JPS6344035B2 - - Google Patents

Info

Publication number
JPS6344035B2
JPS6344035B2 JP55109266A JP10926680A JPS6344035B2 JP S6344035 B2 JPS6344035 B2 JP S6344035B2 JP 55109266 A JP55109266 A JP 55109266A JP 10926680 A JP10926680 A JP 10926680A JP S6344035 B2 JPS6344035 B2 JP S6344035B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
bulking
sulfide
sludge
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109266A
Other languages
Japanese (ja)
Other versions
JPS5735994A (en
Inventor
Yoshifumi Higuchi
Kazuo Doi
Masato Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Godo Shusei KK
Original Assignee
Godo Shusei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Godo Shusei KK filed Critical Godo Shusei KK
Priority to JP10926680A priority Critical patent/JPS5735994A/en
Publication of JPS5735994A publication Critical patent/JPS5735994A/en
Publication of JPS6344035B2 publication Critical patent/JPS6344035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、活性汚泥による排液処理工程におい
て、スフエロチルス(Sphaerotilus)属の糸状性
細菌が優勢となつたために発生するバルキング現
象を防止する方法に関する。 活性汚泥による排液処理工程の最大のトラブル
はバルキング現象であつて、一旦これが発生する
と汚泥の凝集性が悪くなり、沈降性が不良となる
ため、排出水に汚泥が混入し、運転が不可能とな
つて来る。このバルキング現象は大別すると次の
2種類に分類できる。 (1) 高粘性バルキング:活性汚泥中に高粘性物質
が蓄積することによる。 (2) 糸状性バルキング:活性汚泥中に糸状性細菌
が増殖することによる。 この糸状性バルキングの場合の糸状性細菌とし
ては、Sphaerotilus属によるものと、Beggiatoa
属によるものとがあるが、そのほとんどが、
Sphaerotilus属によるものと言われている。 糸状性バルキングの原因は、溶存酵素の不足、
栄養のアンバランス、毒性の混入、温度の影響、
原水の組成濃度の変動などが考えられるが、これ
ら要因が複雑に組合わさつて起る場合もあり、こ
れらを一挙に解消することは、甚だ困難である。 日常の運転操作が各処理装置ごとの基準に従つ
て管理されている場合でも、このバルキング現象
は突然発生するのが常である。これが発生した場
合には、まず対症療法的に処置して、バルキング
を解消するのが急務となるが、例示すれば、 (1) 塩素注入あるいは次亜塩素酸ソーダ添加 (2) 過酸化水素注入 などが考えられる。これら(1)(2)は共に殺菌剤とし
て糸状性細菌の増殖を抑制しようとするものであ
るが、共存する優良な汚泥に対しても悪影響があ
り、糸状性細菌に対する選択的な効果を期待する
ことはできない。 この他に、Venosaら(Applied Microbiol.29
巻、702頁1957年)によつてBdellovibrio−
bacteriovorusという細菌を用いてSphaerotilus
のみを死滅させようとする研究がなされている。
このB.bacteriovorusなる菌は、Sphaerotilusの
菌体に寄与し、その細胞を溶解する効果が確認さ
れているが、既に糸状に増殖したSphaerotilusに
効しては効果がない。これは糸状になつた
Sphaero−tilusは、鞘皮(Sheath)で保護されて
いるためと考えられ、Single Cellの段階でのみ
有効とされている。 また凝集性を高めるために塩化第二鉄や高分子
凝集剤を添加する方法もあるが、糸状性細菌に損
傷を与えることはできず、添加を中止すればすぐ
元の状態に戻る。 この他にも運転方法の変更など種々考えられて
はいるが、糸状性細菌に直接作用し、速やかに支
障を解消する方法は、まだ発見されていない。 本発明者らは、このSphaerotilusが鉄細菌であ
ることに着目し、他の汚泥中の微生物には影響を
与えることなく、Sphaerotilusのみを死滅崩壊さ
せる薬剤および方法を求めて研究を行なつた。 鉄細菌では、Fe++が呼吸の際の最初の水素供
与体であり、Fe++はこの細菌にとつて基礎代謝
に重要な役割を果している。そこでこのFe++
イオン形でないものに変化させることにより、鉄
細菌の代謝機能を失わせ、次第に死滅させること
がが可能と推定した。まず、硫化水素による Fe+++S--→FeS↓ の反応を利用して、呼吸系を阻害することを目的
として、水溶性の硫化物を加え、無機酸あるいは
有機酸を同時に添加して、曝気槽中のPHを3.5〜
4.5とすることにより、硫化水素を発生せしめ、
これによる汚泥中の微生物への影響をしらべた。
その結果他の有用微生物の増殖およびBOD除去
作用には何ら影響することなく、糸状性細菌のみ
が急速に衰退し、遂に消滅することを確めた。 成書(例えば、中塩真喜夫:バルキング現象の
原因と対策の実際461976年)によれば、排水処理
における硫化水素の存在は非常に不適当とされて
いる。それは先に述べたようにバルキングの原因
となる糸状性細菌の中にはBeggiatoa thio−
thrixなる硫黄細菌があり、この場合硫黄が呼吸
系の水素供与体であつて、硫化水素を分解酸化し
てエネルギーを得ている。従つて硫化水素の存在
下でBeggiatoaは活発に増殖してバルキングを起
こすとされている。硫化水素は主として曝気槽に
流入する前の調整槽で発生することが多いので、
これを防止するために、この槽にも通気を行ない
嫌気的状態を避ける程である。 また、この硫化水素のために有用な活性汚泥細
菌まで死滅し、汚泥の解体を誘起するため、汚泥
は使用不能となるとの記載も見られる。従つて硫
化水素の曝気槽への導入を積極的に行なうために
は、これらの硫化水素による支障対策を充分用意
しておかなければ実施できない。 また、硫化水素によりSphaerotilusの死滅に成
功しても、これに代つてBeggiatoaが増殖したの
では、何らバルキングの対策とはなり得ないわけ
であるが、Beggiatoaの生態を調べたところこの
菌は、中性付近の極く限られたPH範囲でしか生棲
しないことが判明した。しかがつて、本発明者ら
の採用しようとする方法は、硫化物の添加と同時
に酸性にして硫化水素を発生させるのであるか
ら、硫化物の存在する時期はPHが酸性側にあるの
で、このPH範囲ではBeggiatoaの発生の危険はな
い。また、硫化水素ガスを直接曝気槽に吹込む場
合も、予めPHを酸性側にして行えば同様に
Beggiatoa発生の危険は避けられるわけで、この
ことは実験によつても確認された。 次に、硫化水素により他の有用細菌まで死滅し
活性汚泥が解体されるおそれについて考察する
と、自然発生的に硫化水素が発生する条件は嫌気
的である。この嫌気的条件下で優良汚泥が硫化水
素の影響を受けて解体されることは容易に理解さ
れる。発明者らは、硫化水素が存在しても充分な
溶存酸素の存在する曝気状態では、一般細菌はほ
ぼ正常に生育すると考えて実験した。その結果、
汚泥の解体は見られず、混合液懸濁物質
(MLSS)の増加が観察され、発明者らの考えを
実証できた。 すなわち、活性汚泥法による排液処理工程に於
いて発生するバルキング現象のうち、大半を占め
る糸状性バルキングを防止するには、酸性条件下
で排液に硫化水素を含有せしめ、曝気することに
より、原因となる糸状性細菌の発育を抑止し乃至
は生育した菌体を破壊するため、目的を達するこ
とができるのである。 次に実施例により本発明を詳細に説明する。 実施例 1 5容の水槽を用いて、下記区分で汚泥の培養
