JPS6343812A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle

Info

Publication number
JPS6343812A
JPS6343812A JP18757786A JP18757786A JPS6343812A JP S6343812 A JPS6343812 A JP S6343812A JP 18757786 A JP18757786 A JP 18757786A JP 18757786 A JP18757786 A JP 18757786A JP S6343812 A JPS6343812 A JP S6343812A
Authority
JP
Japan
Prior art keywords
oxygen
air
oxygen concentration
vehicle interior
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18757786A
Other languages
Japanese (ja)
Inventor
Megumi Fukushima
福島 恵
Shogo Watanabe
渡辺 正五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP18757786A priority Critical patent/JPS6343812A/en
Publication of JPS6343812A publication Critical patent/JPS6343812A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0007Adding substances other than water to the air, e.g. perfume, oxygen
    • B60H3/0035Adding substances other than water to the air, e.g. perfume, oxygen characterised by the control methods for adding the substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0007Adding substances other than water to the air, e.g. perfume, oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To obtain the comfortable air conditioning by detecting the oxygen concentration in the car compartment and controlling the oxygen concentration in the car compartment to a prescribed value on the basis of the result of the detection, in an air conditioner for feeding the air containing the enriched oxygen which is formed in the oxygen concentrating membranes into the car compartment. CONSTITUTION:In an oxygen concentrating device 70, oxygen concentrating membranes 82 are laminated between the partitioning walls 83 in a hollow body 81, and the air taking-in port 84 of the hollow body 81 communicates to the main duct 75 for taking in air on which a blower motor 73 and an air filter 72 are installed. The space in the hollow body 81 communicates to the suction side of a vacuum pump 71 through an oxygen taking-out duct 77, and an oxygen feeding duct 74 to the car compartment is connected on the discharge side of the vacuum pump 71. In the above-described air conditioner, an oxygen sensor 3 for detecting the oxygen concentration is installed into the car compartment, and the result of the detection is input into an air conditioning control unit 500. Then, the above-described pump 71 and the motor 73 are controlled so that the result of the detection of the oxygen sensor 3 becomes always constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両の空調装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a vehicle air conditioner.

(従来技術) 一般に、車両、特に自動車には、気候(特に気温)や走
行条件に関係なく乗員に対して快適な乗車環境をもたら
し、また窓の曇りや霜の付着を防いで運転者の視界を確
保し、安全で快適な運転を保証するために空気調和装置
が設置されている。
(Prior art) In general, vehicles, especially automobiles, provide a comfortable riding environment for passengers regardless of the climate (especially temperature) and driving conditions, and also prevent fogging and frost on the windows so that the driver can see clearly. Air conditioning equipment is installed to ensure safe and comfortable driving.

ところで、最近のこのような空気調和装置(以下、単に
空調装置と略称する)では、加熱、冷却、加温、除湿等
の従来型の空気調和機能の他にさらに車室内に供給され
る調和処理空気の酸素量を増大させる酸素富化機能を備
えたものが提案されるに至っている(例えば特開昭59
−212632号公報参照)。
By the way, recent air conditioners (hereinafter simply referred to as air conditioners) have not only conventional air conditioning functions such as heating, cooling, heating, and dehumidification, but also have conditioning processing functions that are supplied to the vehicle interior. Products with an oxygen enrichment function that increases the amount of oxygen in the air have been proposed (for example, in Japanese Patent Application Laid-Open No.
(Refer to Publication No.-212632).

この酸素富化機能を備えた空調装置は、空気中の窒素を
分離除去して酸素富化空気を生成する酸素富化装置を備
えてなり、該酸素富化装置によって窒素成分が除去され
た酸素富化空気を車室内に供給して車室内空気を酸素富
化状態とし、乗員の疲労回復、眠気、乗物酔いの防止等
を図り快適な乗車環境を形成するようになっている。
This air conditioner with an oxygen enrichment function is equipped with an oxygen enrichment device that separates and removes nitrogen from the air to produce oxygen-enriched air, and the oxygen enrichment device separates and removes nitrogen from the air to produce oxygen-enriched air. Enriched air is supplied into the vehicle interior to make the interior air oxygen-enriched, which helps occupants recover from fatigue, prevents drowsiness, and motion sickness, creating a comfortable riding environment.

(発明が解決しようとする問題点) ところが、上記酸素富化装置の駆動を継続すると、車室
内の酸素消費量は限られているので次第に車室内の酸素
濃度は高くなってくる。
(Problems to be Solved by the Invention) However, if the oxygen enrichment device continues to be driven, the oxygen concentration in the vehicle interior gradually increases because the amount of oxygen consumed within the vehicle interior is limited.

しかし、自動車の車室内は喫煙の可能性もあるので余り
に酸素濃度を高くすることは好ましくない。従って、上
記のような酸素富化装置を備えた車両の空調装置では、
どうしても車室内の酸素濃度を所定の値に制御できるこ
とが必要となる。
However, since there is a possibility of smoking inside a car, it is not preferable to increase the oxygen concentration too high. Therefore, in a vehicle air conditioner equipped with an oxygen enrichment device as described above,
It is absolutely necessary to be able to control the oxygen concentration within the vehicle interior to a predetermined value.

(問題点を解決するための手段) 本発明は、上記の要求に応じることを目的としてなされ
たもので、空気中の窒素を分離して酸素富化空気を生成
する酸素富化装置の一方側に空気供給路を、また他方側
に酸素導出路を各々設け、」二記酸素導出路を介して上
記酸素富化装置によって生成された酸素富化空気を車室
内に供給するようにした車両の空調装置において、車室
内の酸素濃度を検出する酸素濃度検出手段と、この酸素
濃度検出手段の検出値に基づいて上記車室内の酸素濃度
を所定値に制御する酸素濃度制御手段とを設けてなるも
のである。
(Means for Solving the Problems) The present invention was made with the aim of meeting the above-mentioned requirements. An air supply path is provided on one side and an oxygen outlet path is provided on the other side, and the oxygen-enriched air generated by the oxygen enrichment device is supplied into the vehicle interior through the oxygen outlet path. The air conditioner is provided with an oxygen concentration detection means for detecting the oxygen concentration in the vehicle interior, and an oxygen concentration control means for controlling the oxygen concentration in the vehicle interior to a predetermined value based on the detected value of the oxygen concentration detection means. It is something.

