JPS6342422B2 - - Google Patents

Info

Publication number
JPS6342422B2
JPS6342422B2 JP53040977A JP4097778A JPS6342422B2 JP S6342422 B2 JPS6342422 B2 JP S6342422B2 JP 53040977 A JP53040977 A JP 53040977A JP 4097778 A JP4097778 A JP 4097778A JP S6342422 B2 JPS6342422 B2 JP S6342422B2
Authority
JP
Japan
Prior art keywords
field effect
effect transistor
gate
fet
insulated gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040977A
Other languages
Japanese (ja)
Other versions
JPS54132174A (en
Inventor
Hatsuhide Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4097778A priority Critical patent/JPS54132174A/en
Publication of JPS54132174A publication Critical patent/JPS54132174A/en
Publication of JPS6342422B2 publication Critical patent/JPS6342422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特に絶縁ゲート型
電界効果トランジスタを含む半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device including an insulated gate field effect transistor.

従来、絶縁ゲート型電界効果トランジスタ、例
えば金属―絶縁物―半導体構造のいわゆる
MISFETのゲートの絶縁破壊防止のための保護
装置として最も有効な手段としては第1図aに示
すようにゲート保護を行なうべきFET Q2へのゲ
ート入力を、デプレシヨンタイプのFET Q1のド
レインD1を入力Aに接続し、ゲートG1とソース
S1を共通に接続してここから得るよう構成されて
おり、これは第1図bに示すように表面に酸化膜
10を有する一導電型の半導体基板11上に実現
され、ここでは保護されるべきFET Q2のゲート
絶縁膜GI2よりもFET Q1のゲート絶縁膜GI1が厚
く形成されている。第1図の技術は特開昭51―
54778号公報に提案されている。
Conventionally, insulated gate field effect transistors, for example, so-called metal-insulator-semiconductor structures,
As shown in Figure 1a, the most effective protection device for preventing dielectric breakdown of the MISFET gate is to connect the gate input to FET Q 2 , which should be gate protected, to the drain of depletion type FET Q 1 . Connect D 1 to input A, gate G 1 and source
This is realized on a semiconductor substrate 11 of one conductivity type having an oxide film 10 on the surface, as shown in FIG. 1b , and is protected here. The gate insulating film GI 1 of the FET Q 1 is formed thicker than the gate insulating film GI 2 of the FET Q 2 to be used. The technology shown in Figure 1 was published in Japanese Unexamined Patent Application Publication No. 1973-
This is proposed in Publication No. 54778.

このようにするとFET Q1のドレインD1側に異
常電圧が加わると、このFET Q1のバツクゲート
が引かれる状態になり、入力Aにある程度以上の
電圧が加わるとついにはFET Q1がカツトオフ状
態になる。しかしながら非常に急激な立上りの波
形が入力した場合、この入力波形はFET Q1のソ
ースS1、ドレインD1間をパンチスルーしFET Q2
のゲート絶縁膜GI2を破壊してしまう。また上述
のパンチスルーを考慮した構成としては第2図a
に示すような入力Aとデプレシヨントランジスタ
Q3のドレインとの間に抵抗Rを介挿した回路が
ある。この回路は第2図bに示す如く実現され、
抵抗RはFET Q3のドレインD3領域を長くするこ
とによりすることを考えた。ここではデプレシヨ
ンタイプのFET Q3のゲート弛縁膜GI3はFET
Q4のゲート絶縁膜GI4とほぼ同じ程度の厚さで形
成されている。この場合だとデイプレツシヨン
FET Q3のドレイン、ゲート間に入力波形が加わ
る事になるがこのFET Q3のゲートを保護する為
の素子としては抵抗Rが入力と直列に接続されて
いるだけのためそれほどのゲート保護効果が得ら
れない。
In this way, if an abnormal voltage is applied to the drain D 1 side of FET Q 1 , the back gate of this FET Q 1 will be pulled, and if a voltage above a certain level is applied to input A, FET Q 1 will finally be cut off. become. However, when a waveform with a very sharp rise is input, this input waveform punches through between the source S 1 and drain D 1 of FET Q 1 and passes through FET Q 2.
The gate insulating film GI 2 will be destroyed. Also, as a configuration that takes into account the above-mentioned punch-through, see Figure 2a.
Input A and depletion transistor as shown in
There is a circuit in which a resistor R is inserted between the drain of Q3 . This circuit is realized as shown in Figure 2b,
We considered increasing the resistance R by lengthening the drain D3 region of FET Q3 . Here, depletion type FET Q 3 gate sag membrane GI 3 is FET
It is formed to have approximately the same thickness as the gate insulating film GI 4 of Q 4 . In this case, depression
The input waveform will be applied between the drain and gate of FET Q 3 , but the only element to protect the gate of FET Q 3 is the resistor R connected in series with the input, so the gate protection effect is not that great. is not obtained.

