JPS6343813A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle

Info

Publication number
JPS6343813A
JPS6343813A JP61187578A JP18757886A JPS6343813A JP S6343813 A JPS6343813 A JP S6343813A JP 61187578 A JP61187578 A JP 61187578A JP 18757886 A JP18757886 A JP 18757886A JP S6343813 A JPS6343813 A JP S6343813A
Authority
JP
Japan
Prior art keywords
oxygen
partial pressure
pressure difference
duct
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61187578A
Other languages
Japanese (ja)
Other versions
JPH072445B2 (en
Inventor
Shogo Watanabe
渡辺 正五
Megumi Fukushima
福島 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61187578A priority Critical patent/JPH072445B2/en
Publication of JPS6343813A publication Critical patent/JPS6343813A/en
Publication of JPH072445B2 publication Critical patent/JPH072445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0007Adding substances other than water to the air, e.g. perfume, oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0007Adding substances other than water to the air, e.g. perfume, oxygen
    • B60H3/0014Adding substances other than water to the air, e.g. perfume, oxygen characterised by the location of the substance adding device
    • B60H3/0021Adding substances other than water to the air, e.g. perfume, oxygen characterised by the location of the substance adding device in the air-conditioning housing

Abstract

PURPOSE:To control the upper limit of the oxygen concentration in the car compartment by installing a partial pressure regulating means which regulates the partial pressure difference between the both interface parts of an oxygen concentrating membrane which is formed by a partial pressure difference generating means, to a prescribed value or less. CONSTITUTION:In an oxygen concentrating device 70, the space in a hollow body 81 in which oxygen concentrating membranes 82 are laminated communicates to the suction side of a vacuum pump 71 through an oxygen leading-out duct 77, and an oxygen feeding duct 74 to the car compartment is connected onto the discharge side of the vacuum pump 71. The vaccum pump 71 generates a partial pressure difference state between the air feeding side interface part and the oxygen taking-out interface part of the oxygen concentrating membrane 82. In the above-described air conditioner, an outside air introducing duct 88 is installed onto the oxygen leading-out duct 77, and a negative pressure control valve 89 is installed onto the outside air introducing duct 88. When the intake negative pressure of the vaccum pump 71 becomes over a prescribed value, outside air is introduced into the above-described duct 77 by opening the above-described valve 89, and the excessive concentration of oxygen is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両の空調装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a vehicle air conditioner.

(従来技術) 一般に、車両、特に自動車には、気候(特に気温)や走
行条件に関係なく乗員に対して快適な乗車環境をもたら
し、また窓の曇りや霜の付着を防いで運転者の視界を確
保し、安全で快適な運転を保証するために空気調和装置
が設置されている。
(Prior art) In general, vehicles, especially automobiles, provide a comfortable riding environment for passengers regardless of the climate (especially temperature) and driving conditions, and also prevent fogging and frost on the windows so that the driver can see clearly. Air conditioning equipment is installed to ensure safe and comfortable driving.

ところで、最近のこのような空気調和装置(以下、単に
空調装置と略称する)では、加熱、冷却、加湿、除湿等
の従来型の空気調和機能に加えてさらに車室内に供給さ
れる調和処理空気の酸素量を増大させる酸素富化機能を
備えたものが提案されるに至っている(例えば特開昭5
9−212632号公報参照)。
By the way, recent air conditioners (hereinafter simply referred to as air conditioners) have not only conventional air conditioning functions such as heating, cooling, humidification, and dehumidification, but also the function of conditioned air supplied to the vehicle interior. Products with an oxygen enrichment function that increases the amount of oxygen have been proposed (for example, in JP-A-5
9-212632).

この酸素富化機能を備えた空調装置は、空気中の窒素を
分離除去して酸素富化空気を生成する酸素富化装置を備
えてなり、該酸素富化装置によって窒素成分が除去され
た酸素富化空気を車室内に供給して車室内空気を酸素富
化状態とし、乗員の疲労回復、眠気、乗物酔いの防止等
を図り快適な乗車環境を形成するようになっている。
This air conditioner with an oxygen enrichment function is equipped with an oxygen enrichment device that separates and removes nitrogen from the air to produce oxygen-enriched air, and the oxygen enrichment device separates and removes nitrogen from the air to produce oxygen-enriched air. Enriched air is supplied into the vehicle interior to make the interior air oxygen-enriched, which helps occupants recover from fatigue, prevents drowsiness, and motion sickness, creating a comfortable riding environment.