(作 用) 上記の手段によると、酸素濃度検出手段によって検出さ
れる車室内の酸素濃度の変化に応じて当該車室内酸素濃
度を所定値に安定させるように酸素濃度制御手段が車室
内酸素濃度の制御を行う。
(Function) According to the above means, the oxygen concentration control means adjusts the oxygen concentration in the vehicle interior so that the oxygen concentration in the vehicle interior is stabilized at a predetermined value in accordance with the change in the oxygen concentration in the vehicle interior detected by the oxygen concentration detection means. control.

その結果、車室内酸素濃度が所定の値に維持される。As a result, the oxygen concentration in the vehicle interior is maintained at a predetermined value.

(実施例) 第1図は、酸素富化機能を備えた本発明の第1実施例に
係る車両の空気調和装置を示している。
(Embodiment) FIG. 1 shows a vehicle air conditioner according to a first embodiment of the present invention, which is equipped with an oxygen enrichment function.

該空調装置は、先ず冷媒配管14によって相互に接続さ
れたコンプレッサ(圧縮機)10、コンデンサ(凝縮器
口1、エバポレータ(蒸発器口2等によって構成される
冷房系装置と、温水配管(エンジン冷却水配管に接続口
3によって相互に接続された温水バルブ20、ヒータコ
ア21等からなる暖房系装置と、外気取入れ用のプロワ
ユニット30、外気ペンデレージョンおよび内気ザーキ
ュレーノヨン用の内外気切替モータ31、送風ダクト3
2等からなる送風系装置と、空調用温度設定器41,4
2、各種操作スイッチ43〜50、設−3〜 定温度イレンケータ51等からなる操作系装置40と、
マイクロコンピュータによって形成された各種空調制御
機能を有する空調コントロールユニット500、外気温
センサ51、内気温センサ52、水温センサ53、ダク
ト内温度センサ54、車室内酸素センサ3、各種制御モ
ータ(モード切替モータ61、エアミックスダンパ制御
モータ62)等からなる制御系装置と、酸素濃縮装置7
o、真空ポンプ71.エアフィルタ72、ブロワモータ
73、車室内への酸素供給用ダクト74等からなる酸素
富化装置とから構成されている。
The air conditioner first consists of a cooling system device consisting of a compressor 10, a condenser (condenser port 1, an evaporator port 2, etc.) connected to each other by a refrigerant pipe 14, and a hot water pipe (engine cooling A heating system device consisting of a hot water valve 20, a heater core 21, etc., mutually connected to the water pipes by a connection port 3, a blower unit 30 for taking in outside air, and an outside air switch for outside air penderation and inside air circulation. Motor 31, ventilation duct 3
A ventilation system device consisting of 2 etc. and an air conditioning temperature setting device 41, 4
2. An operation system device 40 consisting of various operation switches 43 to 50, setting-3 to constant temperature eraser 51, etc.;
An air conditioning control unit 500 having various air conditioning control functions formed by a microcomputer, an outside temperature sensor 51, an inside temperature sensor 52, a water temperature sensor 53, an inside duct temperature sensor 54, an interior oxygen sensor 3, various control motors (mode switching motor) 61, a control system device consisting of an air mix damper control motor 62), and an oxygen concentrator 7
o, vacuum pump 71. It is composed of an air filter 72, a blower motor 73, an oxygen enrichment device including an oxygen supply duct 74 into the vehicle interior, and the like.

そして、上記冷房系装置の上記エバポレータ12と上記
暖房系装置のヒータコア21とは、例えばダッシュパネ
ル下方に位置して設けられた冷・暖房用路ユニットケー
ス6.7内に設置されており、ダクト部5を介して当該
各ユニットケース6゜7が相互に連通状態で接続されて
いる。上記冷房用ユニットケース6側には、また上記送
風系のプロワユニット30の送風ダクト32が接続され
ている。また、上記暖房用ユニットケース7側には、暖
房用のヒートダクト15および換気並びに冷房用のベン
トダクト16がそれぞれ設けられている。
The evaporator 12 of the cooling system device and the heater core 21 of the heating system device are installed, for example, in a cooling/heating path unit case 6.7 provided below the dash panel, and are installed in a duct. The respective unit cases 6 and 7 are connected to each other via the portion 5 in a communicating state. A blower duct 32 of the blower unit 30 of the blower system is also connected to the cooling unit case 6 side. Further, on the side of the heating unit case 7, a heat duct 15 for heating and a vent duct 16 for ventilation and cooling are provided, respectively.

さらに、符号17は、上記ヒータコア21の一端に回動
可能に枢着され上記ダクト部5内に位置して当該ダクト
側からの通路をヒータコア21を経由する通路と、ヒー
タコア21をバイパスする通路と、それら両方の通路を
共に形成する分岐通路とを各々選択的に形成するように
設けられたエアミックスダンパーであり、このエアミッ
クスダンパー17は、上記制御モータ62によって開度
制御されるとともにその実開度はポテンショメータ63
によって検出され、該検出値は上記空調コントロールユ
ニット500に入力されるようになっている。
Further, reference numeral 17 is rotatably pivotally attached to one end of the heater core 21 and located within the duct portion 5, and includes a passage from the duct side that passes through the heater core 21 and a passage that bypasses the heater core 21. , and a branch passage that together form both of these passages. The degree is potentiometer 63
The detected value is input to the air conditioning control unit 500.

