JPS63182100A - Treatment of water-soluble cutting/grinding waste liquid - Google Patents

Treatment of water-soluble cutting/grinding waste liquid

Info

Publication number
JPS63182100A
JPS63182100A JP62013824A JP1382487A JPS63182100A JP S63182100 A JPS63182100 A JP S63182100A JP 62013824 A JP62013824 A JP 62013824A JP 1382487 A JP1382487 A JP 1382487A JP S63182100 A JPS63182100 A JP S63182100A
Authority
JP
Japan
Prior art keywords
treatment
aeration
water
cod
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62013824A
Other languages
Japanese (ja)
Inventor
Nobuo Yamamoto
伸夫 山本
Kiyoshi Hasegawa
清志 長谷川
Hisashi Kajiwara
梶原 寿
Mitsuo Saito
斎藤 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62013824A priority Critical patent/JPS63182100A/en
Publication of JPS63182100A publication Critical patent/JPS63182100A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To reduce load, by incorporating biological treatment diluting a liquid to be treated by 3-4 times and adding phosphorus as a nutrient source in the post-process of flocculation pressure flotation treatment. CONSTITUTION:A waste liquid 1 is subjected to flocculation pressure flotation treatment 5. A flocculant and alkali 3 are injected and a flocculated floc product is separated by flotation using pressurized water 4. Thereafter, the treated liquid 6 is guided to an aeration type biological treatment process wherein a long time aeration tank 7 having aeration and a sedimentation tank 11 are combined, and adsorption, oxidation and flocculation are performed by the action of the aerobic bacteria in activated sludge to remove COD and BOD up to predetermined concns. Subsequently, the biologically treated liquid 13 due to the next long-time aeration system is introduced into an aeration tank 15 to be aerated and subjected to sedimentation treatment in a sedimentation tank 16 while the supernatant water is disinfected with chlorine to be discharged. By this method, the load of BOD and COD can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、COD及びBODの除去性能を向上させる為
に従来の処理方法に長時間曝気方式の生物処理を組み込
んだ水溶性切削・研削廃液の処理方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the treatment of water-soluble cutting/grinding waste fluid that incorporates biological treatment using a long-time aeration method into the conventional treatment method in order to improve the removal performance of COD and BOD. Regarding the processing method.

(従来技術) 従来の水溶性切削・研削廃液の処理システムを第3図に
示す、切削及び研削機械より排出される水溶性切削拳研
削廃液18は、廃液の特質に従かい当該廃液のみを凝集
加圧浮上処理19により油分及びCODの1次処理を行
ない(第1工程)、1次処理液20に他工程排水21を
混合し。
(Prior Art) A conventional water-soluble cutting/grinding waste liquid treatment system is shown in FIG. 3. The water-soluble cutting/grinding waste liquid 18 discharged from cutting and grinding machines is aggregated only according to the characteristics of the waste liquid. Primary treatment of oil and COD is performed by pressure flotation treatment 19 (first step), and other process waste water 21 is mixed with primary treatment liquid 20.

4〜8時間の滞留時間を有する曝気槽22と沈殿槽23
の組み合わせによる標準活性汚泥処理方式の生物処理で
COD及びBODの2次処理を行なう(第2工程)こと
によりなるシステムである(標準活性汚泥処理方式)。
Aeration tank 22 and settling tank 23 with a residence time of 4 to 8 hours
This is a system (standard activated sludge treatment method) that performs secondary treatment of COD and BOD (second step) by biological treatment of the standard activated sludge treatment method using a combination of the following.

(発明が解決しようとする問題点) しかしながら、上記のシステムにおいては、水溶性切削
・研削廃液18の処理量が他工程排水21の処理量に対
し寄与率として多くなると、窒素系有機物及び分解困難
な有機物の混合率が比例して増加してくる為、第2工程
でのCOD及びBODの除去性能が低下する。
(Problems to be Solved by the Invention) However, in the above system, if the amount of water-soluble cutting/grinding waste fluid 18 treated increases as a contribution rate to the amount of other process wastewater 21 treated, nitrogen-based organic matter and decomposition become difficult. Since the mixing ratio of organic substances increases proportionally, the removal performance of COD and BOD in the second step decreases.