そして、一般に上記酸素富化装置としては、酸素富化膜
によるものが多く用いられる。この酸素富化膜による酸
素富化装置は、当該酸素富化膜の一方側に外部空気の供
給路を、また他方側に酸素導出路をそれぞれ設けるとと
もに、さらに上記酸素富化膜の肉界面部間に所定の分圧
差を形成する分圧差形成手段を設け、該分圧差形成手段
によって形成された」二記酸素富化膜の上記肉界面部間
の分圧差に応じて上記空気供給路側供給空気中の酸素を
上記酸素富化膜を通して上記酸素導出路側に透過させる
ことによって車室内に供給すべき酸素富化空気を生成す
るようになっている。
Generally, as the oxygen enrichment device, one using an oxygen enrichment membrane is often used. This oxygen enrichment device using an oxygen enrichment membrane is provided with an external air supply path on one side of the oxygen enrichment membrane and an oxygen outlet path on the other side, and further includes a meat interface of the oxygen enrichment membrane. A partial pressure difference forming means is provided to form a predetermined partial pressure difference therebetween, and the air supply path side supply air Oxygen-enriched air to be supplied into the vehicle interior is generated by permeating the oxygen inside through the oxygen-enriching membrane to the oxygen outlet path side.

(発明が解決しようとする問題点) ところが、」二記分圧差形成手段は、一般にエンジンに
よって直接駆動される真空ポンプ等を使用して酸素導出
路側を負圧にすることによって分圧差を形成する構成が
採用される関係上、エンジン回転数と独立した分圧値自
体の可変制御は必ずしも容易ではなく、原則としてエン
ジン回転数によって規定される駆動容量に応じて酸素供
給量が決定されることになる。
(Problem to be Solved by the Invention) However, the means for forming a partial pressure difference described in "2" generally forms a partial pressure difference by creating a negative pressure on the oxygen outlet side using a vacuum pump or the like directly driven by an engine. Due to the configuration adopted, variable control of the partial pressure value itself independent of the engine speed is not necessarily easy, and as a general rule, the oxygen supply amount is determined according to the drive capacity specified by the engine speed. Become.

そのため、エンジン回転数が所定値以上に上昇すると、
上記酸素富化膜界面部間の分圧比もそれに対応して大き
くなる。その結果、酸素透過量も大となり、場合によっ
ては車室内酸素濃度が必要以上に高くなりすぎる問題が
ある。
Therefore, when the engine speed rises above a predetermined value,
The partial pressure ratio between the oxygen-enriched membrane interface portions also increases accordingly. As a result, the amount of oxygen permeation increases, and in some cases there is a problem in that the oxygen concentration in the vehicle interior becomes too high than necessary.

(目的を達成するための手段) 本発明は、上記の問題を解決することを目的としてなさ
れたもので、酸素富化膜の一方側に空気供給路を、また
他方側に酸素導出路をそれぞれ設けるとともに、さらに
上記酸素富化膜の肉界面部間に所定の分圧差を形成する
分圧差形成手段を設け、該分圧差形成手段によって形成
された上記酸素富化膜の上記肉界面部間の分圧差に応じ
て上記空気供給路側供給空気中の酸素を上記酸素富化膜
を通して上記酸素導出路側に透過させることによって車
室内に供給すべき酸素富化空気を生成するようにした車
両の空調装置において、上記分圧差形成手段によって形
成される上記酸素富化膜両売面3一 部門の分圧差を所定値以下に規制する分圧差規制手段を
設けてなるものである。
(Means for Achieving the Object) The present invention was made with the aim of solving the above problems, and includes an air supply path on one side of the oxygen enrichment membrane and an oxygen outlet path on the other side. In addition, a partial pressure difference forming means for forming a predetermined partial pressure difference between the meat interface portions of the oxygen enriched membrane is provided, and a partial pressure difference forming means is provided for forming a predetermined partial pressure difference between the meat interface portions of the oxygen enriched membrane formed by the partial pressure difference forming means. An air conditioner for a vehicle that generates oxygen-enriched air to be supplied into a vehicle interior by permeating oxygen in the air supply road side supply air through the oxygen enrichment membrane to the oxygen outlet road side according to the partial pressure difference. A partial pressure difference regulating means is provided for regulating the partial pressure difference between the two surfaces 3 of the oxygen enrichment membrane, which is formed by the partial pressure difference forming means, to a predetermined value or less.