また、符号66はヒートダクト15の開閉ダンパー、ま
た67はデフロスタ18の開閉ダンパーであり、これら
両開閉ダンパー66.67の開閉状態は相互に逆比例開
度で連動するようになっている。なお符号19はラジェ
ータである。
Further, reference numeral 66 is an opening/closing damper for the heat duct 15, and 67 is an opening/closing damper for the defroster 18, and the opening/closing states of these opening/closing dampers 66, 67 are interlocked with each other in inverse proportion to each other. Note that the reference numeral 19 is a radiator.

一方、上記酸素富化装置側の上記酸素濃縮装置70は、
例えば中空筺体81内にポリカーボネートシリコン共重
合体により形成された酸素富化膜82を隔壁83.83
間に積層した酸素富化膜式の酸素富化モジュールよりな
り、上記中空筺体81の空気取入れ口84側を上述のブ
ロワモータ73、エアフィルタ72を介装した空気取入
れ用のメインダクト75に連通せしめるとともに上記中
空筺体81内隔壁83.83間の酸素透過側空間を酸素
取出ロアロ部分より酸素取出ダクト77を介して上述の
真空ポンプ71の吸入側に連通せしめて構成されている
。また、真空ポンプ7Iの吐出側には上記車室内への酸
素供給ダクト74の一端が接続されている。
On the other hand, the oxygen concentrator 70 on the oxygen enrichment device side is
For example, an oxygen enriched film 82 formed of a polycarbonate silicone copolymer is placed inside a hollow housing 81 as a partition wall 83.83.
The air intake port 84 side of the hollow casing 81 is connected to the main duct 75 for air intake in which the blower motor 73 and air filter 72 are interposed. At the same time, the oxygen permeation side space between the partition walls 83 and 83 in the hollow casing 81 is configured to be communicated with the suction side of the vacuum pump 71 from the oxygen extraction lower part through the oxygen extraction duct 77. Further, one end of the oxygen supply duct 74 into the vehicle interior is connected to the discharge side of the vacuum pump 7I.

上記真空ポンプ71は、上記冷房系のコンプレッサ10
ととも1こ当該車両のエンジンEによって駆動されるよ
うになっている。
The vacuum pump 71 is the compressor 10 of the cooling system.
Both engines are driven by the engine E of the vehicle.

上記真空ポンプ71は、上記酸素富化膜82゜82・・
の空気供給側界面部と酸素取出界面部との間に分圧差(
差圧)状態を形成するとともに透過酸素の車室内への供
給作用を果たすものである。
The vacuum pump 71 has the oxygen enriched membrane 82°82...
The partial pressure difference (
This system creates a condition (differential pressure) and also functions to supply permeated oxygen into the vehicle interior.

定形高分子膜であり、上記真空ポンプ71が駆動される
とその透過側の界面部は所定の負圧状態に曝される一方
、他方、空気供給側の界面部は上述のブロワモータ73
による送風圧によって大気圧以上の正圧状態に曝される
。その結果、上記酸素富化膜82.82・・の両界面部
間にはその時の所定の分圧差に応じて高圧側から低圧側
への主として酸素分子の透過が生じる。この透過は、具
体的には溶解と拡散の組合せによって生じる。
It is a regular polymer membrane, and when the vacuum pump 71 is driven, the interface part on the permeation side is exposed to a predetermined negative pressure state, while the interface part on the air supply side is exposed to the above-mentioned blower motor 73.
It is exposed to positive pressure above atmospheric pressure due to the air blowing pressure. As a result, oxygen molecules mainly permeate between the interfaces of the oxygen enriched membranes 82, 82, . . . from the high pressure side to the low pressure side depending on the predetermined partial pressure difference at that time. This permeation specifically occurs through a combination of dissolution and diffusion.

すなわち、周知のように無定形高分子膜の表面に空気が
接すると、該空気中の酸素並びに窒素分子(なお、アル
ゴン成分については少率ゆえに無視する)は、先ず上記
酸素富化膜82の表面に吸着し、次いで当該酸素富化膜
82の内部に分子移動により溶は込む溶解作用を生じる
。該溶解作用によって酸素富化膜82内に侵入した酸素
並びに窒素分子は、さらに該膜82の内部を移動する。
That is, as is well known, when air comes into contact with the surface of the amorphous polymer membrane, oxygen and nitrogen molecules in the air (note that the argon component is ignored due to its small proportion) are first absorbed by the oxygen-enriching membrane 82. It adsorbs on the surface and then dissolves into the interior of the oxygen-enriched membrane 82 due to molecular movement, resulting in a dissolving action. The oxygen and nitrogen molecules that have entered the oxygen enriched membrane 82 due to the dissolution action further move inside the membrane 82.

すなわち拡散作用を生じてやがて当該酸素富化膜82の
透過側(低圧側)から脱離して出て行き、これらの作用
の連続により全体として気体分子の透過現象を生じる。
That is, a diffusion effect occurs, and the gas eventually desorbs and exits from the permeation side (low pressure side) of the oxygen-enriching membrane 82, and the series of these effects causes a permeation phenomenon of gas molecules as a whole.

この場合、酸素および窒素各気体分子の透過量は、次の
式によって表わされる。
In this case, the permeation amount of oxygen and nitrogen gas molecules is expressed by the following equation.

従って、特定の酸素富化モジュールの場合、上記実施例
の真空ポンプ71.ブロワモータ73の運転条件を一定
とすると結局酸素分子の透過量は各気体分子固有の透過
係数と時間(透過可能状態に維持する時間)とによって
決定される。
Therefore, for a particular oxygen enrichment module, vacuum pump 71. of the above embodiment. Assuming that the operating conditions of the blower motor 73 are constant, the amount of oxygen molecules that permeate is ultimately determined by the permeability coefficient unique to each gas molecule and the time (time for maintaining the permeable state).

上記透過係数は、もちろん上記酸素富化膜82の組成?
二対して決定されるものであるが、例えば本実施例のポ
リカーボネート・シリコン共重合体のものの場合には、
一般に上記酸素分子の透過係数が窒素分子の透過係数に
比べてはるかに大きい(約3倍)。
Of course, the above-mentioned permeability coefficient is the composition of the above-mentioned oxygen enrichment film 82?
For example, in the case of the polycarbonate-silicon copolymer of this example,
Generally, the permeability coefficient of oxygen molecules is much larger (approximately three times) than the permeability coefficient of nitrogen molecules.

