JPS61220795A - Treatment of high-concentration organic waste water - Google Patents

Treatment of high-concentration organic waste water

Info

Publication number
JPS61220795A
JPS61220795A JP60060969A JP6096985A JPS61220795A JP S61220795 A JPS61220795 A JP S61220795A JP 60060969 A JP60060969 A JP 60060969A JP 6096985 A JP6096985 A JP 6096985A JP S61220795 A JPS61220795 A JP S61220795A
Authority
JP
Japan
Prior art keywords
tank
water
bacteria
waste water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060969A
Other languages
Japanese (ja)
Inventor
Bunji Kurosaki
黒崎 文治
Keisuke Kumazawa
熊沢 敬介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60060969A priority Critical patent/JPS61220795A/en
Publication of JPS61220795A publication Critical patent/JPS61220795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To treat waste water efficiently by adding iron sulfate, a high molecular flocculant and a porous inorg. additive to high-concn. org. waste water, rapidly flocculating the solid components in the org. waste water and treating the BOD source remaining in water in a modification vessel, etc. CONSTITUTION:Iron sulfate, a high molecular flocculant and a porous inorg. additive consisting essentially of 50-56% CaO, 20-30% SiO2, 7-10% Al2O3 and 4-10% SO3 are added to high-concn. org. waste water and mixed. The generated org. material-contg. flocs are separated and the obtained filtrate is brought into contact with putrefying bacteria and facultative anaerobes in a modification vessel under anaerobic conditions. Then the water is treated with facultative anaerobes in a bacterium effect vessel while blowing in air and then treated with aerobes in a group of aeration vessels under aerobic conditions. Consequently, solid components in org. waste water are rapidly flocculated, the BOD source remaining in water is treated in the modification vessel, the bacterium effect vessel and a group of the aeration vessels and the waste water is efficiently treated at low cost by small equipment without using any dilution water or with a small amt. of dilution water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高濃度有機性廃水、特に有機性汚泥を効率良
く安価に処理する方法に関するものである0 〔従来の技術〕 従来よシの有機汚泥等の高濃度有機性廃水の一つの処理
方法としては、30〜35℃に加温した嫌気性消化槽に
て20〜25日間消化処理した後。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for efficiently and inexpensively treating highly concentrated organic wastewater, especially organic sludge. One method for treating highly concentrated organic wastewater such as organic sludge is to digest it in an anaerobic digestion tank heated to 30 to 35°C for 20 to 25 days.

その上澄液と消化汚泥とに分離し、上澄液と前記汚泥の
脱水ろ液とを合せ、これに水を加え10〜25倍に稀釈
して活性汚泥処理や散水炉床法で浄化してい友。
The supernatant liquid and the digested sludge are separated, the supernatant liquid and the dehydrated filtrate of the sludge are combined, water is added to this, diluted 10 to 25 times, and the mixture is purified by activated sludge treatment or the watering hearth method. Good friend.

また、高濃度有機性廃水の他の処理方法としては、廃水
を5〜15倍の水で稀釈して一段、二段あるいはさらに
三段の好気性消化全行なっていた。
In addition, as another treatment method for highly concentrated organic wastewater, the wastewater is diluted with water 5 to 15 times and subjected to one, two or even three stages of aerobic digestion.

処理時に処理しうる濃度にするために多量の稀釈水を用
いて廃水量を増大せしめる結果、大きな処理設備が必要
であって、建設費がかさむほか、広い設置面積が必要で
あり、しかも多量の水を要するなどの多額の運転費用も
必要であるなどの欠点があった。
As a result of increasing the amount of wastewater by using a large amount of diluted water to reach a manageable concentration during treatment, large treatment facilities are required, which increases construction costs, requires a large installation area, and requires a large amount of wastewater. There were drawbacks such as the need for water and high operating costs.

次に、第2の好気消化処理法では、多量の余剰汚泥音生
ずる欠点のほか、この場合も多量の稀釈水t−要するの
で、前記の嫌気性処理法と同様の欠点があった。
Next, the second aerobic digestion treatment method has the same disadvantages as the anaerobic treatment method, since it requires a large amount of dilution water in addition to the disadvantage of producing a large amount of excess sludge noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる現状に鑑み、高濃度有機性廃水に無稀
釈のま\硫酸鉄とCa050〜56チ、SiO220〜
30%、Al2O,7〜10チ、8034〜10%を主
成分とする多孔性無機添加剤と高分子凝集剤とを混和し
、生じた有機物含有凝集物を分離し、そのF液を変性槽
にて腐敗菌と通性嫌気性菌とに嫌気性状態下で接触させ
た後、菌効用槽にて(財)#喚#絢Φ匈桝沖の空気を吹
き込みながら通性嫌気性菌で処理し、次いで曝気槽群内
にて好気性状態下で好気性菌で処理することを特徴とす
るものである。
In view of the current situation, the present invention has been developed to add undiluted iron sulfate, Ca050-56%, and SiO220-56% to highly concentrated organic wastewater.
A porous inorganic additive mainly composed of 30%, Al2O, 7-10%, and 8034-10% is mixed with a polymer flocculant, the resulting organic substance-containing aggregate is separated, and the F solution is sent to a denaturing tank. After bringing putrefactive bacteria and facultative anaerobic bacteria into contact with each other under anaerobic conditions, they were treated with facultative anaerobic bacteria while blowing air from the soil into the bacteria-effect tank. , and then treated with aerobic bacteria under aerobic conditions in an aeration tank group.