(作 用) 上記の手段によると、上記分圧差規制手段によって所定
の分圧差以下への規制が可能となるから、車室内酸素濃
度の上限コントロールが一応可能となり、フィードバッ
ク制御等の複雑な制御手段を用いることなく酸素濃度の
高まりすぎを簡単に防止できるようになる。
(Function) According to the above means, since it becomes possible to regulate the partial pressure difference to a predetermined value or less using the partial pressure difference regulating means, it becomes possible to control the upper limit of the oxygen concentration in the vehicle interior, and complex control means such as feedback control become possible. This makes it possible to easily prevent the oxygen concentration from rising too high without using.

(実施例) 第1図は、酸素富化機能を備えた本発明の実施例に係る
車両の空調装置を示している。
(Embodiment) FIG. 1 shows a vehicle air conditioner according to an embodiment of the present invention, which is equipped with an oxygen enrichment function.

該空調装置は、先ず冷媒配管14によって相互に接続さ
れたコンプレッサ(圧縮機)10、コンデンサ(凝縮器
)111エバポレータ(蒸発器)12等によって構成さ
れる冷房系装置と、温水配管(エンジン冷却水配管に接
続)13によって相互に接続された温水バルブ20、ヒ
ータコア21等からなる暖房系装置と、外気取入れ用の
プロワユニット30、外気ベンチレーションおよび内気
サーキュレーション用の内外気切替モータ31、送風ダ
クト32等からなる送風系装置と、空調用温度設定器4
1,42、各種操作スイッチ43〜50等からなる操作
系装置40と、マイクロコンピュータによって形成され
た各種空調制御機能を有する空調コントロールユニット
500、外気温センサ5!、内気温センサ52、水温セ
ンサ53、ダクト内温度センサ54、車室内酸素センサ
3、各種制御モータ(モード切替モータ61.エアミッ
クスダンパ制御モータ62)等からなる制御系装置と、
酸素濃縮装置70、真空ポンプ71.エアフィルタ72
、プロワモータ73、車室内への酸素供給用ダクト74
等力(らなる酸素富化装置とから構成されている。
The air conditioner first includes a cooling system device consisting of a compressor 10, a condenser 111, an evaporator 12, etc., which are interconnected by a refrigerant pipe 14, and a hot water pipe (engine cooling water). A heating system device consisting of a hot water valve 20, a heater core 21, etc., interconnected by a hot water valve 20 (connected to piping) 13, a blower unit 30 for taking in outside air, an inside/outside air switching motor 31 for outside air ventilation and inside air circulation, and a blower. A ventilation system device consisting of a duct 32, etc., and an air conditioning temperature setting device 4
1, 42, an operation system device 40 consisting of various operation switches 43 to 50, etc., an air conditioning control unit 500 having various air conditioning control functions formed by a microcomputer, and an outside temperature sensor 5! , an internal temperature sensor 52, a water temperature sensor 53, a duct internal temperature sensor 54, an in-vehicle oxygen sensor 3, various control motors (mode switching motor 61, air mix damper control motor 62), etc.
Oxygen concentrator 70, vacuum pump 71. Air filter 72
, a blower motor 73, a duct 74 for supplying oxygen into the vehicle interior
It consists of an oxygen enrichment device and an oxygen enrichment device.