従って、当然透過量も大きくなる訳である。なお、この
間の関係をさらに詳しく説明すると、上記透過係数は、
上記溶解作用の大きさを決定する=8− 溶解度係数と拡散作用の大きさを決定する拡散係数との
積によって決まるものであり、また後者の拡散係数は当
該気体分子のファンデルワールス径(分子径)によって
決まることが知られている。上記酸素分子の場合には、
窒素分子よりも先ず溶解度係数が大きい一方、分子のフ
ァンデルワールス径は小さいために拡散係数は大きい。
Therefore, the amount of transmission naturally increases. In addition, to explain the relationship between these in more detail, the above transmission coefficient is
The magnitude of the dissolution effect is determined by the product of the solubility coefficient and the diffusion coefficient, which determines the magnitude of the diffusion effect, and the latter diffusion coefficient is determined by the van der Waals diameter of the gas molecule (molecular It is known that the diameter is determined by In the case of the above oxygen molecule,
While it has a larger solubility coefficient than nitrogen molecules, it also has a larger diffusion coefficient because the van der Waals diameter of the molecule is smaller.

従って、それらの積である透過係数もまた当然大きくな
る。
Therefore, the transmission coefficient, which is the product of these, naturally also becomes large.

その結果、窒素分子の透過に要する時間は、酸素分子の
場合よりもはるかに大となり、上記酸素富化膜82.8
2・・間に於ける空気流通速度を酸素分子の例えば溶解
度係数を基準として効果的な透過時間が得られるように
設定すると、窒素分子が殆んど溶解しない内に酸素分子
が先に溶解し、吸着作用中の窒素分子は空気流によりそ
のまま排出口85側に押し流されてしまうので、結局酸
素分子のみが透過されるようになる。従って、このよう
な構成の酸素濃縮装置70によれば、基本的には車室側
に取出される酸素濃度(%)は、第2図に示すように上
記酸素富化膜82.82・・部分の空気供給側圧力Pi
と酸素取出側圧力POとの分圧比(Po/Pi)によっ
て決定されることになる。
As a result, the time required for permeation of nitrogen molecules is much longer than that for oxygen molecules, and the oxygen-enriched membrane 82.8
2. If the air flow rate between the two is set so as to obtain an effective permeation time based on the solubility coefficient of oxygen molecules, the oxygen molecules will dissolve first while the nitrogen molecules will hardly dissolve. Since the nitrogen molecules being adsorbed are swept away by the air flow toward the outlet 85, only the oxygen molecules end up being permeated. Therefore, according to the oxygen concentrator 70 having such a configuration, basically the oxygen concentration (%) taken out to the passenger compartment side is as shown in FIG. Air supply side pressure Pi
and the oxygen extraction side pressure PO (Po/Pi).

そのため、例えば上述の空調コントロールユニット50
0で上記ブロワモータ73による送風圧または真空ポン
プ71による吸引圧を任意に制御すると、上記分圧比を
変えることができ上記酸素濃縮装置70自体による供給
酸素の絶対量を任意にコントロールすることができるよ
うになる。
Therefore, for example, the above-mentioned air conditioning control unit 50
By arbitrarily controlling the blowing pressure by the blower motor 73 or the suction pressure by the vacuum pump 71 at 0, the partial pressure ratio can be changed, and the absolute amount of oxygen supplied by the oxygen concentrator 70 itself can be arbitrarily controlled. become.

そのために、上記ブロワモータ73には、例えばジェネ
レータ90から供給される供給電流の値を任意に調整す
るための電流調整器91が付設されており、該電流調整
器91の調整値を上記空調コントロールユニット500
によって制御して上記ブロワモータ73の回転数を調整
し、その送風圧をコントロールするようになっている。
For this purpose, the blower motor 73 is provided with a current regulator 91 for arbitrarily adjusting the value of the supply current supplied from the generator 90, for example, and the adjusted value of the current regulator 91 is applied to the air conditioning control unit. 500
The rotational speed of the blower motor 73 is adjusted by controlling the blower motor 73, and the air blowing pressure is controlled.

また、真空ポンプ71には、例えばプーリ93の径を任
意に可変ならしめる電磁式の無段変速機構92が設けら
れており、この無段変速機構92を上記空調コントロー
ルユニット500により制御することによって上記真空
ポンプ71の回転数を任意にコントロールし、当該真空
ポンプ71の吸引圧を可変ならしめるようになっている
。従って、これらブロワモータ73の送風圧または真空
ポンプ71の吸引圧のいずれか一方(又は両方)の制御
により、結局上記酸素富化膜82,82・・の両売面部
間の分圧比が任意に変えられることになる。
Further, the vacuum pump 71 is provided with an electromagnetic continuously variable transmission mechanism 92 that allows the diameter of the pulley 93 to be arbitrarily varied, for example, and this continuously variable transmission mechanism 92 is controlled by the air conditioning control unit 500. The rotational speed of the vacuum pump 71 is arbitrarily controlled to make the suction pressure of the vacuum pump 71 variable. Therefore, by controlling either (or both) the blowing pressure of the blower motor 73 or the suction pressure of the vacuum pump 71, the partial pressure ratio between the two selling surfaces of the oxygen enrichment membranes 82, 82, etc. can be arbitrarily changed. It will be done.

そして、その各場合において上述のように車室内(こは
酸素センサ3が設けられており、該酸素センサ3によっ
て検出された車室内の酸素濃度が上記空調コントロール
ユニット500に入力されるようになっているので、空
調コントロールユニット500は該検出値が常に一定と
なるように上記ブロワモータ73の送風圧、真空ポンプ
71の吸引圧をフィードバック制御する。
In each case, as described above, the oxygen sensor 3 is provided in the vehicle interior, and the oxygen concentration in the vehicle interior detected by the oxygen sensor 3 is input to the air conditioning control unit 500. Therefore, the air conditioning control unit 500 feedback-controls the blowing pressure of the blower motor 73 and the suction pressure of the vacuum pump 71 so that the detected value is always constant.