〔作用〕[Effect]

本発明は上記の構成を有するので、高濃度有機性廃水に
硫酸鉄と高分子凝集剤のほかにCab、AltosS 
Os ’に主成分とする多孔性無機添加剤を添加するこ
とによシ有機性廃水中の固形成分を速やかに凝集せしめ
ると共に、有機性廃水に多量に溶解したBOD源が添加
剤に吸着され、しかも水中に残留するBOD源は後の変
性槽、菌効用槽を経て曝気処理されることによシ効率良
く、しかも稀釈水を全く使用しないか、または少量の稀
釈水を使用するのみで小さな設備で安価に処理すること
ができる0 〔実施例〕 以下、本発明を図示の実施例に従って詳細に説明するこ
ととする。
Since the present invention has the above configuration, in addition to iron sulfate and a polymer flocculant, Cab, AltosS, etc. are added to highly concentrated organic wastewater.
By adding a porous inorganic additive that is the main component to Os', the solid components in the organic wastewater are quickly coagulated, and the BOD source dissolved in large amounts in the organic wastewater is adsorbed by the additive. In addition, the BOD source remaining in the water is efficiently aerated through the denaturation tank and bacteria effect tank, which is efficient and requires no dilution water or only a small amount of dilution water, making it possible to use small equipment. [Embodiments] The present invention will be described in detail below with reference to illustrated embodiments.

図において、1は処理すべき高濃度有機性廃水にして、
これは消化汚泥、浄化槽汚泥、生し尿、活性汚泥、下水
生汚泥等の固形物(SS)の多い高濃度のBOD源含有
廃水であフ、特に粘着性が高くかつアルカリ度の高いB
OD源含有廃水である。
In the figure, 1 is the highly concentrated organic wastewater to be treated,
This is wastewater containing a high concentration of BOD sources such as digested sludge, septic tank sludge, human waste, activated sludge, raw sewage sludge, etc., and is particularly sticky and has high alkalinity.
This is wastewater containing OD sources.

有機性廃水1は予め貯槽2に1種類のみまたは12種類
以上の混合状態で貯留された後、送液ポンプ3にて連続
的にスクリーン4内に供給される。
The organic wastewater 1 is stored in advance in a storage tank 2 in the form of only one type or a mixture of 12 or more types, and then is continuously supplied into the screen 4 by a liquid feeding pump 3.

このスクリーン4は有機性廃水1中における直径が約5
mf越える粗大物5を除去するものにして・例えば適当
な圧力をかけて粗大物中の水分金除く可動式(回転式〕
細目スクリーンが望ましい。このようにして、粗大物の
除去された有機性廃水はF液管6を経て受槽7に貯留さ
れる。
This screen 4 has a diameter of about 5 in the organic wastewater 1.
A movable type (rotary type) that removes coarse particles 5 exceeding mf, for example, applying appropriate pressure to remove water and gold in coarse particles.
A fine screen is preferred. In this way, the organic wastewater from which coarse substances have been removed passes through the F liquid pipe 6 and is stored in the receiving tank 7.

次に、有機性廃水は受槽7よツ一定量ずつポンプ8にて
凝集混和槽9に供給される。凝集混和槽9では先ず硫酸
第一鉄等の硫酸鉄が添加され、次いで添加剤と高分子凝
集剤が添加される。硫酸鉄は汚泥中の固形物に対して2
〜15チとすることが望ましい。硫酸鉄の添加によシ通
常、pHは約5.5〜6.5に低下する。無機添加剤は
CaO50〜56%−310220〜30%、AlzO
+ 7〜10チ、8034〜10%を主成分とする無機
物質である。さらに、Mg01〜5%、F12031〜
5%含有することが望ましい。高分子凝集剤はカチオン
系高分子であることが望ましく、例えばアニリン樹脂塩
酸塩、ポリチオ尿素塩酸塩、ポリエチレンイミン、ポリ
ビニルピリジン共重合体塩、ポリアクリルアミド等が挙
げられる。無機添加剤の添加量は廃水の固形物に対して
10〜30%、高分子凝集剤の量は廃水の固形物に対し
て0.05〜0.5%とすることが望ましい。
Next, a fixed amount of organic wastewater is supplied from the receiving tank 7 to a coagulation mixing tank 9 by a pump 8. In the flocculation mixing tank 9, iron sulfate such as ferrous sulfate is first added, and then additives and polymer flocculants are added. Iron sulfate has a
It is desirable to set it to 15 inches. Addition of iron sulfate typically lowers the pH to about 5.5-6.5. Inorganic additives include CaO50-56%-310220-30%, AlzO
It is an inorganic substance whose main component is 7 to 10% and 8034 to 10%. Furthermore, Mg01~5%, F12031~
It is desirable to contain 5%. The polymer flocculant is preferably a cationic polymer, such as aniline resin hydrochloride, polythiourea hydrochloride, polyethyleneimine, polyvinylpyridine copolymer salt, polyacrylamide, and the like. It is desirable that the amount of the inorganic additive added is 10 to 30% based on the solid content of the wastewater, and the amount of the polymer flocculant is 0.05 to 0.5% based on the solid content of the wastewater.