そして、上記冷房系装置の上記エバポレータ12と上記
暖房系装置のヒータコア21とは、例えばダッシュパネ
ル下方に位置して設けられた冷・暖房用路ユニットケー
ス6.7内に設置されており、ダクト部5を介して当該
各ユニットケース6゜7が相互に連通状態で接続されて
いる。上記ユニットケース6側には、また上記送風系の
プロワユニット30の送風ダクト32が接続されている
。また、上記ユニットケース7側には、暖房用のヒート
ダクト15および換気並びに冷房用のベントダクト16
がそれぞれ設けられている。さらに、符号17は、上記
ヒータコア21の一端に回動可能に枢着され上記ダクト
部5内に位置して当該ダクト側からの通路をヒータコア
21を経由する通路と、ヒータコア21をバイパスする
通路と、それら両方の通路を共に形成する分岐通路とに
各々形成するように設けられたエアミックスダンパーで
あり、このエアミックスダンパー17は、上記制御モー
タ62によって開度制御されるとともにその実開度はポ
テンショメータ63によって検出され、該検出値は上記
空調コントロールユニット500に入力されるようにな
っている。
The evaporator 12 of the cooling system device and the heater core 21 of the heating system device are installed, for example, in a cooling/heating path unit case 6.7 provided below the dash panel, and are installed in a duct. The respective unit cases 6 and 7 are connected to each other via the portion 5 in a communicating state. A blower duct 32 of the blower unit 30 of the blower system is also connected to the unit case 6 side. Further, on the unit case 7 side, there is a heat duct 15 for heating and a vent duct 16 for ventilation and cooling.
are provided for each. Further, reference numeral 17 is rotatably pivotally attached to one end of the heater core 21 and located within the duct portion 5, and includes a passage from the duct side that passes through the heater core 21 and a passage that bypasses the heater core 21. , and a branch passage that together form both passages.The opening of the air mix damper 17 is controlled by the control motor 62, and the actual opening is controlled by a potentiometer. 63, and the detected value is input to the air conditioning control unit 500.

また、符号66はヒートダクト15の開閉ダンパー、ま
た67はデフロスタ18の開閉ダンパーであり、これら
両開閉ダンパー66.67の開閉状部は相互に逆比例開
度で連動するようになっている。なお符号19はラジェ
ータである。
Further, reference numeral 66 is an opening/closing damper for the heat duct 15, and 67 is an opening/closing damper for the defroster 18, and the opening/closing portions of both opening/closing dampers 66, 67 are interlocked with each other in an inversely proportional opening degree. Note that the reference numeral 19 is a radiator.

一方、上記酸素富化装置側の上記酸素濃縮装置70は、
例えば中空筐体81内にポリカーボネート・シリコン共
重合体により形成された酸素富化膜82を隔壁83.8
3間に積層した酸素富化膜式の酸素富化モジュールより
なり、上記中空筺体81の空気取入れ口84側を上述の
ブロワモータ73、エアフィルタ72を介装した空気取
入れ用のメインダクト75に連通せしめるとともに上記
中空筐体81内隔壁83.83間の酸素透過側空間を酸
素取出ロアロ部分より酸素導出ダクト77を介して上述
の真空ポンプ71の吸入側に連通せしめて構成されてい
る。また、真空ポンプ71の吐出側には上記車室内への
酸素供給ダクト74の一端が接続されている。
On the other hand, the oxygen concentrator 70 on the oxygen enrichment device side is
For example, an oxygen-enriched film 82 formed of a polycarbonate-silicon copolymer is placed inside the hollow casing 81 as a partition wall 83.8.
The air intake port 84 side of the hollow housing 81 is connected to the main duct 75 for air intake in which the blower motor 73 and air filter 72 are interposed. At the same time, the oxygen permeation side space between the partition walls 83 and 83 in the hollow casing 81 is connected to the suction side of the vacuum pump 71 from the oxygen extraction lower part through the oxygen derivation duct 77. Further, one end of the oxygen supply duct 74 into the vehicle interior is connected to the discharge side of the vacuum pump 71.

上記真空ポンプ71は、上記冷房系のコンプレッサlO
とともに当該車両のエンジンEによって駆動されるよう
になっている。
The vacuum pump 71 is a compressor lO of the cooling system.
It is also driven by the engine E of the vehicle.

そして、上記真空ポンプ71は、上記酸素富化膜82,
82・・の空気供給側界面部と酸素取出界面部との間に
分圧差(差圧)状態を形成するとともに透過酸素の車室
内への供給作用を果たす。
The vacuum pump 71 includes the oxygen enriched membrane 82,
A partial pressure difference (differential pressure) state is formed between the air supply side interface part and the oxygen extraction interface part of 82..., and the permeated oxygen is supplied into the vehicle interior.