また好気性微生物を利用しているので、水温は20〜3
5℃が好適で冬期及び夏期における低温及び高温は微生
物の活性度が低下し、その為排水基準を遵守することが
困難な事態に陥ることがある。また、該処理システムに
おいて、凝集加圧浮上処理液20の中にはCOD及びB
ODを除去するために、微生物の栄養源をBOD : 
Pの比として一般的に100ニー1の割合で含まれてい
なければならないが、本発明者等の測定によると類比を
極端に下層るtoo : o、を程度しか含まれていな
かった。
Also, since aerobic microorganisms are used, the water temperature is 20-3
A temperature of 5° C. is preferable, and low and high temperatures in winter and summer reduce the activity of microorganisms, which may make it difficult to comply with wastewater standards. In addition, in the processing system, COD and B
BOD microbial nutrient source to remove OD:
Generally, the ratio of P should be included at a ratio of 100 to 1, but according to measurements by the present inventors, it was included only to the extent of too: o, which is extremely below the analogy.

(問題点を解決するための手段) 本発明は、水溶性切削・研削廃液を処理するに当たり、
凝集加圧浮上処理の後工程に、該処理液を3〜4倍に希
釈し、並びに栄養源としてBOD51に対してリンを1
%以上添加する設備を有した長時間曝気方式の生物処理
を組み込んだことにより上記問題点を解決したものであ
る。尚その後工程については、従来の処理システムと同
様に長時間曝気方式による生物処理液と他工程排液15
とを混合し、4〜8時間の滞留時間を有する曝気槽と沈
殿槽の組み合せによる標準活性汚泥処理方式の生物処理
でCOD及びBODの2次処理を行なう方法により構成
されている。
(Means for Solving the Problems) The present invention provides the following features in treating water-soluble cutting/grinding waste liquid:
In the post-process of agglomeration and pressure flotation treatment, the treatment solution is diluted 3 to 4 times, and phosphorus is added to BOD51 as a nutrient source.
The above-mentioned problems were solved by incorporating a long-term aeration system biological treatment equipped with equipment for adding % or more. Regarding subsequent processes, biological treatment liquid and wastewater from other processes are processed using a long-time aeration method, similar to the conventional treatment system.
The secondary treatment of COD and BOD is carried out by biological treatment of the standard activated sludge treatment method using a combination of an aeration tank and a settling tank with a residence time of 4 to 8 hours.

(作 用) 本発明においては、従来の凝集加圧浮上処理の後工程に
長時間曝気方式の生物処理を組み込んだことにより、次
工程の工場内の終末処理工程となる標準活性汚泥方式に
よる生物処理への流入COD及びBOD負荷が大巾に軽
減する。
(Function) In the present invention, by incorporating a long-time aeration method biological treatment into the post-process of the conventional flocculation and pressure flotation treatment, biological treatment using the standard activated sludge method, which is the final treatment step in the factory in the next step, can be achieved. The COD and BOD loads flowing into the process are significantly reduced.

(実施例) 本発明の水溶性切削・研削廃液の処理方法について第1
図に示した。この図に基づき1本発明の詳細な説明する
(Example) First example of the method for treating water-soluble cutting/grinding waste fluid of the present invention
Shown in the figure. The present invention will be explained in detail based on this figure.