凝集混和槽9は攪拌装置を備えておシ、この槽内におい
て廃水と凝集剤等との混和が行なわれ、直径が3〜4霧
程度のフロックが構成スル。
The coagulation-mixing tank 9 is equipped with a stirring device, and in this tank, waste water is mixed with a coagulant, etc., and flocs having a diameter of about 3 to 4 mists are formed.

次にフロックが成長した廃水はポンプ10t−用いて濾
過機11に供゛給され、濾過が行なわれ、固形物が除去
される。濾過機としては加圧式ベルトプレス型濾過機が
望ましいが、このほか冥空濾過機、加圧濾過機、スクリ
ュープレスなどが使用される。
Next, the wastewater in which flocs have grown is supplied to a filter 11 using a pump 10t, where it is filtered and solids are removed. As the filtration machine, a pressurized belt press type filtration machine is preferable, but in addition, a filtration machine, a pressure filtration machine, a screw press, etc. can be used.

上述のように、硫酸鉄、高分子凝集剤のほかに。As mentioned above, besides iron sulfate, polymer flocculant.

無機添加剤を使用するので、フロックの成長が促進され
るほか、廃水中の有機成分が多量にフロックに吸着され
、濾過液のBOD源濃度は略y2瞥減少する。なお、廃
水の濾過効率は極めて優れており、18〜30に9・S
S/m’−h という高速度で濾過することができる。
Since the inorganic additive is used, the growth of flocs is promoted, and a large amount of organic components in the wastewater are adsorbed by the flocs, reducing the BOD source concentration in the filtrate by approximately y2 times. In addition, the wastewater filtration efficiency is extremely excellent, with 9.S.
It can be filtered at a high speed of S/m'-h.

次に、濾過機11よりのろ液はろ液管12′t−経て稀
釈することなく変性槽13にそのま\導入される。変性
槽13の入口部には腐敗菌と通性嫌気性菌が供給されて
いるが・これらは後述の菌効用槽14からの処理水の一
部を返送管15を経てそのま\または培養槽を経て得ら
れた培養液として供給される。変性槽13内では空気が
供給されないため、廃水は嫌気性状態にあり、主として
腐敗菌が優先的に繁殖している。流入廃水中には後述の
菌効用槽14内で活動する通性嫌気性菌の働きを阻害す
る各種の有害菌体や有害物質が含まれているが、この有
害物質金子め変性槽13において嫌気性状態で腐敗菌お
よび通性嫌気性菌の存在下で弱化、消滅あるいは分解す
る。なお、変性槽13内ではpHの調整は行なわなくて
も良い。
Next, the filtrate from the filter 11 is directly introduced into the denaturing tank 13 without being diluted through the filtrate pipe 12't-. Putrefactive bacteria and facultative anaerobic bacteria are supplied to the inlet of the denaturation tank 13, and some of the treated water from the bacteria effect tank 14, which will be described later, is fed to the inlet of the denaturation tank 13 as it is or to the culture tank. It is supplied as a culture solution obtained through this process. Since air is not supplied within the denaturation tank 13, the wastewater is in an anaerobic state, and putrefactive bacteria are preferentially propagating therein. The inflowing wastewater contains various harmful bacteria and harmful substances that inhibit the function of facultative anaerobic bacteria active in the bacteria effect tank 14, which will be described later. It weakens, disappears, or decomposes in the presence of putrefactive bacteria and facultative anaerobes. Note that there is no need to adjust the pH within the denaturation tank 13.

このようにして、廃水中の菌体は腐敗菌の、存在下で通
性嫌気性菌の数が4X105〜6個/ゴ程度に増殖され
る。変性槽13で主として活動する腐敗菌としてはバシ
リウス サプチラス、プチラスメセンテリカス、バシリ
ウスミコイデス、バシリウスシエルアス等である。なお
、この変性槽13で廃水中のBOD源の分解が開始し、
後述の菌効用槽14での分解を容易にしている。
In this manner, the number of facultative anaerobic bacteria in the wastewater is multiplied to about 4×10 5 to 6 cells/go in the presence of putrefactive bacteria. The spoilage bacteria that are mainly active in the denaturation tank 13 include Bacillus saptillus, Ptylus mesentericus, Bacillus mycoides, and Bacillus cielus. In addition, decomposition of the BOD source in the wastewater starts in this denaturation tank 13,
This facilitates decomposition in the bacterial effect tank 14, which will be described later.

変性槽13を通過した廃水が連続的に流入されに空気が
供給される。廃水は供給された空気中の酸素によシ嫌気
性状態から通性嫌気性状態に変わり、腐敗菌が減少し、
代って通性嫌気性菌が5×10 個/rnl程度に増加
する。リン酸塩は通性嫌気性菌の繁殖、活性化を助ける
もので、BOD量の毒程度が必要でアシ、廃水中にこれ
だけ存在しない場合には添加しなければならない。この
ようにして、各種の通性嫌気性菌の繁殖に伴い、その栄
養源となるBOD源は各種通性嫌気性菌にて分解される
こととなる。なお、pHが7.5よシ低い場合にはBO
Dの除去率が減少するのみならず、窒素、リンの除去率
も減少し、また臭気を多く発生するので好ましくない。
The wastewater that has passed through the denaturation tank 13 is continuously introduced and air is supplied thereto. The wastewater changes from an anaerobic state to a facultative anaerobic state due to the oxygen in the supplied air, and the number of putrefying bacteria decreases.
Instead, the number of facultative anaerobes increases to about 5 x 10 cells/rnl. Phosphate helps propagation and activation of facultative anaerobic bacteria, and must be added if a toxic level of BOD is required and this amount is not present in the reeds or wastewater. In this way, as various facultative anaerobes propagate, the BOD source that serves as their nutritional source is decomposed by the various facultative anaerobes. In addition, if the pH is lower than 7.5, BO
This is not preferable because not only the removal rate of D is decreased, but also the removal rate of nitrogen and phosphorus is decreased, and a large amount of odor is generated.