従って、該制御により車室内酸素濃度の変化は、常に一
定の範囲内に抑制されることになり、はぼ所定設定濃度
値に維持することが可能となる。
Therefore, by this control, changes in the oxygen concentration in the vehicle interior are always suppressed within a certain range, and it becomes possible to maintain the oxygen concentration at a predetermined set value.

次に第3図は、本発明の第2実施例に係る車両の空調装
置を示している。
Next, FIG. 3 shows a vehicle air conditioner according to a second embodiment of the present invention.

本実施例では、上述の酸素濃縮装置70と真空ポンプ7
1とを接続する酸素導出ダクト77に外気導入ダクト8
8を連通せしめ、該外気導入ダクトの途中にリリーフ弁
構成の負圧コントロールバルブ8つを介設してなるもの
である。当該負圧コントロールバルブ89は、例えば電
磁弁により形成され、」二記酸素センサ3の検出値に応
じた上記空調コントロールユニット500からの制御信
号によってその開閉状態が制御されるようになっており
、当該負圧コントロールバルブ89によって上記酸素富
化膜82.82・・に作用する上記真空ポンプ7Iの吸
引圧(負圧)を実質的に可変ならしめることにより上記
酸素富化膜82.82・・両売面部間の分圧比を変えて
上記第1実施例のように最終的に酸素濃縮装置70の酸
素生成量を制御するようにしたものである。
In this embodiment, the above-mentioned oxygen concentrator 70 and vacuum pump 7
The outside air introduction duct 8 is connected to the oxygen derivation duct 77 that connects the
8 are connected to each other, and eight negative pressure control valves each having a relief valve configuration are interposed in the middle of the outside air introduction duct. The negative pressure control valve 89 is formed of, for example, a solenoid valve, and its opening/closing state is controlled by a control signal from the air conditioning control unit 500 in accordance with the detected value of the oxygen sensor 3. By making the suction pressure (negative pressure) of the vacuum pump 7I acting on the oxygen enrichment membranes 82, 82 substantially variable by means of the negative pressure control valve 89, the oxygen enrichment membranes 82, 82, . . . By changing the partial pressure ratio between both selling surfaces, the amount of oxygen produced by the oxygen concentrator 70 is ultimately controlled as in the first embodiment.

このような構成によっても上記第1実施例と全く同様に
車室内酸素濃度を一定にコントロールすることができる
With this configuration as well, the oxygen concentration in the vehicle interior can be controlled to a constant level, just as in the first embodiment.

次に、第4図は本発明の第3実施例に係る車両の空調装
置を示ずらのである。
Next, FIG. 4 shows a vehicle air conditioner according to a third embodiment of the present invention.

上記第1および第2実施例では、分圧比を可変すること
により、結局酸素濃縮装置自体の酸素生成能力を可変な
らしめる構成を採用し、生成酸素量を無駄にしないよう
な構成を採ったが、一方このような構成の場合には電流
調整器91や無段変速機構92を必要とし、構造も複雑
となる。また、第2実施例の場合には、そのような複雑
な機構は必要としないが、一旦真空ポンプ71側に吸引
された多量の酸素がそめまま車室内に供給されるから、
フィードバック制御機構としてはどうしても応答性に欠
けるものとなる。
In the first and second embodiments described above, a configuration was adopted in which the oxygen generation capacity of the oxygen concentrator itself was eventually made variable by varying the partial pressure ratio, so that the amount of generated oxygen was not wasted. However, in the case of such a configuration, a current regulator 91 and a continuously variable transmission mechanism 92 are required, and the structure becomes complicated. In addition, in the case of the second embodiment, such a complicated mechanism is not required, but since a large amount of oxygen once sucked into the vacuum pump 71 side is directly supplied into the vehicle interior,
As a feedback control mechanism, it inevitably lacks responsiveness.

そこで、上記酸素濃縮装置70の酸素生成能力自体を全
く変えることなく、しかも真空ポンプ71の出口側で車
室内に供給される酸素量そのものを直接流量制御するよ
うに構成したのが本実施例である。
Therefore, in this embodiment, the oxygen concentrator 70 is configured to directly control the amount of oxygen supplied into the vehicle interior at the outlet side of the vacuum pump 71 without changing the oxygen generation capacity itself. be.

すなわち、本実施例では上記真空ポンプ7I吐出側の酸
素供給ダクト74の途中に電磁絞り弁によって構成され
た流量制御弁78を介装し、該流量制御弁78を上記酸
素センサ3の検出値に応じて空調コントロールユニット
500によってフィードバック制御するようになってい
る。従って、酸素センサ3によって検出された車室内の
酸素濃度が所定の設定値よりも高い場合には、上記流量
制御弁78が絞られて車室内への酸素の供給が制限され
る一方、低い場合には上記流量制御弁78がより大きく
開弁されて車室内への酸素の供給量が増大され、最終的
に車室内酸素濃度が所定の設定値に収束するように制御
される。
That is, in this embodiment, a flow rate control valve 78 constituted by an electromagnetic throttle valve is interposed in the middle of the oxygen supply duct 74 on the discharge side of the vacuum pump 7I, and the flow rate control valve 78 is adjusted to the detected value of the oxygen sensor 3. Accordingly, the air conditioning control unit 500 performs feedback control. Therefore, when the oxygen concentration in the vehicle interior detected by the oxygen sensor 3 is higher than a predetermined set value, the flow rate control valve 78 is throttled to limit the supply of oxygen into the vehicle interior; Then, the flow rate control valve 78 is opened more widely to increase the amount of oxygen supplied into the vehicle interior, and the oxygen concentration in the vehicle interior is controlled so as to finally converge to a predetermined set value.