水溶性切削Φ研削廃液lは先ず廃液中の油分及びCOD
の1次処理を行なう為、凝集加圧浮上処理5を行なう、
硫酸バンド等の凝集剤を注入することにより水中のアル
カリ分と化学反応を起こし水酸化アルミニウムやその重
合体を生じ、これが凝集フロックとなるので、アルカリ
度が必要(硫酸バンド(8%)LPP!1当り0.24
ppmのアルカリ度を消費、)であるため苛性ソーダ3
も同時に注入する。凝集フロック生成後加圧水4により
浮上分離する。凝集加圧浮上した後の処理液のCOD濃
度は2000〜3000rag/文と高濃度である為、
工場内の終末処理工程となる標準活性汚泥方式による生
物処理工程では処理困難である。従って凝集加圧浮上処
理液6は約24時間の滞留時間(エアレーション)を有
した長時間曝気槽7と沈殿槽11を組み合わせた長時間
曝気方式による生物処理へ導き、活性汚泥中の好気性微
生物の働きにより吸着・酸化及び凝集させてCOD及び
BODを所定濃度まで除去する。ここでは微生物に対す
る濃度的なショックを和らげる為に希釈水8により3〜
4倍に希釈してから処理を行なう、希釈水としては有機
物濃度(COD 、BOD)が低くて有f8物賀が混入
してなければ問題がない為、コスト低減の観点より工場
内の最終放流水等を用いるのが好ましい、また凝集加圧
浮上処理液6の中にはCOD及びBODを除去する為に
微生物の栄養源として少なくともリン9をBOD : 
Pの比として 100:1以上となるように長時間曝気
槽7の流入部に添加する。MLSS (N合液中のr′
!遊物質、すなわち大略混合液中の活性汚泥量)が5.
000〜B、000謄g/見になるように返送汚泥12
を、1tびにDOが1〜3mg/交になるように空気l
Oの量をW節する0次の長時間曝気方式による生物処理
液13を標準活性汚泥処理方式による曝気槽15へ導き
、従来システムと同様に他工程排水14と混合して4〜
8時間曝気槽15中でエアレーションを行ない凝集フロ
ックを生成して沈殿槽16で沈殿させて上澄水を塩素で
消毒し放流する。沈殿槽16の沈殿汚泥は返送汚泥17
として再び曝気槽15に戻す。
The water-soluble cutting Φ grinding waste liquid l is first of all oil and COD in the waste liquid.
In order to perform the primary treatment, agglomeration pressure flotation treatment 5 is performed.
By injecting a flocculant such as sulfuric acid, a chemical reaction occurs with the alkaline content in the water, producing aluminum hydroxide and its polymers, which become coagulated flocs, so alkalinity is required (sulfuric acid (8%) LPP! 0.24 per 1
Consumes ppm alkalinity, since caustic soda 3
are also injected at the same time. After the agglomerated flocs are formed, they are floated and separated using pressurized water 4. Since the COD concentration of the treatment liquid after coagulation and pressure flotation is as high as 2000 to 3000 rag/liter,
It is difficult to treat with the biological treatment process using the standard activated sludge method, which is the final treatment process in the factory. Therefore, the flocculation and pressure flotation treatment liquid 6 is guided to biological treatment by a long-time aeration system that combines a long-time aeration tank 7 with a residence time (aeration) of about 24 hours and a sedimentation tank 11, and aerobic microorganisms in the activated sludge are COD and BOD are removed to a predetermined concentration by adsorption, oxidation, and coagulation. Here, in order to soften the concentration shock to microorganisms, dilution water was added to
The dilution water is diluted 4 times before treatment.As long as the concentration of organic matter (COD, BOD) is low and F8 monoga is not mixed in, there is no problem with the dilution water, so from the perspective of cost reduction, the final discharge within the factory is It is preferable to use water or the like, and the coagulation and pressure flotation treatment liquid 6 contains at least phosphorus 9 as a nutrient source for microorganisms in order to remove COD and BOD:
It is added to the inlet of the long-term aeration tank 7 so that the P ratio is 100:1 or more. MLSS (r' in the N mixture
! The amount of activated sludge in the mixed liquid is 5.
000~B, 000 g/Return sludge 12 as shown
, air is added so that DO is 1 to 3 mg/cross for every 1 ton.
A biological treatment liquid 13 using a zero-order long-time aeration method that reduces the amount of O by W is led to an aeration tank 15 using a standard activated sludge treatment method, and mixed with wastewater 14 from other processes as in the conventional system.
Aeration is carried out in an aeration tank 15 for 8 hours to produce coagulated flocs, which are precipitated in a settling tank 16, and the supernatant water is disinfected with chlorine and discharged. The settled sludge in the settling tank 16 is returned to the sludge 17
The water is returned to the aeration tank 15 as a result.