菌効用槽14は少なくとも2室に多孔性仕切板や廃水が
流通可能に配設された鉄製仕切板等によって分割するこ
とが望ましい。廃水1中のBOD源は菌効用槽14内を
連続的に移動する間に通性嫌気性菌によシ高分子状態か
ら次々と低分子状態へと分解するが、この分解の段階に
よって関与する通性嫌気性菌はそれぞれ異なり、例えば
澱粉や蛋白質の分解に関与する通性嫌気性菌は、それぞ
れアセトバクター属などやミクロコツカス属などの菌で
あるが、澱粉や蛋白質の分解生成物である糖類やアミノ
醗の分解には、それぞれストレプトコツカス属などやス
タフィロコッカス属などの菌である。この几め、例えば
菌効用槽14内における澱粉分解菌(アセトバクター属
など)は菌効用槽14に入ったばかりのときは比較的少
ないが、徐々に増加してピークに至るも、澱粉の減少と
共に減少する傾向を示すのに対し、糖分解菌(ストレプ
トコツカス属など)はその後、糖分の増加につれて徐々
に増加し、糖分の減少と共に減少する。
It is desirable that the bacterial effect tank 14 be divided into at least two chambers by a porous partition plate or an iron partition plate disposed to allow waste water to flow therethrough. The BOD source in the wastewater 1 is decomposed by facultative anaerobic bacteria from a high-molecular state to a low-molecular state one after another by facultative anaerobic bacteria while continuously moving within the bacterial effect tank 14. Each facultative anaerobe is different; for example, facultative anaerobes that are involved in the decomposition of starch and proteins include bacteria of the genus Acetobacter and genus Micrococcus, but they are also involved in the decomposition of starch and protein, such as saccharides. Bacteria of the genus Streptococcus and genus Staphylococcus are used to decompose amino alcohol and amino alcohol, respectively. For example, the number of starch-degrading bacteria (such as Acetobacter) in the bacterial effect tank 14 is relatively small when it just enters the bacterial effect tank 14, but it gradually increases and reaches a peak, but as the starch decreases, On the other hand, saccharide-degrading bacteria (such as Streptococcus genus) gradually increase as the sugar content increases, and then decrease as the sugar content decreases.

このように、養分の増加と共に菌体は増加するが、菌体
の繁殖は養分の増加よりもずれる場合が多い。
As described above, the number of bacterial cells increases as nutrients increase, but the reproduction of bacterial cells often lags behind the increase in nutrients.

そこで、澱粉分解菌が最大となる近傍の廃水の一部を菌
効用槽14の入口部に返送して菌効用槽14の入口部に
おける澱粉分解菌の数を増加せしめ・また糖分解菌の最
大となる近傍の廃水の一部を糖分の生成領域に返送せし
めることが望ましい。この場合、澱粉分解菌の返送水の
取出位置と糖分解菌の返送水の返送位置とが近く力るた
め、両者の多量の混合を避けるために両位置の間に廃水
の流通を大きく阻害しない程度の仕切bt設けることが
望ましい。返送水の取出し位置や返送位置は廃水中のB
OD源の種類によって異なシ、また廃水が各種のBOD
源を含むときは平均的位置とすることが望ましい。
Therefore, a part of the wastewater in the vicinity where the number of starch-degrading bacteria is the largest is returned to the inlet of the bacteria-effect tank 14 to increase the number of starch-degrading bacteria at the inlet of the bacteria-effect tank 14. It is desirable to return some of the wastewater in the vicinity to the sugar production area. In this case, the point where the return water of the starch-degrading bacteria is taken out and the point where the return water of the saccharide-degrading bacteria is returned are close to each other, so that the flow of wastewater between the two locations is not significantly impeded in order to avoid a large amount of mixing between the two. It is desirable to provide a partition bt of approximately the same degree. The return water takeout position and return position are B in the wastewater.
BOD varies depending on the type of OD source, and wastewater has various BOD
When the source is included, it is desirable to use the average position.

菌効用槽14に供給する酸素の量は通性嫌気性菌が要求
する酸素量に到底満たない量に抑制せられ、空気量にし
て望ましくは5〜10 Nm”/に9 B OD・日で
ある。このように、酸素の供給量が少ないため、通性嫌
気性菌の酸素要求量は1.500〜15.000■02
/g菌体・hrという大きな値を示すが、酸素の供給量
は酸素要求量の1720〜1/40程度にすぎないこと
となる。従って、通性嫌気性菌は酸素を得るために廃水
中の酸素含有物をも分解することとなシ、硝酸イオン、
亜硝酸イオン、硫酸イオン、゛亜硫酸イオンなどのほか
、従来よシ処理が困難とされていたフェノール、クレゾ
ール、メラニン、カロチン、リグニンなども容易に分解
することができる。フェノール等が廃水よシ除去され之
後は、活性汚泥処理(曝気処理)が容易となる。
The amount of oxygen supplied to the bacterial effect tank 14 is suppressed to an amount that is far below the amount of oxygen required by facultative anaerobic bacteria, and is preferably 5 to 10 Nm''/9 BOD/day in terms of air amount. In this way, because the amount of oxygen supplied is small, the oxygen demand of facultative anaerobes is 1.500 to 15.000■02
Although this shows a large value of /g bacterial cells/hr, the amount of oxygen supplied is only about 1,720 to 1/40 of the amount of oxygen required. Therefore, facultative anaerobes must also decompose oxygen-containing substances in wastewater to obtain oxygen;
In addition to nitrite ions, sulfate ions, and sulfite ions, it can also easily decompose phenol, cresol, melanin, carotene, lignin, etc., which were conventionally difficult to treat. After phenol etc. are removed from the wastewater, activated sludge treatment (aeration treatment) becomes easy.