このような構成によると、車室内への酸素供給量がその
供給端で直接に制御されるとともに制御される流電範囲
も大きいから、濃度制御もきわめて応答性の高いものと
なり、また酸素供給ダクト74に流量制御弁78を設け
ることのみで足りるから構造も簡単で済むようになる。
With this configuration, the amount of oxygen supplied into the vehicle interior is directly controlled at the supply end, and the controlled current range is also large, making concentration control extremely responsive. Since it is sufficient to provide only the flow rate control valve 78 at 74, the structure can be simplified.

なお、この場合、上記流量制御弁78を三方制御弁構成
にして流量制限時の余剰酸素をエンジン吸気側に送り込
むようにしてもよいことはもちろんである。
In this case, it goes without saying that the flow rate control valve 78 may be configured as a three-way control valve so that surplus oxygen at the time of flow restriction is sent to the engine intake side.

なお、以上の第1〜第3実施例では、いずれの場合にも
酸素濃縮装置70として酸素富化膜式の酸素富化モジュ
ールを使用したが、該装置はこれに限るものではな(、
例えば第4の実施例として第5図に示すような窒素吸着
分離式の酸素富化モジュールを使用することもまた可能
である。
In addition, in each of the first to third embodiments described above, an oxygen enrichment membrane type oxygen enrichment module was used as the oxygen concentrator 70, but the device is not limited to this.
For example, as a fourth embodiment, it is also possible to use a nitrogen adsorption separation type oxygen enrichment module as shown in FIG.

この窒素吸着分離式の酸素濃縮装置70′は、例えばモ
レキュラシーブス(米国ユニオンカーバイト社の商品名
)と呼ばれる人造ゼオライトよりなる窒素吸着剤101
を内蔵した窒素吸着筒102.102を先ず電磁開閉バ
ルブ103,103、空気圧縮機107を介して上記空
気取入用のメインダクト75に、また電磁開閉バルブ1
04,105を介して酸素供給ダクト74並びに窒素富
化空気排出ダクト85にそれぞれ連通せしめて構成され
ている。
This nitrogen adsorption separation type oxygen concentrator 70' uses a nitrogen adsorbent 101 made of artificial zeolite called, for example, molecular sieves (trade name of Union Carbide Company, USA).
First, the nitrogen adsorption cylinder 102,102 with built-in is connected to the main duct 75 for air intake via the electromagnetic switching valves 103, 103 and the air compressor 107, and then the electromagnetic switching valve 1 is connected to the main duct 75 for air intake.
The oxygen supply duct 74 and the nitrogen-enriched air discharge duct 85 are connected to each other through the oxygen supply ducts 04 and 105, respectively.

上記モレキュラシーブスは、合成結晶アルミノ・シリケ
ートの含水金属塩よりなり、該金属塩に含まれている多
量の結晶水を加熱脱離することによって形成されたもの
で、上記結晶水の除去によって形成された結晶格子によ
る所定径の多数の空洞(ケージ)の内壁に被吸着分子を
吸着するようになっている。すなわち、上記結晶格子は
ポリアニンよりなり、該ポリアニンを電気的に中性化す
るために所定種類のカチオンを取り込んで酸・塩基性の
強い所定極性の静電場を形成しており、極性分子や分極
性分子に対して高い親和性を示すようになっている。一
般に窒素は、酸素に比較して上記ポリアニンに対する親
和性が高い。そして、被吸着分子が当該空洞内に到達す
るためには先ずその表面から当該空洞内につながってい
る複数の均一な細孔を通らねばならないようになってお
り、該細孔を通過し得て、しかも上記のようにポリアニ
ンとの親和性の高い分子(窒素分子)だけが吸着される
ことになる(分子ふるい作用)。一方、酸素は、窒素よ
りも上記ポリアニンとの親和性が低いために吸着されな
い。
The above-mentioned molecular sieves are made of a hydrated metal salt of synthetic crystalline alumino-silicate, and are formed by heating and desorbing a large amount of crystal water contained in the metal salt, and are formed by removing the crystal water. The molecules to be adsorbed are adsorbed on the inner walls of a large number of cavities (cages) of a predetermined diameter formed by a crystal lattice. That is, the crystal lattice is made of polyanine, and in order to electrically neutralize the polyanine, it takes in a specific type of cation to form an electrostatic field with a specific polarity that is strongly acidic or basic. It shows a high affinity for polar molecules. Generally, nitrogen has a higher affinity for the polyanine than oxygen. In order for molecules to be adsorbed to reach the cavity, they must first pass through a plurality of uniform pores connected from the surface into the cavity; Moreover, as mentioned above, only molecules (nitrogen molecules) that have a high affinity with polyanine are adsorbed (molecular sieving effect). On the other hand, oxygen is not adsorbed because it has a lower affinity with the polyanine than nitrogen.

従って、上記窒素吸着剤101中を一定周期でパージし
てやると、吸着状態で滞留する窒素は排出口側から外部
に放出されるとともに酸素取出口側からは通過分離され
た酸素ガスのみを連続的に取出して車室内に供給するこ
とができる。そして、このような酸素濃縮装置70′を
使用した場合においても、上記第1〜第3実施例の場合
と同様に車室内酸素濃度が高すぎたり低すぎる場合には
、酸素濃度制御手段による車室内酸素濃度のコントロー
ルが必要であるが、この場合にも上記第1〜第3実施例
に倣って次のような酸素濃度制御手段が採用される。
Therefore, when the nitrogen adsorbent 101 is purged at regular intervals, the nitrogen remaining in the adsorbed state is released to the outside from the exhaust port, and only the passed and separated oxygen gas is continuously released from the oxygen take-out port. It can be taken out and supplied into the passenger compartment. Even when such an oxygen concentrator 70' is used, if the oxygen concentration in the vehicle interior is too high or low, as in the first to third embodiments, the oxygen concentration control means Although it is necessary to control the indoor oxygen concentration, the following oxygen concentration control means is adopted in this case as well, in accordance with the first to third embodiments.