上記酸素富化膜82,82・・は非多孔質の無定形高分
子膜であり、上記真空ポンプ71が駆動されるとその透
過側の界面部は所定の負圧状態に曝される一方、他方、
空気供給側の界面部は上述のブロワモータ73による送
風圧によって大気圧以上の正圧状態に曝される。その結
果、上記酸素富化膜82.82・・の両界面部間には所
定値以上の分圧差に応じて高圧側から低圧側への主とし
て酸素分子の透過が生じる。この透過は、具体的には溶
解と拡散の組合せによって生じる。
The oxygen enrichment membranes 82, 82, . . . are non-porous amorphous polymer membranes, and when the vacuum pump 71 is driven, the interface on the permeation side is exposed to a predetermined negative pressure state, while On the other hand,
The interface portion on the air supply side is exposed to a positive pressure state equal to or higher than atmospheric pressure due to the air blowing pressure from the blower motor 73 described above. As a result, oxygen molecules mainly permeate from the high pressure side to the low pressure side between the interface parts of the oxygen enrichment membranes 82, 82, . . . in response to a partial pressure difference of a predetermined value or more. This permeation specifically occurs through a combination of dissolution and diffusion.

すなわち、周知のように無定形高分子膜の表面に空気が
接すると、該空気中の酸素並びに窒素分子(なお、アル
ゴン成分については少率ゆえに無視する)は、先ず上記
酸素富化膜82の表面に吸着し、次いで当該酸素富化膜
82の内部に分子移動により溶は込む溶解作用を生じる
。該溶解作用によって酸素富化膜82内に侵入した酸素
並びに窒素分子は、さらに線膜82の内部を移動する。
That is, as is well known, when air comes into contact with the surface of the amorphous polymer membrane, oxygen and nitrogen molecules in the air (note that the argon component is ignored due to its small proportion) are first absorbed by the oxygen-enriching membrane 82. It adsorbs on the surface and then dissolves into the interior of the oxygen-enriched membrane 82 due to molecular movement, resulting in a dissolving action. The oxygen and nitrogen molecules that have entered the oxygen-enriched film 82 due to the dissolution action further move inside the line film 82.

−8= すなわち拡散作用を生じてやがて当該酸素富化膜82の
透過側(低圧側)から脱離して出て行き、これらの作用
の連続により全体として気体分子の透過現象を生じる。
−8= That is, a diffusion effect occurs, and the gas eventually desorbs and exits from the permeation side (low pressure side) of the oxygen enrichment membrane 82, and the series of these effects causes a gas molecule permeation phenomenon as a whole.

この場合、酸素および窒素各気体分子の透過量は、次の
式によって表わされる。
In this case, the permeation amount of oxygen and nitrogen gas molecules is expressed by the following equation.

従って、特定の酸素富化モジュールの場合、上記実施例
の真空ポンプ71、ブロワモータ73の運転条件を一定
すると、結局各気体分子の透過量は各気体分子固有の透
過係数と時間(透過可能状態に維持する時間)とによっ
て決定される。
Therefore, in the case of a specific oxygen enrichment module, if the operating conditions of the vacuum pump 71 and blower motor 73 of the above embodiment are kept constant, the amount of permeation of each gas molecule is determined by the permeation coefficient unique to each gas molecule and the time (when the permeation is possible). (time to maintain).

上記透過係数は、もちろん上記酸素富化膜82の組成に
対して決定されるものであるが、例えば本実施例のポリ
カーボネート・シリコン共重合体のものの場合には、一
般に上記酸素分子の透過係数が窒素分子の透過係数に比
べてはるかに大きい(約3倍)。
The above-mentioned permeability coefficient is, of course, determined by the composition of the above-mentioned oxygen enrichment membrane 82, but for example, in the case of the polycarbonate-silicon copolymer of this embodiment, the permeability coefficient of the above-mentioned oxygen molecules is generally determined. It is much larger (about 3 times) than the permeability coefficient of nitrogen molecules.