なお、前記の酸素要求量(■0□/9菌体・hr)は菌
体IIが1時間に消費しうる溶存酸素量(1R9)を表
わしおシ、従来の活性汚泥処理(標準曝気槽における)
時の酸素要求量は5〜25〜02/g・hrであるのに
対し、菌効用槽14内における菌体の酸素要求量は前述
のように非常に大きい値を示す。
The above oxygen demand (■0□/9 bacterial cells/hr) represents the amount of dissolved oxygen (1R9) that can be consumed by bacterial cells II in one hour. )
The amount of oxygen required at the time is 5 to 25 to 02/g·hr, whereas the amount of oxygen required by the bacteria in the bacteria effect tank 14 is a very large value as described above.

菌効用槽14内で活動する通性嫌気性菌としては、澱粉
等の炭水化物、油脂、蛋白質、リグニン、糖、アミノ酸
その他を分解する几め次のような各種の菌を使用する。
As the facultative anaerobic bacteria active in the bacteria effect tank 14, various types of bacteria such as the following are used, which decompose carbohydrates such as starch, oils and fats, proteins, lignin, sugars, amino acids, and others.

クロストリディウム属(クロストリデイウムペリングス
、クロストデイウム シャボアイ〕、アセトバクター、
ミクロコツカス属、ストレプトコツカス属(ラテイツク
 ストレプトコツシイ、ストレプトデユーランス、スト
レプトコツシイス)、スタフィコッカス属(スタフィロ
コッカス アルバス、スタフィロコッカス オーラス、
スタフィロコッカス シトリウス)、カンデイダ属(カ
ンデイダ トロピカリウス、カンディダ パラクルセイ
)、バシラシア工科(ハシリウス)、ユーマイシエテス
の変化菌(ミキソマイシエテス、バシドマイセテスつ、
デサルフオビブリオ(スズリラシアエ科)、ラクトバシ
リウス属(レミバクテリウム、シクロバクテリウム)、
シュードモナスエラギノサ、シュードマトリイ、ニーバ
クテリウム(ブチルバクテリウム)、アルスロバクタ−
、コリネバクテリアシェアー工科(コリネバクテリウム
、バシリウス セルローザス、パシリウスサーモフイフ
イプリンコラス、ペプトコツカス属、シゲラダイセンテ
リアーエ、七ロバクチリア、以上の菌は一例を示したも
のであって、その他の菌も使用することも可能である。
Clostridium (Clostridium peringus, Clostridium chaboai), Acetobacter,
Micrococcus spp., Streptococcus spp. (Rateitsukus streptococcii, Streptodeurans, Streptococciis), Staphylococcus spp. (Staphylococcus albus, Staphylococcus auras,
Staphylococcus citrius), Candida spp. (Candida tropicalius, Candida paracrusei), Basillasiaceae (Hacilius), Eumaisietes variants (Myxomycietes, Basidomycetes,
Desulfovibrio (Lilyraceae), Lactobacilius (Remibacterium, Cyclobacterium),
Pseudomonas elaginosa, Pseudomatorii, Niebacterium (Butylbacterium), Arthrobacterium
, Corynebacterium Scheer's family (Corynebacterium, Bacillus cellulosus, Pacilius thermophiliculus, Peptococcus spp., Shigella deicenteriae, Heptolobactilia) The above bacteria are just examples, and other bacteria can also be used. It is also possible to do so.

このようにして、菌効用槽14では高濃度のBOD源が
稀釈しないで分解され、BODが35〜70チに減少す
るのみならず、窒素分、リン分、イオウ分も分解され、
窒素分は40〜70%、リン分が80〜90チ・硫黄分
が10〜20チだけ減少する。
In this way, the highly concentrated BOD source is decomposed in the bacterium effect tank 14 without being diluted, and not only the BOD is reduced to 35 to 70 inches, but also nitrogen, phosphorus, and sulfur are decomposed.
Nitrogen content is reduced by 40-70%, phosphorus content is reduced by 80-90%, and sulfur content is reduced by 10-20%.

次に、菌効用槽14で処理された処理水は処理水管1s
t−経て曝気槽群17に導入される。これは曝気槽と沈
澱槽とから構成される。必要に応じてさらに曝気槽と沈
澱槽を付加することができる。
Next, the treated water treated in the bacteria effect tank 14 is transferred to the treated water pipe 1s.
It is introduced into the aeration tank group 17 after t. This consists of an aeration tank and a settling tank. If necessary, an aeration tank and a settling tank can be added.