本発明は入力端子の異常な電圧から内部のゲー
ト回路を保護する改良されたゲート保護機能を有
する半導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having an improved gate protection function for protecting internal gate circuits from abnormal voltages at input terminals.

本発明の特徴は、半導体基板に設られた保護す
べき第1の絶縁ゲート型電界効果トランジスタの
ゲートにデイプレツシヨン・モードで作動し入力
電圧が所定値以上になるとカツトオフし、且つ前
記第1の絶縁ゲート型電界効果トランジスタのゲ
ート絶縁膜の厚さよりも厚いゲート絶縁膜を有す
る第2の絶縁ゲート型電界効果トランジスタのゲ
ート電極およびソース又はドレイン電極を共通接
続し、前記半導体基板に設けられた前記第2の絶
縁ゲート型電界効果トランジスタのチヤンネル部
下のみ選択的に基板不純物濃度を濃くし、前記第
2の絶縁ゲート型電界効果トランジスタのドレイ
ン又はソース拡散層を延在してここに抵抗を形成
し、該抵抗を介して入力端子に接続し、該抵抗に
より、入力波形の急激の変化による前記第2の絶
縁ゲート型電界効果トランジスタのパンチスルー
を防止した半導体装置にある。
The present invention is characterized in that the gate of the first insulated gate field effect transistor to be protected provided on the semiconductor substrate operates in a depletion mode and is cut off when the input voltage exceeds a predetermined value; A gate electrode and a source or drain electrode of a second insulated gate field effect transistor having a gate insulating film thicker than the gate insulating film of the gate field effect transistor are connected in common, and the second insulated gate field effect transistor provided on the semiconductor substrate is selectively increasing the substrate impurity concentration only under the channel of the second insulated gate field effect transistor, extending the drain or source diffusion layer of the second insulated gate field effect transistor to form a resistor there; The semiconductor device is connected to an input terminal via the resistor, and the resistor prevents punch-through of the second insulated gate field effect transistor due to a sudden change in the input waveform.

次に本発明に関係する技術を第4図a,bを参
照して説明する。第4図aに示す如く、抵抗R
と、ゲートとソースが共通に接続され、ドレイン
を抵抗Rの一端に接続したデプレシヨン型FET
Q5と、この接点と基板間にダイオードDを有す
るようになし、入力Aを抵抗Rの他端に印加して
FET Q5のソースからゲート入力を受けるように
したFET Q6とを有する。ここでFET Q5のゲー
ト絶縁膜はFET Q6のゲート絶縁膜よりも厚くす
る。第4図bにこの半導体装置をN型半導体基板
11上に実現した場合を示す。
Next, the technology related to the present invention will be explained with reference to FIGS. 4a and 4b. As shown in Figure 4a, the resistance R
and a depletion type FET whose gate and source are connected in common and whose drain is connected to one end of the resistor R.
Q5 , and a diode D between this contact and the board, and input A is applied to the other end of the resistor R.
FET Q 6 receives gate input from the source of FET Q 5 . Here, the gate insulating film of FET Q5 is made thicker than the gate insulating film of FET Q6 . FIG. 4b shows a case where this semiconductor device is realized on an N-type semiconductor substrate 11.

FET Q5のゲート絶縁膜GI5はQ6のゲート絶縁
膜GI6よりも厚いことが理解できよう。このよう
な構成によれば入力Aは抵抗Rを介し、FET Q5
のドレインD5に接続されているためこの領域D5
の抵抗分と基板との容量及びQ5のドレイン側の
ジヤンクシヨンDのブレークダウンにより入力波
形の急激な変化を吸収しFET Q5がパンチスルー
することが防止される。
It can be seen that the gate insulating film GI 5 of FET Q 5 is thicker than the gate insulating film GI 6 of Q 6 . According to this configuration, input A is connected to FET Q 5 via resistor R.
This area D 5 because it is connected to the drain D 5 of
A sudden change in the input waveform is absorbed by the resistance component and the capacitance between the substrate and the breakdown of junction D on the drain side of Q5 , and punch-through of FET Q5 is prevented.

第3図に第1図におけるFET Q1と第2図にお
けるFET Q3のVTとバツクゲート電圧VBGとの関
係を示す。ここで使用したFETはP型のMIS
FETでFET Q1はゲート絶縁膜GI13500ÅFET
Q3のゲート絶縁膜GI3は1000Åの場合のデータで
ある。このようにゲート絶縁膜の厚さが厚いほう
がバツクゲート電圧が加わることにより急激にカ
ツトオフすることがこのグラフから判る。またこ
のことは下式によつても明らかである。
FIG. 3 shows the relationship between V T and back gate voltage V BG of FET Q 1 in FIG. 1 and FET Q 3 in FIG. 2. The FET used here is P-type MIS
FET Q 1 is gate insulating film GI 1 3500Å FET
The data is when the gate insulating film GI 3 of Q 3 is 1000 Å. It can be seen from this graph that the thicker the gate insulating film is, the more rapidly the gate is cut off when the back gate voltage is applied. This is also clear from the equation below.