従って、当然透過量も大きくなる訳である。なお、この
間の関係をさらに詳しく説明すると、上記透過係数は、
上記溶解作用の大きさを決定する溶解度係数と拡散作用
の大きさを決定する拡散係数との積によって決まるもの
であり、また後者の拡散係数は当該気体分子のファンデ
ルワールス径(分子径)によって決まることが知られて
いる。上記酸素分子の場合には、窒素分子よりも先ず溶
解度係数が大きい一方、分子のファンデルワールス径は
小さいために拡散係数は大きい。従って、それらの積で
ある透過係数もまた当然大きくなる訳である。その結果
、窒素分子の透過に要する時間は、酸素分子の場合より
もはるかに大となり、上記酸素富化膜82.82・・間
に於ける空気流通速度を酸素分子の例えば溶解度係数を
基準として効果的な透過時間が得られるように設定する
と、窒素分子が殆んど溶解しない内に酸素分子が先に溶
解し、吸着作用中の窒素分子はそのまま排出ロア8側に
押し流されてしまうので、結局酸素分子のみが透過され
るようになる。従って、このような構成の酸素濃縮装置
70によれば、基本的には車室側に取出される酸素濃度
(%)は、第2図に示すように上記酸素富化膜82.8
2・・部分の空気供給側圧力Piと酸素取出側圧力Po
との分圧比(Po/Pi)によって決定されることにな
る。
Therefore, the amount of transmission naturally increases. In addition, to explain the relationship between these in more detail, the above transmission coefficient is
It is determined by the product of the solubility coefficient, which determines the size of the above-mentioned dissolution effect, and the diffusion coefficient, which determines the size of the diffusion effect, and the latter diffusion coefficient is determined by the van der Waals diameter (molecular diameter) of the gas molecule. It is known that it will be decided. In the case of the above-mentioned oxygen molecules, first of all, the solubility coefficient is larger than that of nitrogen molecules, while the van der Waals diameter of the molecule is small, so the diffusion coefficient is large. Therefore, the transmission coefficient, which is the product of these, naturally also increases. As a result, the time required for permeation of nitrogen molecules is much longer than that of oxygen molecules, and the air flow rate between the oxygen-enriching membranes 82, 82, etc. is based on, for example, the solubility coefficient of oxygen molecules. If the setting is made to obtain an effective permeation time, the oxygen molecules will dissolve first while the nitrogen molecules are hardly dissolved, and the adsorbing nitrogen molecules will be swept away to the discharge lower 8 side. Eventually, only oxygen molecules will be able to pass through. Therefore, according to the oxygen concentrator 70 having such a configuration, the oxygen concentration (%) taken out to the passenger compartment side basically depends on the oxygen enrichment membrane 82.8 as shown in FIG.
2. Air supply side pressure Pi and oxygen extraction side pressure Po
It is determined by the partial pressure ratio (Po/Pi).

一方、上記真空ポンプ71を酸素濃縮装置70に接続し
た上記酸素導出ダクト77には、外気導入ダクト88が
設けられ、該外気導入ダクト88にはまた当該外気の導
入状態を制御するための例えば圧力弁よりなる負圧コン
トロールバルブ89が介設されている。上記負圧コント
ロールバルブ89の開閉状態は、上記空調コントロール
ユニット500からの制御信号によらず上記真空ポンプ
71の吸引負圧が所定の規制値(第3図参照)以上とな
ったときに自動的に開弁じて上記酸素導出ダクト77内
に外気を導入し、実質的に上記酸素富化膜82,82・
・に作用する真空ポンプ71の吸引負圧(これは酸素濃
縮装置70の酸素導出側界面部の負圧となる)を低下さ
せることによって上記第2図のグラフの分圧比を小さく
し、車室内への供給酸素量を低下させるように作用する
On the other hand, the oxygen derivation duct 77 connecting the vacuum pump 71 to the oxygen concentrator 70 is provided with an outside air introduction duct 88, and the outside air introduction duct 88 also has a A negative pressure control valve 89 consisting of a valve is provided. The negative pressure control valve 89 is automatically opened/closed when the suction negative pressure of the vacuum pump 71 exceeds a predetermined regulation value (see Fig. 3), regardless of the control signal from the air conditioning control unit 500. When the valve is opened, outside air is introduced into the oxygen deriving duct 77, and the oxygen enrichment membranes 82, 82,
By lowering the suction negative pressure of the vacuum pump 71 (this becomes the negative pressure at the oxygen outlet side interface of the oxygen concentrator 70), the partial pressure ratio in the graph of FIG. acts to reduce the amount of oxygen supplied to the body.