実験を行なつた。各区分には工場規模の曝気槽よ
り汚泥各4を採取し、曝気槽のものと同型式の
散気管で充分通気し、DO75〜100%で経過した。
汚泥のMLSSは3050PPmで、すでにSphaerotilus
が増殖し、SV30が95〜96のものを使用した。 A:対照 B:硫酸によりPHをほゞ4.5に維持 C:硫化ソーダを毎日200PPm添加して、かつPH
を6.0〜5.0に維持 D:硫化ソーダを毎日200PPm添加して、かつPH
を4.5〜3.5に維持 E:キツプの装置で発生した硫化水素ガスを毎日
1回250ml吹込み、かつPHを4.5〜3.5に維持 流入原水としては、酒造工場の綜合廃水
(BOD約900)を使用し、1日2時間の曝気を停
止する際に、0.09g−BOD/g−MLSSの割合
で、上澄液を原水と置換添加した。 この関係を第1図に示す。図中いづれも実線は
SV30の変化を、また点線はPHの変化を示してい
る。 これによれば対照であるAと、PHのみを低下さ
せたBでは、SV30の変化はあまりみられず、96
〜92の値を示すが、硫化ソーダ添加および硫化水
素吹込を行なつたC、D、E区分は、顕微鏡観察
でも著しい変化がみとめられ、糸状細菌が急激に
崩壊して短くちぎれ、短くなつた菌体が多数浮遊
しているのが観察され、汚泥の色も黒色を呈し、
第1図に示したとおりSV30値は低下し、沈降性
が改善された。 硫化ソーダの水溶液はアルカリ性が強いため、
これを添加した場合PHは急上昇する。これを硫酸
の添加により所定のPHに調整したが、この値も第
1図に示した。 硫化ソーダの水溶液に硫酸を添加してPHを中性
附近にした場合に、硫化水素が発生していること
は既に確められている。従つてC区分の場合、硫
化ソーダーを添加后にPHを調整しているので、発
生し溶存した硫化水素の量は不明であるが、酢酸
鉛溶液を浸した紙を汚泥表面に近づけると黒変
することから、硫化水素が発生していることは確
認された。しかしこのC区分のSV30値の変化が、
D、E区分より遅れしかも4日目の値がやや高い
ことは、PHの低下が充分でなく、硫化水素の発生
量がDより少なかつた結果によるものと推定され
る。E区分の硫化水素の直接吹込みは、200PPm
の硫化ソーダが発生する硫化水素の計算量を吹き
込んだが、D区分と殆んど同じ結果を得た。 硫化ソーダを添加せず、単にPHだけを低下させ
るだけではSphaerotilusに対する効果はみられな
かつた。液は少量であるためMLSSの変化は経時
的には測定できなかつたが、初発3.052のものが、
各区分では次のとおりであつた。
The present invention relates to a method for preventing the bulking phenomenon that occurs due to the dominance of filamentous bacteria of the genus Sphaerotilus in a wastewater treatment process using activated sludge. The biggest problem in the wastewater treatment process using activated sludge is the bulking phenomenon, and once this occurs, the flocculation of the sludge becomes poor and the settling property becomes poor, resulting in sludge being mixed into the wastewater and making operation impossible. It's coming. This bulking phenomenon can be roughly classified into the following two types. (1) High viscosity bulking: This is caused by the accumulation of highly viscous substances in activated sludge. (2) Filamentous bulking: This is caused by the proliferation of filamentous bacteria in activated sludge. The filamentous bacteria in this case of filamentous bulking include those of the genus Sphaerotilus and those of the genus Beggiatoa.
There are some depending on the genus, but most of them are
It is said to be caused by the genus Sphaerotilus. The cause of filamentous bulking is lack of dissolved enzymes,
nutritional imbalance, toxic contamination, temperature effects,
Fluctuations in the compositional concentration of the raw water can be considered, but these factors can also occur in complex combinations, and it is extremely difficult to eliminate them all at once. Even if daily operating operations are managed according to standards for each processing device, this bulking phenomenon usually occurs suddenly. When this occurs, it is urgent to first treat it symptomatically to eliminate the bulking, for example: (1) injection of chlorine or addition of sodium hypochlorite (2) injection of hydrogen peroxide etc. are possible. Both of these (1) and (2) are disinfectants that try to suppress the growth of filamentous bacteria, but they also have a negative effect on the good sludge that coexists, so they are expected to have a selective effect on filamentous bacteria. I can't. In addition, Venosa et al. (Applied Microbiol. 29
Volume, 702 pages 1957) by Bdellovibrio−
Sphaerotilus using a bacterium called bacteriovorus.
Research is being carried out to try to kill only this species.
This bacterium, B. bacteriovorus, has been confirmed to contribute to Sphaerotilus cells and to lyse the cells, but it has no effect on Sphaerotilus that has already grown into filaments. This became thread-like