(効果) 本発明の水溶性切削・研削廃液の処理方法によると従来
の凝集加圧浮上処理の後工程に長時間曝気方式の生物処
理を組み込んだことにより、COD及びBODの除去性
能が向とする。
(Effects) According to the water-soluble cutting/grinding waste treatment method of the present invention, the removal performance of COD and BOD is improved by incorporating a long-time aeration type biological treatment into the post-process of the conventional coagulation pressure flotation treatment. do.

その為次工程の工場内の終末処理工程となる標準活性汚
泥方式による生物処理への流入COD及びBOD負荷は
以下の表に示すように従来の処理システムと比較して終
末処理工程の流入負荷においてBODで85〜83%、
CODで44〜B6%の軽減が図られる。
Therefore, as shown in the table below, the inflow COD and BOD loads to the biological treatment using the standard activated sludge method, which is the final treatment process in the factory in the next process, are lower than the inflow load of the final treatment process compared to the conventional treatment system. 85-83% in BOD,
COD will be reduced by 44-6%.

表 また長時間曝気方式による生物処理工程でのリン注入の
有無のCOD除去比較を第2図に示した。この推移グラ
フに示す通り、リンを添加することにより1年間平均し
たCOD除去率が得られ、特に水温の低下する12〜2
月の冬期においては、リン添加無しの場合、0〜28%
の除去率しか得られなかったものが、リン注入により8
2〜66%と大巾にCOD除去率が向上した。
Table 2 also shows a comparison of COD removal with and without phosphorus injection in the biological treatment process using a long-time aeration method. As shown in this transition graph, by adding phosphorus, the average COD removal rate for one year can be obtained, especially when the water temperature decreases.
In the winter season of March, 0 to 28% without phosphorus addition.
The removal rate was only 8%, but with phosphorus injection, the removal rate was increased to 8%.
The COD removal rate was greatly improved from 2 to 66%.

なお、7〜12月のデータにおいては、tizな差が現
われていないが、その要因としてはリン添加有りのデー
タは無しのデータに較べて、COD流入負荷量が20%
程度増加しているためである。
In addition, in the data from July to December, there is no significant difference, but the reason for this is that the COD inflow load is 20% higher in the data with phosphorus addition than in the data without.
This is because the degree is increasing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の水溶性切削・研削廃液の処理方法の
説明図、 第2図は、長時間曝気方式による生物処理工程でのリン
添加の有無によるCOD除去率の比較を表わすグラフ、 第3図は、従来の水溶性切削・研削廃液の処理システム
の説明図である。 図中、 1.18・・・水溶性切削中研削廃液 2・・・硫酸バンド    3・・・苛性ソータ4・・
・加圧水 5.18・・・凝集加圧浮上処理 6.20・・・凝集加圧浮上処理液 7・・・長時°間曝気槽   8・・・希釈水9・・・
リン       lO・・・空気11・・・沈殿槽 
     12・・・返送汚泥13・・・長時間曝気方
式による生物処理水14.21・・・他工程廃液  1
5 、22・・・曝気槽1[(,23・・・沈殿槽  
  17.24・・・返送汚泥特許出願人 トヨタ自動
車株式会社 (ほか2名) 才1図
Figure 1 is an explanatory diagram of the water-soluble cutting/grinding waste treatment method of the present invention; Figure 2 is a graph showing a comparison of COD removal rates with and without phosphorus addition in a biological treatment process using a long-time aeration method; FIG. 3 is an explanatory diagram of a conventional water-soluble cutting/grinding waste liquid treatment system. In the figure, 1.18...Water-soluble cutting waste liquid 2...Sulfuric acid band 3...Caustic sorter 4...
- Pressurized water 5.18... Coagulation pressure flotation treatment 6.20... Coagulation pressure flotation treatment liquid 7... Long time aeration tank 8... Dilution water 9...
Phosphorus lO... Air 11... Sedimentation tank
12... Returned sludge 13... Biologically treated water by long-time aeration method 14.21... Waste liquid from other processes 1
5, 22... Aeration tank 1 [(, 23... Sedimentation tank
17.24... Returned sludge patent applicant Toyota Motor Corporation (and 2 others) Year 1 figure