(a)  窒素吸着筒102,102内への吸着用加圧
空気を供給する空気圧縮機107の回転数を無段変速機
構で任意にコントロールする。
(a) The rotational speed of the air compressor 107 that supplies pressurized air for adsorption into the nitrogen adsorption cylinders 102, 102 is arbitrarily controlled by a continuously variable transmission mechanism.

(b)  空気圧縮機107から窒素吸着筒102,1
02内に供給される加圧空気の供給量をリリーフバルブ
によってコントロールする。
(b) From the air compressor 107 to the nitrogen adsorption column 102,1
The amount of pressurized air supplied into the 02 is controlled by a relief valve.

(c)  酸素供給ダクト74途中に第3実施例と同様
の流量制御弁を設けて車室内への酸素供給量を直接制御
する。
(c) A flow control valve similar to that in the third embodiment is provided in the middle of the oxygen supply duct 74 to directly control the amount of oxygen supplied into the vehicle interior.

一方、上記第1〜第4の各実施例において、上記酸素セ
ンサ3によって検出された車室内の酸素濃度がすでに余
りにも高くて上記酸素供給量の低減制御のみでは速やか
な車室内の酸素濃度の低下に至らないような場合(設定
偏差量を上方側にオーバしている場合)には、第5実施
例として上記空調コントロールユニット500は上記プ
ロワユニット30のプロワモータ400を自動的に駆動
してベントダクトI6を介して所定時間車室内空気のベ
ンチレーションを行ない、外気導入によって車室内酸素
濃度を強制的かつ速やかに低下させるとともに上記真空
ポンプ71の駆動を停止させる制御が併せて採用される
。この外気導入は、また上記各酸素濃縮装置70.70
’の窒素富化排出空気を使用してもよい。
On the other hand, in each of the first to fourth embodiments, the oxygen concentration in the vehicle interior detected by the oxygen sensor 3 is already too high, and the oxygen concentration in the vehicle interior cannot be quickly reduced by controlling the oxygen supply amount reduction alone. In a case where the amount of deviation does not decrease (in a case where the set deviation amount is exceeded upward), the air conditioning control unit 500 automatically drives the blower motor 400 of the blower unit 30 as a fifth embodiment. Control is also employed to ventilate the air in the vehicle interior for a predetermined period of time via the vent duct I6, forcefully and quickly reduce the oxygen concentration in the vehicle interior by introducing outside air, and stop driving the vacuum pump 71. This outside air introduction also applies to each oxygen concentrator 70.70
'Nitrogen-enriched exhaust air may be used.

(発明の効果) 本発明は以上に説明したように、空気中の窒素を分離し
て酸素富化空気を生成する酸素富化装置の一方側に空気
供給路を、また他方側に酸素導出路を各々設け、上記酸
素導出路を介して上記酸素富化装置によって生成された
酸素富化空気を車室内に供給するようにした車両の空調
装置において、車室内の酸素濃度を検出する酸素濃度検
出手段と、この酸素濃度検出手段の検出値に基づいて上
記車室内の酸素濃度を所定値に制御する酸素濃度制御子
にとを設けたことを特徴とするものである。
(Effects of the Invention) As explained above, the present invention has an air supply path on one side of an oxygen enrichment device that separates nitrogen in the air to produce oxygen-enriched air, and an oxygen outlet path on the other side. In a vehicle air conditioner, the air conditioner is configured to supply oxygen-enriched air generated by the oxygen enrichment device into the vehicle interior through the oxygen outlet path, and an oxygen concentration detection device that detects the oxygen concentration in the vehicle interior. and an oxygen concentration controller for controlling the oxygen concentration in the vehicle interior to a predetermined value based on the detected value of the oxygen concentration detection means.

従って、本発明によると、酸素濃度検出手段によって検
出される車室内の酸素濃度の変化に応じて当該車室内酸
素濃度を所定値に安定させるように酸素濃度制御手段が
車室内酸素濃度の制御を行う。その結果、車室内酸素濃
度が所定の値に維持される。
Therefore, according to the present invention, the oxygen concentration control means controls the oxygen concentration in the vehicle interior so that the oxygen concentration in the vehicle interior is stabilized at a predetermined value in accordance with the change in the oxygen concentration in the vehicle interior detected by the oxygen concentration detection means. conduct. As a result, the oxygen concentration in the vehicle interior is maintained at a predetermined value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例に係る車両の空調装置の
システムの概略図、第2図は、同実施例に於ける酸素濃
縮装置の分圧比と酸素分離濃度との関係を示すグラフ、
第3図は、本発明の第2実施例に係る車両の空調装置の
システム概略図、第4図は、本発明の第3実施例に係る
車両の空調装置のシステム概略図、第5図は、本発明の
第4実施例に係る車両の空調装置のシステム概略図であ
る。 3・・・・・酸素センサ 30・・・・プロワユニット 32・・・・送風ダクト 500・・・・空調コントロールユニット70.70’
  ・・酸素濃縮装置 71・・・・真空ポンプ 73・・・・プロワモータ 74・・・・酸素供給ダクト 75・・・・空気取入れ用メインダクト77・・・・酸
素導出ダクト 78・・・・流量制御弁 81・・・・中空筐体 82・・・・酸素富化膜 88・・・・外気導入ダクト 89・・・・負圧コントロールバルブ ′90・・・・
温度センサ 91・・・・電流調整器 92・・・・無段変速機構 101・・・窒素吸着剤 102・・・窒素吸着筒 103〜105・・開閉バルブ 107・・・空気圧縮機
FIG. 1 is a schematic diagram of a vehicle air conditioner system according to the first embodiment of the present invention, and FIG. 2 shows the relationship between the partial pressure ratio and the oxygen separation concentration of the oxygen concentrator in the same embodiment. graph,
FIG. 3 is a system schematic diagram of a vehicle air conditioner according to a second embodiment of the present invention, FIG. 4 is a system schematic diagram of a vehicle air conditioner according to a third embodiment of the present invention, and FIG. , is a system schematic diagram of a vehicle air conditioner according to a fourth embodiment of the present invention. 3...Oxygen sensor 30...Prower unit 32...Blower duct 500...Air conditioning control unit 70.70'
... Oxygen concentrator 71 ... Vacuum pump 73 ... Prower motor 74 ... Oxygen supply duct 75 ... Air intake main duct 77 ... Oxygen extraction duct 78 ... Flow rate Control valve 81...Hollow housing 82...Oxygen enrichment membrane 88...Outside air introduction duct 89...Negative pressure control valve '90...
Temperature sensor 91...Current regulator 92...Continuously variable transmission mechanism 101...Nitrogen adsorbent 102...Nitrogen adsorption cylinders 103-105...Opening/closing valve 107...Air compressor