This is thought to be because Sphaero-tilus is protected by a sheath, and is said to be effective only at the single cell stage. There is also a method of adding ferric chloride or a polymer flocculant to increase flocculation, but this does not damage the filamentous bacteria and returns to its original state as soon as the addition is stopped. Various other methods have been considered, such as changing the operating method, but no method has yet been discovered that directly acts on filamentous bacteria and quickly eliminates the problem. The present inventors focused on the fact that Sphaerotilus is an iron bacterium, and conducted research to find a drug and method that would kill and disintegrate only Sphaerotilus without affecting other microorganisms in sludge. In iron bacteria, Fe ++ is the first hydrogen donor during respiration, and Fe ++ plays an important role in basal metabolism for these bacteria. Therefore, by changing this Fe ++ to a non-ionic form, we deduced that it would be possible to cause iron bacteria to lose their metabolic functions and gradually die. First, water-soluble sulfide was added and an inorganic or organic acid was added at the same time to inhibit the respiratory system by utilizing the Fe ++ +S -- →FeS↓ reaction caused by hydrogen sulfide. PH in the aeration tank is 3.5~
4.5, hydrogen sulfide is generated,
The effect of this on microorganisms in sludge was investigated.
As a result, it was confirmed that only the filamentous bacteria rapidly declined and finally disappeared without affecting the growth of other useful microorganisms or the BOD removal effect. According to published books (for example, Makio Nakashio: Actual causes and countermeasures for bulking phenomenon 46, 1976), the presence of hydrogen sulfide in wastewater treatment is considered to be extremely inappropriate. As mentioned earlier, some of the filamentous bacteria that cause bulking include Beggiatoa thio−.
There is a sulfur bacterium called thrix, in which sulfur is the hydrogen donor in the respiratory system, and it obtains energy by decomposing and oxidizing hydrogen sulfide. Therefore, Beggiatoa is said to actively proliferate and cause bulking in the presence of hydrogen sulfide. Hydrogen sulfide is mainly generated in the adjustment tank before flowing into the aeration tank, so
In order to prevent this, this tank is also ventilated to avoid an anaerobic condition. There is also a statement that this hydrogen sulfide kills useful activated sludge bacteria and induces the disintegration of the sludge, making the sludge unusable. Therefore, in order to proactively introduce hydrogen sulfide into the aeration tank, sufficient countermeasures against the problems caused by hydrogen sulfide must be prepared. Furthermore, even if hydrogen sulfide succeeds in killing Sphaerotilus, if Beggiatoa proliferates in its place, it cannot be used as a countermeasure against bulking. It has been found that it can only live in a very limited pH range near neutrality. However, the method that the present inventors are trying to adopt is to acidify and generate hydrogen sulfide at the same time as adding sulfide, so when sulfide is present, the pH is on the acid side, There is no risk of developing Beggiatoa in the PH range. Also, when blowing hydrogen sulfide gas directly into the aeration tank, the same effect can be achieved by setting the pH to the acidic side in advance.
The risk of developing Beggiatoa can be avoided, and this was also confirmed through experiments. Next, considering the possibility that other useful bacteria may be killed by hydrogen sulfide and the activated sludge may be dismantled, the conditions under which hydrogen sulfide is naturally generated are anaerobic. It is easily understood that under these anaerobic conditions, high quality sludge is disintegrated under the influence of hydrogen sulfide. The inventors performed experiments on the assumption that even in the presence of hydrogen sulfide, general bacteria grow almost normally in an aerated state where there is sufficient dissolved oxygen. the result,