廃水1は・すでに変性槽13、菌効用槽14t−通過し
てBOD源が低分子化されておシ、しかも曝気槽内にお
ける活性汚泥処理を困難にするフェノール、メラニン、
カロチン、リグニン等もすでにかなシ分解されておシ、
さらにBOD源中の有機物が菌体の増殖に使用され、菌
体は活性汚泥中の原生動物によシ直ちに消化されてしま
うので、従来の活性汚泥法の場合の5〜25倍という混
合液BOD濃度4.000〜7.800ppmであって
も充分に高速度で処理することができる。なお、菌効用
槽14からの廃水が未だ高濃度である場合には、返送し
た処理水等で稀釈する必要がある場合も生ずるが、稀釈
水は著しく少なくて済み、従来の活性汚泥法の115以
下で良い。このため、曝気槽・沈澱槽は従来の活性汚泥
法に比べて小さい設備で良い。特に、曝気槽では、Lv
負負荷1.5〜10に9BOD/rlL3・日、LS負
荷がo、s 〜1.okgnoD/JcgMLSS・日
であるため、曝気槽の大きさは従来の活性汚泥法に比べ
て115〜1/20に小さくすることができる。また、
曝気槽における空気吹込量は10〜25Nm3/icg
BOD・日であって、従来の活性汚泥法の115〜1/
7とLJ)、空気の吹込エネルギーの著しい軽減が計れ
る。また、生成汚泥量も0805〜0.2に9S S 
/kfi B ODであって、従来の活性汚泥法の1/
3〜1/8程度であるから、脱水のランニングコストが
非常に安上シとなる。
The wastewater 1 has already passed through the denaturation tank 13 and the bacteria effect tank 14t, and the BOD source has been reduced to a low molecular weight, and it also contains phenol, melanin, and other substances that make activated sludge treatment difficult in the aeration tank.
Carotene, lignin, etc. have already been decomposed,
Furthermore, the organic matter in the BOD source is used for bacterial growth, and the bacterial cells are immediately digested by protozoa in the activated sludge, resulting in a mixed liquid BOD of 5 to 25 times that of the conventional activated sludge method. Even if the concentration is 4.000 to 7.800 ppm, processing can be performed at a sufficiently high speed. Note that if the wastewater from the bacteria effect tank 14 is still highly concentrated, it may be necessary to dilute it with returned treated water, etc., but the amount of dilution water can be significantly reduced, and the conventional activated sludge method 115 The following is fine. Therefore, the aeration tank and settling tank need to be smaller than those used in the conventional activated sludge method. In particular, in the aeration tank, Lv
Negative load 1.5 to 10, 9BOD/rlL3·day, LS load o, s to 1. Since it is okgnoD/JcgMLSS・day, the size of the aeration tank can be reduced to 115 to 1/20 compared to the conventional activated sludge method. Also,
The amount of air blown into the aeration tank is 10 to 25 Nm3/icg.
BOD・day, which is 115 to 1/day compared to the conventional activated sludge method.
7 and LJ), the air blowing energy can be significantly reduced. In addition, the amount of sludge produced was reduced to 0.805~0.29S S
/kfi B OD, which is 1/kfi of the conventional activated sludge method.
Since it is about 3 to 1/8, the running cost of dewatering is extremely low.

曝気槽群17で処理されたMLSS混合液は沈澱槽18
に導入され、その上澄水は処理水槽に送られて放流され
、MLSS分はポンプ19にて曝気槽群17に返送され
る。なお、処理水槽20中の処理水の一部は必要に応じ
て曝気槽群17に導入され、菌効用槽14からの処理水
をその濃度変化に応じて稀釈することができる。
The MLSS mixed liquid treated in the aeration tank group 17 is transferred to the settling tank 18.
The supernatant water is sent to the treated water tank and discharged, and the MLSS water is returned to the aeration tank group 17 by the pump 19. Note that a part of the treated water in the treated water tank 20 is introduced into the aeration tank group 17 as needed, and the treated water from the bacteria effect tank 14 can be diluted according to changes in its concentration.

具体例 高濃度廃水として生し尿(BOD13. OOOppm
、SS 40.000ppm、C0D4,500ppm
)’ir用い、これヲ第イ図に示す工程に従って貯槽2
.スクリーン4.受槽7を経て凝集混和槽9に導入した
Specific example Human waste (BOD13.OOOppm) as high concentration wastewater
, SS 40.000ppm, C0D 4,500ppm
)'ir, and according to the process shown in Fig.
.. Screen 4. The mixture was introduced into a flocculation mixing tank 9 via a receiving tank 7.

凝集混和槽9では廃水の固形成分に対して15%硫酸第
一鉄溶液15〜16チを加えてよく混和しく p:E(
6,5)・さらに次表の組成の添加剤2,0〜35チと
高分子凝集剤0.1チとを加えて混和した(pH7,2
〕。
In the coagulation mixing tank 9, add 15 to 16 g of 15% ferrous sulfate solution to the solid components of the wastewater and mix well.p:E(
6,5)・Furthermore, 2.0 to 35 g of additives with the composition shown in the table below and 0.1 g of polymer flocculant were added and mixed (pH 7.2
].