その結果、上記車室内の酸素濃度は、エンジン回転数の
」1昇によって上記真空ポンプ71の回転数が大きく上
昇したような場合にも常に一定値以下の酸素供給量に上
限規制を行うことができるようになり、当該車室内の酸
素濃度を過度に高くするようなことはなくなる。しかも
、この場合、単にリリーフ機能を有する負圧コントロー
ルバルブ89を設けて酸素富化膜82,82に作用する
分圧比の上限を規制するのみで足るから、たとえば車室
内に酸素濃度センサを設け、その酸素濃度検出値に応じ
て上記真空ポンプ71の駆動状態をフィードバック制御
するような構成を採用した場合に比へると構造も著しく
簡単で済むようになる。
As a result, the oxygen concentration in the vehicle compartment can always be restricted to a certain value or less even when the rotational speed of the vacuum pump 71 increases significantly due to an increase in the engine speed by 1. This prevents the oxygen concentration within the vehicle from becoming excessively high. Furthermore, in this case, it is sufficient to simply provide a negative pressure control valve 89 with a relief function to regulate the upper limit of the partial pressure ratio acting on the oxygen enrichment membranes 82, 82, so for example, an oxygen concentration sensor may be provided in the vehicle interior, If a configuration is adopted in which the driving state of the vacuum pump 71 is feedback-controlled in accordance with the detected oxygen concentration value, the structure can be significantly simplified.

(発明の効果) 本発明は、以上に説明したように、酸素富化膜の一方側
に空気供給路を、また他方側に酸素導出路をそれぞれ設
けるとともに、さらに上記酸素富化膜の上記両界面部間
に所定の分圧差を形成する分圧差形成手段を設け、該分
圧差形成手段によって形成された上記酸素富化膜の両界
面部間の分圧差に応じて上記空気供給路側供給空気中の
酸素を上記酸素富化膜を通して上記酸素導出路側に透過
させることによって車室内に供給すべき酸素富化空気を
生成するようにした車両の空調装置において、上記分圧
差形成手段によって形成される上記酸素導出側界面部間
の分圧差を所定値以下に規制する分圧差規制手段を設け
たことを特徴とするものである。
(Effects of the Invention) As explained above, the present invention provides an air supply path on one side of the oxygen enrichment membrane and an oxygen outlet path on the other side, and further provides an air supply path on one side of the oxygen enrichment membrane and an oxygen outlet path on the other side. A partial pressure difference forming means for forming a predetermined partial pressure difference between the interface parts is provided, and the pressure difference in the air supplied to the air supply path side is adjusted according to the partial pressure difference between both interface parts of the oxygen enriched membrane formed by the partial pressure difference forming means. In the air conditioner for a vehicle, the air conditioner is configured to generate oxygen-enriched air to be supplied into a vehicle interior by permeating oxygen through the oxygen-enriching membrane to the oxygen outlet path side, wherein the oxygen-enriched air formed by the partial pressure difference forming means The present invention is characterized in that a partial pressure difference regulating means is provided for regulating the partial pressure difference between the oxygen derivation side interface portions to a predetermined value or less.

従って、本発明によると、上記分圧差規制手段によって
所定の分圧差以下への規制が可能となるから、車室内酸
素濃度の上限コントロールが一応可能となり、フィード
バック制御等の複雑な制御手段を用いることなく酸素濃
度の高まりすぎを簡単に防止できるようになる。
Therefore, according to the present invention, since the partial pressure difference regulating means can regulate the partial pressure difference to a predetermined value or less, it is possible to control the upper limit of the oxygen concentration in the vehicle interior, and it is not necessary to use complicated control means such as feedback control. This makes it easy to prevent the oxygen concentration from rising too high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、酸素富化膜を使用した本発明の実施例に係る
車両の空調装置のシステムの概略図、第2図は、同実施
例に於ける酸素濃縮装置の分圧比と酸素分離濃度との関
係を示すグラフ、第3図は、上記酸素富化膜を使用した
本発明の実施例装置における酸素濃度と酸素濃度決定要
素である酸素導出側4の負圧値との関係を示すグラフで
ある。 500・・・・・空調コントロールユニット70・・・
・・酸素濃縮装置 71・・・・・真空ポンプ 73・・・・・ブロワモータ 74・・・・・酸素供給ダクト 75・・・・・空気取入れ用メインダクト77・・・・
・酸素導出ダクト 81・・・・・中空筺体 82・・・・・酸素富化膜 88・・・・・外気導入ダクト
Fig. 1 is a schematic diagram of a vehicle air conditioner system according to an embodiment of the present invention using an oxygen enrichment membrane, and Fig. 2 shows the partial pressure ratio and oxygen separation concentration of the oxygen concentrator in the same embodiment. FIG. 3 is a graph showing the relationship between the oxygen concentration and the negative pressure value on the oxygen outlet side 4, which is the oxygen concentration determining factor, in the apparatus according to the embodiment of the present invention using the above-mentioned oxygen enrichment membrane. It is. 500... Air conditioning control unit 70...
... Oxygen concentrator 71 ... Vacuum pump 73 ... Blower motor 74 ... Oxygen supply duct 75 ... Air intake main duct 77 ...
・Oxygen derivation duct 81...Hollow casing 82...Oxygen enrichment membrane 88...Outside air introduction duct