No disintegration of sludge was observed, and an increase in mixed liquid suspended solids (MLSS) was observed, validating the inventors' idea. That is, in order to prevent filamentous bulking, which accounts for most of the bulking phenomena that occur in the wastewater treatment process using the activated sludge method, by making the wastewater contain hydrogen sulfide and aerating it under acidic conditions, The purpose can be achieved by inhibiting the growth of the causative filamentous bacteria or destroying the grown bacterial cells. Next, the present invention will be explained in detail with reference to Examples. Example 1 Using a 5-volume water tank, a sludge culture experiment was conducted in the following categories. For each section, 4 sludge samples were collected from a factory-scale aeration tank, and the sludge was thoroughly aerated with the same type of aeration pipe as that in the aeration tank, resulting in a DO of 75 to 100%.
The MLSS of sludge is 3050PPm, which is already Sphaerotilus
was grown and had an SV 30 of 95 to 96. A: Control B: PH maintained at approximately 4.5 with sulfuric acid C: 200 PPm of sodium sulfide added daily and PH
D: Add 200PPm of sodium sulfide daily and maintain pH between 6.0 and 5.0.
E: Blow in 250ml of hydrogen sulfide gas generated by Kippu's equipment once a day and maintain the pH between 4.5 and 3.5. Combined wastewater from a sake brewery (BOD approx. 900) is used as the inflow raw water. When the aeration was stopped for 2 hours a day, the supernatant liquid was added to replace the raw water at a ratio of 0.09 g-BOD/g-MLSS. This relationship is shown in FIG. In all the figures, the solid lines are
The dotted line shows the change in SV 30 and the change in PH. According to this, there was not much change in SV 30 between control A and B where only PH was lowered, and 96
However, in categories C, D, and E, where sodium sulfide was added and hydrogen sulfide was injected, a remarkable change was observed even under a microscope, and the filamentous bacteria rapidly disintegrated and broke off into short pieces. A large number of bacterial cells were observed floating, and the sludge was black in color.
As shown in Figure 1, the SV 30 value decreased and the sedimentation properties were improved. Since the aqueous solution of sodium sulfide is highly alkaline,
When this is added, the pH will rise rapidly. This was adjusted to a predetermined pH value by adding sulfuric acid, and this value is also shown in FIG. It has already been confirmed that hydrogen sulfide is generated when sulfuric acid is added to an aqueous solution of sodium sulfide to bring the pH to near neutral. Therefore, in the case of Category C, the pH is adjusted after adding sodium sulfide, so the amount of hydrogen sulfide generated and dissolved is unknown, but when paper soaked in lead acetate solution is brought close to the sludge surface, it turns black. It was confirmed that hydrogen sulfide was generated. However, the change in the SV 30 value of this C category is
The fact that the value on the 4th day was later than those in categories D and E and was slightly higher is presumed to be due to the fact that the PH did not decrease sufficiently and the amount of hydrogen sulfide generated was lower than in category D. Direct injection of hydrogen sulfide in category E is 200PPm.
The calculated amount of hydrogen sulfide generated by sodium sulfide was injected, but almost the same result as in Category D was obtained. Simply lowering the pH without adding sodium sulfide had no effect on Sphaerotilus. Since the amount of liquid was small, changes in MLSS could not be measured over time, but the initial MLSS was 3.052.
The classification for each category was as follows.