ここで Co=EoxEo/tox (tox=ゲート厚、VBG=バツクゲート電圧) 従つて VT=VT(BG=0) −Ktox√|2F|+BG ……(2) ここでKは比例定数 上式からもゲート膜が厚くなるほどグラフの傾
きが急になることがわかる。
Here, Co=EoxEo/tox (tox=gate thickness, V BG = back gate voltage) Therefore, V T =V T (BG=0) −Ktox√|2 F |+ BG …(2) Here, K is proportional Constant It can be seen from the above equation that the thicker the gate film, the steeper the slope of the graph becomes.

このようにFET Q3の如き厚いゲート絶縁膜の
FETではカツト オフ電圧がかなり高くまた
FET Q1の如くゲート絶縁膜が薄いほどカツトオ
フ電圧が低く急激な変化また入力Aはバツクゲー
ト電圧が加わることにより急激にカツトオフする
特性を持つFET Q5を介して内部ゲート回路に接
続されているため、ゲート絶縁膜の絶縁耐圧以下
にFET Q5のカツトオフ点を設定することにより
FET Q5のソースの電位が異常に高くなると直ち
にカツトオフし内部ゲート回路を入力端子から切
り離しこれを保護できる。
In this way, thick gate insulating film such as FET Q 3
FETs have a fairly high cut-off voltage and
As with FET Q 1 , the thinner the gate insulating film is, the lower the cut-off voltage is and the more rapid the change.Also, input A is connected to the internal gate circuit via FET Q 5 , which has the characteristic of abruptly cutting off when back gate voltage is applied. , by setting the cutoff point of FET Q 5 below the dielectric strength voltage of the gate insulating film.
When the source potential of FET Q 5 becomes abnormally high, it is immediately cut off and the internal gate circuit is isolated from the input terminal to protect it.

次に本発明の実施例を第5図により説明する。
本実施例は第4図aに示した同一の回路構成によ
るものであるが、本実施例ではFET Q5のチヤン
ネル部の下にあるサブストレート領域20の不純
物濃度(N型)をイオン注入技術などにより濃く
したものである。つまり式(1)のNsubの項の値を
増大することによりカツトオフ特性を改善しより
完全な入力保護効果を得るものである。
Next, an embodiment of the present invention will be described with reference to FIG.
This embodiment has the same circuit configuration as shown in FIG . It has been made darker by In other words, by increasing the value of the term Nsub in equation (1), the cutoff characteristics are improved and a more complete input protection effect is obtained.