表 次に、0.35m巾のベルトプレスW濾過機を使用して
10w7mの高速度で濾過を行なった。ろ液の濾過速度
は0.5〜1.1 m”/ m’・h、脱水汚泥の厚さ
は5〜611N1であフ、脱水汚泥の含水率は62%で
あった。正味固形成分の濾過速度が15〜35kg5S
/rF?・hの濾過を行なっても戸材の目詰シは全く生
じなかった。ν液のBODは6400ppmに、SSは
250〜350ppmに低下し、窒素分は30%、リン
分は60%除去された。脱水汚泥の水分率が低いため、
機器の洗浄水は少なくて良かった。
Next, filtration was performed at a high speed of 10w7m using a 0.35m wide belt press W filter. The filtration rate of the filtrate was 0.5 to 1.1 m''/m'·h, the thickness of the dehydrated sludge was 5 to 611 N1, and the water content of the dehydrated sludge was 62%. Filtration speed is 15-35kg5S
/rF? - No clogging of the door material occurred even after filtration. The BOD of the ν liquid was reduced to 6,400 ppm, the SS was reduced to 250 to 350 ppm, and the nitrogen content was removed by 30% and the phosphorus content by 60%. Because the moisture content of dehydrated sludge is low,
The amount of water needed to wash the equipment was small.

次に、p液を変性槽13および菌効用槽14に通してB
OD’t”2300〜4500ppmに低下せしめ、次
の曝気槽群17にて1.8〜3/c9BOD/m”・日
の処理能力で少量の吹込空気量の吹込みでBOD処理を
した。従来のBσD処理ではLv容量負荷は0.6〜1
.0に9BOD/m”・日が基準値として与えられて設
定されているのに対し、本性では3倍以上の能力、1.
8〜3.okgBOD/m”・日の処理能力で吹込空気
量も1/3の少量でBOD処理を達成できるので、SV
Iは60〜100cr−7gと高くなシ、糸状菌も生成
しないoしかも、Ls負負荷従来0.05〜0.2kg
BOD/#MLSS−日のSS固形物のBOD負荷が0
.5〜1#BOD/#・MLSS・日で達成することが
できた。
Next, the p liquid is passed through the denaturation tank 13 and the bacterial effect tank 14 to
OD't" was lowered to 2,300 to 4,500 ppm, and BOD treatment was performed in the next aeration tank group 17 by blowing a small amount of air at a processing capacity of 1.8 to 3/c9 BOD/m"-day. In conventional BσD processing, the Lv capacity load is 0.6 to 1.
.. 0 is given and set as a standard value of 9BOD/m"day, but in nature it has a capacity more than three times higher, 1.
8-3. SV
I is high at 60-100cr-7g, does not produce filamentous fungi, and Ls negative load conventionally weighs 0.05-0.2kg
BOD/#MLSS-day SS solids BOD load is 0
.. I was able to achieve this in 5 to 1 #BOD/#・MLSS・day.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば高濃度
有機性廃水に硫醗鉄と高分子凝集剤のほかにCaO+ 
Altos I SOsを主成分とする多孔性無機添加
剤を添加することによシ有機性廃水中の固形成分を速や
かに凝集せしめ、高速かつ目詰シなく固形成分を分離す
ることを可能ならしめ、さらに有機性廃水に多量に溶解
したBOD源が添加剤に吸着され、しかも水中に残留す
るBOD源は後の変性槽、無菌用槽にて後処理の容易な
菌体にかわシ、曝気処理にて効率良く、しかも稀釈水を
全く使用しないか、または少量の稀釈水を使用するのみ
で小さな設備で安価に処理することが可能である。
As is clear from the above explanation, according to the present invention, in addition to iron sulfate and a polymer flocculant, CaO+ is added to highly concentrated organic wastewater.
By adding a porous inorganic additive containing Altos I SOs as a main component, solid components in organic wastewater can be rapidly coagulated, making it possible to separate solid components at high speed and without clogging, Furthermore, the BOD source dissolved in a large amount in the organic wastewater is adsorbed by the additive, and the BOD source remaining in the water is replaced by easy-to-post-process bacterial cells in the subsequent denaturation tank and sterilization tank, and is then subjected to aeration treatment. It is possible to process efficiently and inexpensively with small equipment by not using dilution water at all or using only a small amount of dilution water.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す工程説明図である0 に有機性廃水   2:貯槽 3:送液ポンプ   4ニスクリーン 5:粗大物   6,12:F液管 7二受槽  8.10.19:ボンブ 9:凝集混和槽   11ニテ過機 13:変性槽    14二菌効用槽 15:返送管    16二処理水管 17:曝気槽群   18二沈澱槽 2〇二処理水槽 The drawings are process explanatory diagrams showing one embodiment of the present invention. Organic wastewater 2: Storage tank 3: Liquid pump 4 Niclean 5: Large items 6, 12: F liquid pipe 72 receiving tank 8.10.19: Bomb 9: Coagulation mixing tank 11 Nite filtration machine 13: Denaturation tank 14 Two-bacterial effect tank 15: Return pipe 16 Two treated water pipes 17: Aeration tank group 18 Two settling tanks 202 treatment tank

Claims (1)