【表】 それぞれMLSS値が多少低下するが、この傾向
はC、D、Eで目立つている。このことは
Sphaerotilusの崩壊流出量が、有用菌体の増加量
を上廻つた結果と思われる。 実施例 2 約300m3容量の単槽式曝気槽にて実験を行なつ
た。排出はゲート放流、通気は7.5Kw水中ポンプ
1基によるジエツトエアレータで行ない、流入原
水は約100m3/日で、BOD総量は約80Kg/日、排
出目標はBOD、SS各200以下とした。 この処理槽に糸状細菌が発生し、汚泥が全く沈
降せず、SV30=100となつた状態で実験を開始し
た。 硫化物としては、水溶性で入手が容易で排出水
に対しても無害な硫化ソーダを選定し、無機酸と
しては50%硫酸を使用した。 硫化ソーダの添加は、ゲート放流の終了后、水
量約200m3に対して約50PPmとなるように、徐々
に注加し、同時に硫酸にて槽内PHをほぼ4.0〜4.5
となるよう調整してから充分曝気を行なつた。こ
の場合の経過変化を第2図に示した。 硫化ソーダ10Kg/日の添加で累計40Kgとなつた
時点より効果があらわれ、SV30の値が100以下と
なり、顕微鏡による観察でも糸状性細菌の
Sphaerotilusがちぎれ始めたのが判る。 また汚泥の流出も見られなくなり、MLSSの増
加がみとめられた。さらに硫化ソーダの投入を続
けた結果、累計量100Kg附近から、急速にSV30
が回復し、累計量160Kg、投入開始より22日目で、
Sphaerotilusは通常汚泥に極めてわずかからんで
いるだけの状態となつた。こゝで硫化ソーダの投
入を中止し、硫酸によるPH調整も行なわずに経過
を観察した結果、SV30の値も第2図に示すとお
り改善され、きわめて正常な運転が可能となつ
た。 なお、硫化ソーダ添加中の原水の流入排出は所
定のとおりの量で行なつた。ただし排出水のPHは
低下しているので、苛性ソーダで中和后に放流し
たが、この期間中処理水のBODは30〜70PPmで
あり、本実験開始前の正常運転時に比し全く変化
はみとめられなかつた。 以上の結果から、硫化ソーダの添加により優良
汚泥には何ら悪影響を与えることなく、また
BOD除去能力を損なうことなく、バルキング現
象の原因となる糸状性細菌のSphaerotilusに対し
てのみ選択的に作用し、これを崩壊させ、低PH下
で培養するためBeggiatorの発生も全く見られ
ず、全く正常な状態に回復させることができた。
[Table] The MLSS value decreases somewhat for each, but this tendency is noticeable for C, D, and E. This thing is
This seems to be the result of the amount of Sphaerotilus decaying and flowing out exceeding the increase in useful bacterial cells. Example 2 An experiment was conducted in a single aeration tank with a capacity of approximately 300 m 3 . Discharge was carried out by gate discharge, and aeration was carried out by a jet aerator using one 7.5Kw submersible pump.The inflow raw water was approximately 100m 3 /day, the total BOD amount was approximately 80Kg /day, and the discharge target was set to be less than 200 each for BOD and SS. The experiment was started in a state where filamentous bacteria were generated in this treatment tank, sludge did not settle at all, and SV 30 =100. As the sulfide, we selected sodium sulfide, which is water-soluble, easily available, and harmless to waste water, and as the inorganic acid, we used 50% sulfuric acid. Sodium sulfide was added gradually after the gate discharge was completed, so that the amount of water was approximately 50 PPm for approximately 200 m3 of water, and at the same time, the pH in the tank was adjusted to approximately 4.0 to 4.5 using sulfuric acid.
After adjusting it so that it was, sufficient aeration was performed. The course of change in this case is shown in Figure 2. Addition of 10 kg of sodium sulfide per day becomes effective when the total amount reaches 40 kg, and the SV 30 value becomes less than 100, and microscopic observation shows that filamentous bacteria are not present.
You can see that Sphaerotilus has started to tear. Furthermore, no sludge was seen flowing out, and an increase in MLSS was observed. Furthermore, as a result of continuing to add sodium sulfide, the SV 30 value rapidly recovered from around 100 kg, and the cumulative amount reached 160 kg, 22 days after the start of adding sodium sulfide.
Sphaerotilus was usually only very slightly entangled in the sludge. At this point, we stopped adding sodium sulfide and observed the progress without adjusting the pH using sulfuric acid. As a result, the SV 30 value improved as shown in Figure 2, and extremely normal operation was possible. Note that during the addition of sodium sulfide, raw water was inflowed and discharged in a predetermined amount. However, since the pH of the effluent water had decreased, it was discharged after neutralization with caustic soda, but during this period the BOD of the treated water was 30 to 70 PPm, and no change was observed compared to normal operation before the start of this experiment. I couldn't help it. From the above results, the addition of soda sulfide has no negative effect on high-quality sludge.
It selectively acts only on Sphaerotilus, a filamentous bacterium that causes the bulking phenomenon, without compromising BOD removal ability, and destroys it. Because it is cultured under low pH, no Beggiator is observed at all. I was able to restore it to a completely normal state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各区分の培養期間中のSV30値および
PH値の変化を示す。第2図は、培養期間中の
MLSS、SV30、PHの変化、および硫化ソーダの
添加の関係を示す。
Figure 1 shows the SV 30 value and
Indicates changes in PH value. Figure 2 shows the results during the culture period.
The relationship between MLSS, SV 30 , PH change, and addition of sodium sulfide is shown.