以上詳細に述べたように本発明によれば保護す
べき内部ゲート回路の前に通常デイプレツシヨン
モードで作動し且つ入力電圧が所定以上になると
カツトオフするMIS FETとさらにそのMIS
FETのドレイン側から抵抗素子を界して入力端
があるため前記保護されるべきゲート回路は常に
異常な入力より保護される。また本発明はPチヤ
ンネルのFETに限らず、Nチヤンネルのものに
ついても同様に適用しうることも勿論である。
As described in detail above, according to the present invention, there is an MIS FET that normally operates in depletion mode and is cut off when the input voltage exceeds a predetermined level before the internal gate circuit to be protected;
Since there is an input terminal across the resistive element from the drain side of the FET, the gate circuit to be protected is always protected from abnormal input. Furthermore, it goes without saying that the present invention is not limited to P-channel FETs, but can be similarly applied to N-channel FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の半導体装置を示し、第1
図aはその回路を示し、第1図bはその断面構造
を示す図である。第2図aは考えられる他の入力
保護手段を有する半導体装置を示す回路図であ
り、第2図bはその断面構造を示す図である。第
3図はゲート膜厚の違うMIS FETのVTとバツク
ゲート電圧の関関を表わす図である。第4図aは
本発明に関係のある半導体装置を示す回路図、第
4図bはその半導体装置の断面図である。第5図
は本発明の実施例を示す断面図である。 図において、Q1,Q5はゲート膜の厚いデプレ
ツシヨンタイプのMIS FET、Q3はゲート膜が内
部のゲート回路と同一でデプレツシヨンタイプの
MIS FET、Q2,Q4,Q6は内部ゲート回路のト
ランジスタ、Dはダイオード、Rは抵抗。
Figures 1a and 1b show conventional semiconductor devices;
Figure a shows the circuit, and Figure 1b shows its cross-sectional structure. FIG. 2a is a circuit diagram showing a semiconductor device having another conceivable input protection means, and FIG. 2b is a diagram showing its cross-sectional structure. Figure 3 is a diagram showing the relationship between V T and back gate voltage of MIS FETs with different gate film thicknesses. FIG. 4a is a circuit diagram showing a semiconductor device related to the present invention, and FIG. 4b is a sectional view of the semiconductor device. FIG. 5 is a sectional view showing an embodiment of the present invention. In the figure, Q 1 and Q 5 are depletion type MIS FETs with thick gate films, and Q 3 is a depletion type MIS FET with a gate film that is the same as the internal gate circuit.
MIS FET, Q 2 , Q 4 , Q 6 are internal gate circuit transistors, D is a diode, and R is a resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板に設られた保護すべき第1の絶縁
ゲート型電界効果トランジスタのゲートにデイプ
レツシヨン・モードで作動し入力電圧が所定値以
上になるとカツトオフし、且つ前記第1の絶縁ゲ
ート型電界効果トランジスタのゲート絶縁膜の厚
さよりも厚いゲート絶縁膜を有する第2の絶縁ゲ
ート型電界効果トランジスタのゲート電極および
ソース又はドレイン電極を共通接続し、前記半導
体基板に設けられた前記第2の絶縁ゲート型電界
効果トランジスタのチヤンネル部下のみ選択的に
基板不純物濃度を濃くし、前記第2の絶縁ゲート
型電界効果トランジスタのドレイン又はソース拡
散層を延在してここに抵抗を形成し、該抵抗を介
して入力端子に接続し、該抵抗により、入力波形
の急激の変化による前記第2の絶縁ゲート型電界
効果トランジスタのパンチスルーを防止したこと
を特徴とする半導体基置。
1 The gate of the first insulated gate field effect transistor to be protected provided on the semiconductor substrate operates in depletion mode and is cut off when the input voltage exceeds a predetermined value, and the first insulated gate field effect transistor The gate electrode and the source or drain electrode of a second insulated gate field effect transistor having a gate insulating film thicker than the thickness of the gate insulating film of the second insulated gate field effect transistor provided on the semiconductor substrate are connected in common. selectively increasing the substrate impurity concentration only under the channel of the field effect transistor, extending the drain or source diffusion layer of the second insulated gate field effect transistor to form a resistor there; A semiconductor device connected to an input terminal, wherein the resistor prevents punch-through of the second insulated gate field effect transistor due to a sudden change in an input waveform.
JP4097778A 1978-04-06 1978-04-06 Semiconductor device Granted JPS54132174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097778A JPS54132174A (en) 1978-04-06 1978-04-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097778A JPS54132174A (en) 1978-04-06 1978-04-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS54132174A JPS54132174A (en) 1979-10-13
JPS6342422B2 true JPS6342422B2 (en) 1988-08-23

Family

ID=12595491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097778A Granted JPS54132174A (en) 1978-04-06 1978-04-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS54132174A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154778A (en) * 1974-11-08 1976-05-14 Fujitsu Ltd
JPS5181579A (en) * 1975-01-16 1976-07-16 Hitachi Ltd
JPS532087A (en) * 1976-06-29 1978-01-10 Toshiba Corp Input protection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154778A (en) * 1974-11-08 1976-05-14 Fujitsu Ltd
JPS5181579A (en) * 1975-01-16 1976-07-16 Hitachi Ltd
JPS532087A (en) * 1976-06-29 1978-01-10 Toshiba Corp Input protection circuit

Also Published As

Publication number Publication date
JPS54132174A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
US4086642A (en) Protective circuit and device for metal-oxide-semiconductor field effect transistor and method for fabricating the device
US4481521A (en) Insulated gate field effect transistor provided with a protective device for a gate insulating film
KR20010015521A (en) Reliable diffusion resistor and diffusion capacitor
US4514646A (en) Semiconductor integrated circuit device including a protective resistor arrangement for output transistors
US7999324B2 (en) Semiconductor device including overcurrent protection element
KR940009582B1 (en) Mos type semiconductor device
US5227327A (en) Method for making high impedance pull-up and pull-down input protection resistors for active integrated circuits
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPH0531313B2 (en)
JP2676888B2 (en) Semiconductor device
US4922316A (en) Infant protection device
JPS6342422B2 (en)
KR940007468B1 (en) Semiconductor device
JP2737629B2 (en) Semiconductor device having output circuit of CMOS configuration
US5121179A (en) Higher impedance pull-up and pull-down input protection resistors for MIS transistor integrated circuits
JP2669245B2 (en) Semiconductor device
JPH0478022B2 (en)
JPS622704B2 (en)
JPS6115593B2 (en)
US6445601B1 (en) Electrostatic discharge protection circuit
JPS629228B2 (en)
JP2920013B2 (en) Semiconductor electrostatic protection circuit
JPH039559A (en) Protective device of complementary field effect transistor
JPH0563191A (en) Semiconductor device
JPH0319231Y2 (en)