【特許請求の範囲】[Claims] 高濃度有機性廃水に硫酸鉄と高分子凝集剤とCaO 5
0〜56%、SiO_2 20〜30%、Al_2O_
3 7〜10%、SO_3 4〜10%を主成分とする
多孔性無機添加剤とを混和し、生じた有機物含有凝集物
を分離して得たろ液を変性槽にて腐敗菌と通性嫌気性菌
とに嫌気性状態下で接触させた後、菌効用槽にて空気を
吹き込みながら通性嫌気性菌で処理し、次いで曝気槽群
内にて好気性状態下で好気性菌で処理することを特徴と
する高濃度有機性廃水の処理方法。
Iron sulfate, polymer flocculant, and CaO 5 in highly concentrated organic wastewater
0-56%, SiO_2 20-30%, Al_2O_
3 7-10% and SO_3 4-10% as main components are mixed with a porous inorganic additive, and the resulting organic matter-containing aggregates are separated. The resulting filtrate is treated with putrefactive bacteria and facultative anaerobic substances in a denaturation tank. After contacting with anaerobic bacteria under anaerobic conditions, it is treated with facultative anaerobic bacteria while blowing air in a bacteria effect tank, and then treated with aerobic bacteria under aerobic conditions in an aeration tank group. A method for treating highly concentrated organic wastewater.
JP60060969A 1985-03-27 1985-03-27 Treatment of high-concentration organic waste water Pending JPS61220795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060969A JPS61220795A (en) 1985-03-27 1985-03-27 Treatment of high-concentration organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060969A JPS61220795A (en) 1985-03-27 1985-03-27 Treatment of high-concentration organic waste water

Publications (1)

Publication Number Publication Date
JPS61220795A true JPS61220795A (en) 1986-10-01

Family

ID=13157750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060969A Pending JPS61220795A (en) 1985-03-27 1985-03-27 Treatment of high-concentration organic waste water

Country Status (1)

Country Link
JP (1) JPS61220795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129580A (en) * 1999-11-02 2001-05-15 Kl Plant Kk Apparatus for treating waste water containing oil and fat
KR100331943B1 (en) * 1999-06-21 2002-04-10 김재모 Water treatment system and water treatment method using the same
CN100417604C (en) * 2004-12-22 2008-09-10 中国石化集团南京化学工业有限公司 Fully biological treatment of wastewater of nitrobenzol or aniline or their mixture
CN105967476A (en) * 2016-07-01 2016-09-28 苏锦忠 Carbon tetrachloride contaminated sludge treatment agent and preparation method for same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150500A (en) * 1982-03-01 1983-09-07 Takenaka Komuten Co Ltd Dehydration of sludge
JPS59147700A (en) * 1983-02-10 1984-08-24 Takenaka Komuten Co Ltd Treatment of sludge
JPS59179194A (en) * 1983-03-30 1984-10-11 Bunji Kurosaki Treatment of waste water containing bod source of high concentration
JPS6048200A (en) * 1983-08-26 1985-03-15 Kurita Water Ind Ltd Treatment of sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150500A (en) * 1982-03-01 1983-09-07 Takenaka Komuten Co Ltd Dehydration of sludge
JPS59147700A (en) * 1983-02-10 1984-08-24 Takenaka Komuten Co Ltd Treatment of sludge
JPS59179194A (en) * 1983-03-30 1984-10-11 Bunji Kurosaki Treatment of waste water containing bod source of high concentration
JPS6048200A (en) * 1983-08-26 1985-03-15 Kurita Water Ind Ltd Treatment of sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331943B1 (en) * 1999-06-21 2002-04-10 김재모 Water treatment system and water treatment method using the same
JP2001129580A (en) * 1999-11-02 2001-05-15 Kl Plant Kk Apparatus for treating waste water containing oil and fat
CN100417604C (en) * 2004-12-22 2008-09-10 中国石化集团南京化学工业有限公司 Fully biological treatment of wastewater of nitrobenzol or aniline or their mixture
CN105967476A (en) * 2016-07-01 2016-09-28 苏锦忠 Carbon tetrachloride contaminated sludge treatment agent and preparation method for same

Similar Documents

Publication Publication Date Title
AU2010327173B2 (en) Wastewater pretreatment method and sewage treatment method using the pretreatment method
MOHSENI et al. Biological treatment of dairy wastewater by sequencing batch reactor
EP0106043A2 (en) Process and aeration tank system for biologically treating sewage
CA1114964A (en) Plant for the treatment of waste water by the activated-sludge process
EP0672022B1 (en) Process for treating waste water
JPS61220795A (en) Treatment of high-concentration organic waste water
KR910004127B1 (en) Concentrated organic waste water treating method
JPH0947781A (en) Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JPH0461999A (en) Treatment of high concentration organic polluted waste water
JP2001179284A (en) Method for dephosphorizing excretion wastewater
JPH02293098A (en) Treatment of night soil
JPH0679715B2 (en) Biological treatment method of organic wastewater
Haseltine The use of hydrated lime in the activated sludge process
JP3369915B2 (en) Night soil treatment equipment
KR910004128B1 (en) Concentrated organic waste water treating method
KR970002629B1 (en) Waste water treatment method
JPS63182100A (en) Treatment of water-soluble cutting/grinding waste liquid
JPH0679713B2 (en) Biological treatment method of organic wastewater
US1997302A (en) Method for treating and purifying sewage
KR970006149B1 (en) Excrement treatment method and apparatus
CN114249489A (en) Recycling method of zero-emission organic concentrated water
JPS59179194A (en) Treatment of waste water containing bod source of high concentration
JPS6094200A (en) Treatment before dehydration of organic sludge
JPH0535038B2 (en)
JPH02211295A (en) Treatment of raw sewage