Claims (1)

【特許請求の範囲】[Claims] 1.空気中の窒素を分離して酸素富化空気を生成する酸
素富化装置の一方側に空気供給路を、また他方側に酸素
導出路を各々設け、上記酸素導出路を介して上記酸素富
化装置によって生成された酸素富化空気を車室内に供給
するようにした車両の空調装置において、車室内の酸素
濃度を検出する酸素濃度検出手段と、この酸素濃度検出
手段の検出値に基づいて上記車室内の酸素濃度を所定値
に制御する酸素濃度制御手段とを設けたことを特徴とす
る車両の空調装置。
1. An air supply path is provided on one side of an oxygen enrichment device that separates nitrogen in the air to produce oxygen-enriched air, and an oxygen outlet path is provided on the other side, and the oxygen enrichment is performed through the oxygen outlet path. In a vehicle air conditioner configured to supply oxygen-enriched air generated by the device into a vehicle interior, there is provided an oxygen concentration detection means for detecting the oxygen concentration in the vehicle interior, and the above-mentioned method based on the detected value of the oxygen concentration detection means. 1. An air conditioning system for a vehicle, comprising: oxygen concentration control means for controlling oxygen concentration in a vehicle interior to a predetermined value.
JP18757786A 1986-08-09 1986-08-09 Air conditioner for vehicle Pending JPS6343812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18757786A JPS6343812A (en) 1986-08-09 1986-08-09 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18757786A JPS6343812A (en) 1986-08-09 1986-08-09 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JPS6343812A true JPS6343812A (en) 1988-02-24

Family

ID=16208534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18757786A Pending JPS6343812A (en) 1986-08-09 1986-08-09 Air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JPS6343812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224221A (en) * 1988-07-12 1990-01-26 Kazukiyo Takano Air environment improving device for cabin
US5216646A (en) * 1988-11-16 1993-06-01 Matsushita Electric Industrial Co., Ltd. Tracking system in recording/reproducing apparatus
KR20040027067A (en) * 2002-09-27 2004-04-01 위니아만도 주식회사 Vacuum pump structure for oxygen supply system of vehicle
KR20040027070A (en) * 2002-09-27 2004-04-01 위니아만도 주식회사 Oxygen supply structure for vehicle
JP2007176301A (en) * 2005-12-27 2007-07-12 Valeo Thermal Systems Japan Corp Air adjusting device for vehicle
CN112124049A (en) * 2020-09-23 2020-12-25 山东唐骏欧铃汽车制造有限公司 Carbon dioxide and oxygen conversion device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212632A (en) * 1983-05-18 1984-12-01 Nippon Denso Co Ltd Oxygen-enriched air supplying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212632A (en) * 1983-05-18 1984-12-01 Nippon Denso Co Ltd Oxygen-enriched air supplying device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224221A (en) * 1988-07-12 1990-01-26 Kazukiyo Takano Air environment improving device for cabin
US5216646A (en) * 1988-11-16 1993-06-01 Matsushita Electric Industrial Co., Ltd. Tracking system in recording/reproducing apparatus
KR20040027067A (en) * 2002-09-27 2004-04-01 위니아만도 주식회사 Vacuum pump structure for oxygen supply system of vehicle
KR20040027070A (en) * 2002-09-27 2004-04-01 위니아만도 주식회사 Oxygen supply structure for vehicle
JP2007176301A (en) * 2005-12-27 2007-07-12 Valeo Thermal Systems Japan Corp Air adjusting device for vehicle
CN112124049A (en) * 2020-09-23 2020-12-25 山东唐骏欧铃汽车制造有限公司 Carbon dioxide and oxygen conversion device for vehicle

Similar Documents

Publication Publication Date Title
JP5849889B2 (en) Air conditioning system
JPS61205511A (en) Humidifier for automobile
JPH071944A (en) Method and device for heating passenger compartment of automobile
JPS6343812A (en) Air conditioner for vehicle
US5806323A (en) Adsorbent based air conditioning system
JP3617157B2 (en) Air conditioner for vehicles
JPH06171353A (en) Air-conditioner for vehicle
JPS6343816A (en) Air conditioner for vehicle
US6620039B1 (en) Method and apparatus for providing fresh air to a truck sleeper box
JPS6343814A (en) Air conditioner for vehicle
JP2010120496A (en) Air cleaning device for vehicle and air conditioning device for vehicle
JPS6343811A (en) Air conditioner for vehicle
JPS6343815A (en) Air conditioner for vehicle
JPS6343813A (en) Air conditioner for vehicle
JPS6343817A (en) Air conditioner for vehicle
JPS6346916A (en) Air-conditioning device for vehicle
JP6093678B2 (en) Method for producing asymmetric membrane
JPS6353109A (en) Air conditioning device for vehicle
JP2006315543A (en) Air conditioning control device of on-vehicle air conditioner
JP4281627B2 (en) Air conditioner for vehicles
JP2006151185A (en) Air-conditioner for vehicle
JP2589587Y2 (en) Vehicle air conditioner
JP2006044393A (en) Air adjusting device for vehicle
CN213007504U (en) Air conditioning device and automobile
JP4396392B2 (en) Air conditioner for vehicles