Claims (1)

【特許請求の範囲】[Claims] 1.酸素富化膜の一方側に空気供給路を、また他方側に
酸素導出路をそれぞれ設けるとともに、さらに上記酸素
富化膜の両界面部間に所定の分圧差を形成する分圧差形
成手段を設け、該分圧差形成手段によって形成された上
記酸素富化膜の上記両界面部間の分圧差に応じて上記空
気供給路側供給空気中の酸素を上記酸素富化膜を通して
上記酸素導出路側に透過させることによって車室内に供
給すべき酸素富化空気を生成するようにした車両の空調
装置において、上記分圧差形成手段によって形成される
上記酸素富化膜両界面部間の分圧差を所定値以下に規制
する分圧差規制手段を設けたことを特徴とする車両の空
調装置。
1. An air supply path is provided on one side of the oxygen enrichment membrane, and an oxygen outlet path is provided on the other side, and a partial pressure difference forming means is further provided for forming a predetermined partial pressure difference between both interface portions of the oxygen enrichment membrane. , allowing oxygen in the air supplied to the air supply path side to permeate through the oxygen enrichment membrane to the oxygen outlet path side in accordance with the partial pressure difference between the interface portions of the oxygen enrichment membrane formed by the partial pressure difference forming means; In a vehicle air conditioner that generates oxygen-enriched air to be supplied into a vehicle interior, the partial pressure difference between both interface portions of the oxygen-enriching membrane formed by the partial pressure difference forming means is reduced to a predetermined value or less. An air conditioner for a vehicle, characterized in that it is provided with partial pressure difference regulating means.
JP61187578A 1986-08-09 1986-08-09 Vehicle air conditioner Expired - Lifetime JPH072445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61187578A JPH072445B2 (en) 1986-08-09 1986-08-09 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187578A JPH072445B2 (en) 1986-08-09 1986-08-09 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JPS6343813A true JPS6343813A (en) 1988-02-24
JPH072445B2 JPH072445B2 (en) 1995-01-18

Family

ID=16208554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187578A Expired - Lifetime JPH072445B2 (en) 1986-08-09 1986-08-09 Vehicle air conditioner

Country Status (1)

Country Link
JP (1) JPH072445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062498A (en) * 2004-08-26 2006-03-09 Matsushita Electric Ind Co Ltd Oxygen enriching device for vehicle

Also Published As

Publication number Publication date
JPH072445B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
JPS6117684B2 (en)
JPH07223428A (en) Air conditioner for electric vehicle
JP2016060467A (en) Vehicle humidifier
JPH0920124A (en) Heating system
JP4725399B2 (en) Vehicle air purification device
JP4552360B2 (en) Air conditioner for vehicles
JP3617157B2 (en) Air conditioner for vehicles
JPS6343812A (en) Air conditioner for vehicle
JPS6343813A (en) Air conditioner for vehicle
US6620039B1 (en) Method and apparatus for providing fresh air to a truck sleeper box
JPS6343816A (en) Air conditioner for vehicle
JP2010120496A (en) Air cleaning device for vehicle and air conditioning device for vehicle
JPS6343811A (en) Air conditioner for vehicle
JPS6343814A (en) Air conditioner for vehicle
JP6093678B2 (en) Method for producing asymmetric membrane
JPS6343815A (en) Air conditioner for vehicle
JP3991465B2 (en) Air conditioner for vehicles
JPS6353109A (en) Air conditioning device for vehicle
JP2589587Y2 (en) Vehicle air conditioner
JPS6343817A (en) Air conditioner for vehicle
JP2006151185A (en) Air-conditioner for vehicle
JPS6346916A (en) Air-conditioning device for vehicle
JP2005343425A (en) Vehicular clean gas supplying device
JPH11129729A (en) Air conditioner for automobile
JP4396392B2 (en) Air conditioner for vehicles