Claims (1)

【特許請求の範囲】[Claims] 水溶性切削・研削廃液を処理するに当たり、凝集加圧浮
上処理の後工程に、凝集加圧浮上処理液を3〜4倍に希
釈し、栄養源としてBOD量に対してリンを1%以上添
加する長時間曝気方式の生物処理を組み込んだことを特
徴とする水溶性切削・研削廃液の処理方法。
When treating water-soluble cutting/grinding waste liquid, in the post-process of coagulation pressure flotation treatment, the coagulation pressure flotation treatment liquid is diluted 3 to 4 times, and 1% or more of phosphorus is added to the BOD amount as a nutrient source. A method for treating water-soluble cutting and grinding waste fluid, which is characterized by incorporating biological treatment using a long-time aeration method.
JP62013824A 1987-01-23 1987-01-23 Treatment of water-soluble cutting/grinding waste liquid Pending JPS63182100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013824A JPS63182100A (en) 1987-01-23 1987-01-23 Treatment of water-soluble cutting/grinding waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013824A JPS63182100A (en) 1987-01-23 1987-01-23 Treatment of water-soluble cutting/grinding waste liquid

Publications (1)

Publication Number Publication Date
JPS63182100A true JPS63182100A (en) 1988-07-27

Family

ID=11844021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013824A Pending JPS63182100A (en) 1987-01-23 1987-01-23 Treatment of water-soluble cutting/grinding waste liquid

Country Status (1)

Country Link
JP (1) JPS63182100A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273462A (en) * 2001-03-22 2002-09-24 Asahi Kasei Corp Method and device for treating waste water
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103660A (en) * 1977-02-16 1978-09-09 Pielkenrood Vinitex Bv Method of and device for treating liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103660A (en) * 1977-02-16 1978-09-09 Pielkenrood Vinitex Bv Method of and device for treating liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273462A (en) * 2001-03-22 2002-09-24 Asahi Kasei Corp Method and device for treating waste water
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method

Similar Documents

Publication Publication Date Title
CN101698530B (en) Method for waste water treatment by Fenton reaction
JP7166795B2 (en) Method for treating wastewater containing COD components
KR100957851B1 (en) Method of water treatment
KR20010067402A (en) Method for conditioning and dewatering thermophilic aerobically digested biosolids
JPH04349997A (en) Treatment of organic waste water
JP2002191942A (en) Method for waste water treatment
CN109368870B (en) Method for treating RO concentrated water of printing and dyeing wastewater by Fenton technology
EP0672022B1 (en) Process for treating waste water
JPS63182100A (en) Treatment of water-soluble cutting/grinding waste liquid
US3617542A (en) Removal of phosphates from sewage effluent
JP2621090B2 (en) Advanced wastewater treatment method
KR100318661B1 (en) Wastewater treatment agent and its treatment method
JPS6320600B2 (en)
CN111470722A (en) Treatment method of rubber processing wastewater difficult to biodegrade
KR20160125136A (en) Method of manufacturing Mg-sericite and treating method of contaminated water using the Mg-sericite
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
KR910004127B1 (en) Concentrated organic waste water treating method
CN109626663A (en) A kind of method of Fenton oxidation water outlet post-processing
JPS61220795A (en) Treatment of high-concentration organic waste water
KR960002271B1 (en) Dyeing water treatment method
JPH1076275A (en) Wastewater treatment agent
CN115477409B (en) HPPO wastewater treatment method
JPS591117B2 (en) How to treat organic wastewater
KR19990068767A (en) Wastewater Treatment Method Using Fenton's Oxidation
JPH10180298A (en) Treatment of waste water and waste water treating device