Claims (1)

【特許請求の範囲】 1 醸造乃至醗酵工程の廃液処理において、曝気
中の活性汚泥に、硫化水素を1ppm以上500ppm以
下の濃度に溶解せしめ、バルキング現象の原因と
なる糸状性細菌を選択的に死滅させることを特徴
とするバルキング防止法。 2 硫化水素を溶解せしめるために、水溶性硫化
物と無機酸乃至有機酸を添加して発生する硫化水
素を活性汚泥中に溶解せしめる、特許請求の範囲
第1項記載のバルキング防止法。 3 硫化水素を溶解せしめるために、酸性状態下
で直接硫化水素を吹き込み、活性汚泥中に溶解せ
しめる特許請求の範囲第1項記載のバルキング防
止法。
[Claims] 1. In waste liquid treatment from brewing or fermentation processes, hydrogen sulfide is dissolved in activated sludge during aeration to a concentration of 1 ppm or more and 500 ppm or less to selectively kill filamentous bacteria that cause bulking phenomenon. A bulking prevention method that is characterized by 2. The method for preventing bulking according to claim 1, in which hydrogen sulfide generated by adding a water-soluble sulfide and an inorganic or organic acid is dissolved in activated sludge in order to dissolve hydrogen sulfide. 3. The bulking prevention method according to claim 1, wherein hydrogen sulfide is directly blown into the activated sludge under acidic conditions in order to dissolve the hydrogen sulfide.
JP10926680A 1980-08-11 1980-08-11 Inhibition of bulking Granted JPS5735994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10926680A JPS5735994A (en) 1980-08-11 1980-08-11 Inhibition of bulking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10926680A JPS5735994A (en) 1980-08-11 1980-08-11 Inhibition of bulking

