
JPS5490296A (en) * 1977-09-07 1979-07-17 Ici Ltd Thermoplastic polyether aromatic ketone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162606A1 (en) * 2013-04-05 2014-10-09 倉敷紡績株式会社 Plastic film and method for producing same

Also Published As

Publication number Publication date
JPS5863417A (en) 1983-04-15

Similar Documents

Publication Publication Date Title
JPS6344051B2 (en)
US4629778A (en) Poly(p-phenylene sulfide) film and process for production thereof
KR910008035A (en) Thermoplastic resin film and its manufacturing method
US3595836A (en) Process for the production of a dimensionally stable polyester film and article thereof
EP0105750B1 (en) Dielectric film and process for producing same
JPS59127730A (en) Biaxially orientated polyethylene-naphthalate film
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
US5100593A (en) Poly(arylene sulfide) sheet and production process thereof
US4687615A (en) Method of producing biaxially oriented tubular polyetheretherketone films
JPH01283127A (en) Polyether ether ketone film and its manufacture
US5242648A (en) Method for preparing biaxially stretched polyether ether ketone film
EP0174376A1 (en) Heat-resistant film or sheet
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JPH0480815B2 (en)
JP2004276565A (en) Manufacturing process of biaxially oriented polyester film
JPH0572849B2 (en)
JPS6163433A (en) Fluorine series oriented film and its manufacture
JPS58188627A (en) Preparation of polypropylene film
JPH0496941A (en) Release sheet and its production
JPH06370B2 (en) Method for producing polyetheretherketone film
JPH0564090B2 (en)
JPH04257418A (en) Biaxially oriented polyester film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JPH07304095A (en) Biaxially oriented polyester film
JPH0334458B2 (en)