Publications (2)

Publication Number Publication Date
JPS5735994A JPS5735994A (en) 1982-02-26
JPS6344035B2 true JPS6344035B2 (en) 1988-09-02

Family

ID=14505804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10926680A Granted JPS5735994A (en) 1980-08-11 1980-08-11 Inhibition of bulking

Country Status (1)

Country Link
JP (1) JPS5735994A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106478A (en) * 1983-11-14 1985-06-11 池田 寛 Control system of pinball stand
JPH0665354B2 (en) * 1984-03-23 1994-08-24 秀工電子株式会社 Pachinko hall management device
JPS60199485A (en) * 1984-03-23 1985-10-08 秀工電子株式会社 Controller of pinball machine
JPS60199486A (en) * 1984-03-23 1985-10-08 秀工電子株式会社 Control apparatus of pinball hole
JPS61118376U (en) * 1985-01-10 1986-07-25
NL9301475A (en) * 1993-08-25 1995-03-16 Csm Suiker Method for reducing the odor emission of water flows occurring in the food industry.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994160A (en) * 1973-01-10 1974-09-06
JPS523264A (en) * 1975-06-27 1977-01-11 Sumikin Coke Co Ltd Disposal method for surplus gas in cokes furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994160A (en) * 1973-01-10 1974-09-06
JPS523264A (en) * 1975-06-27 1977-01-11 Sumikin Coke Co Ltd Disposal method for surplus gas in cokes furnace

Also Published As

Publication number Publication date
JPS5735994A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
US4073722A (en) Process for the purification of waste water
US4292176A (en) Use of activated carbon in waste water treating process
US4452699A (en) Method of improving the SVI of mixed liquor in aeration tank
US3963637A (en) Compositions for treating domestic and industrial liquid wastes
JPH04349997A (en) Treatment of organic waste water
JP3099839B2 (en) Wastewater treatment method by activated sludge method
JPS6344035B2 (en)
JP3066577B2 (en) Decanter concentrated juice liquid wastewater treatment method and apparatus of starch factory using potato etc. as raw material
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
US3227648A (en) Method of controlling noxious odors in sewage
US5271845A (en) Aerobic biological process for treating waste sludges
US5334313A (en) Reduction of acrylonitrile in wastewater from the production of ABS plastic
KR100470215B1 (en) A method for sewage treatment
Musee et al. Post-treatment of distillery wastewater after UASB using aerobic techniques
D’Antoni et al. Filamentous foaming and bulking in activated sludge treatments: causes and mitigation actions
US6010629A (en) Microthrix Parvicella forming and bulking controlling method for waste water treatment
Heukelekian et al. Effect of certain physical and chemical agents on the bacteria and protozoa of activated sludge
JPS61220795A (en) Treatment of high-concentration organic waste water
DE2526095A1 (en) Continuous purificn. of petroleum refinery effluents - by biological oxidn. and aeration between stages
US6984324B2 (en) Wastewater treatment
JPS6178494A (en) Biological treatment of waste water
JP3728537B2 (en) Wastewater treatment method
JPS6146198B2 (en)
SU1717549A1 (en) Method of biological treatment of sewage
JP2000093706A (en) Flocculation precipitation treating equipment