JPS6342192A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS6342192A
JPS6342192A JP61186423A JP18642386A JPS6342192A JP S6342192 A JPS6342192 A JP S6342192A JP 61186423 A JP61186423 A JP 61186423A JP 18642386 A JP18642386 A JP 18642386A JP S6342192 A JPS6342192 A JP S6342192A
Authority
JP
Japan
Prior art keywords
layer
active layer
type
thickness
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61186423A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61186423A priority Critical patent/JPS6342192A/en
Publication of JPS6342192A publication Critical patent/JPS6342192A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent low threshold value and deterioration in temperature characteristic, by constituting an active layer and a clad layer of a III-V semiconductor which includes part of or all of alumina, gallium and indium as group III elements and includes phosphorus as a group V element, and using a double heterostructure in which arsenic is added and included in the active layer. CONSTITUTION:On an n-type GaAs substrate 1, the following layers are sequentially grown by an MO-VPE method and the like: an n-type Al0.5In0.5P clad layer 2 having a thickness of 1mum; a non-doped (Al0.45Ga0.55)0.6In0.4P0.8As0.2 active layer 3 having a thickness of 0.1 mum; a p-type Al0.5In0.5P clad layer 4 having a thickness of 1mum; and an n-type GaAs current blocking layer 5 having a thickness of 0.5mum. Then, only a part of n-GaAs blocking layer 5, which corresponds to a stripe part 9 having a width of about 2-10mum, is selectively etched away by a photolithography method and the like. Then a p-GaAs cap layer 6 is grown by about 1mum. A p-type electrode 7 composed of Ti/Pt/Au is formed on the layer 6. An n-type electrode 8 composed of Au/Ge is formed on the rear surface of the n-GaAs substrate 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高性能可視光半導体発光素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a high performance visible light semiconductor light emitting device.

(従来の技術) III族元素としてアルミニウム、ガリウム、インジウ
ムのうち一部或いはすべてを含み、■族元素として燐を
含むIII + V族半導体(以下ではAeGaInP
系半導体と称する)層を活性層およびクラッド層とする
ダブルヘテロ構造は、波長580nm〜690nm程度
の可視光領域でレーザ発振または発光する半導体発光素
子として用いられている。AeGaInP系よりなる半
導体レーザの従来例構造(エレクトロニクスルターズ(
Electron、Lett、X1985))の模式的
斜視図を第3図に示す。n−GaAs基板51上に厚さ
lpmのn−(Ae□、5Gao、s)o、5Ino、
5PクラツドR52、厚さ0.1pmのアンドープ−(
Aro、IGao、9)o、5Ino、5P活性層53
、厚さlpmのp−(Ae□、5 Ga□、5)0.5
In□、5P54、厚さ0.5pmのn−GaAs電流
ブロック層55を順次エビタクシアル成長する。
(Prior art) A III + V group semiconductor (hereinafter referred to as AeGaInP) containing some or all of aluminum, gallium, and indium as a group III element and phosphorus as a group
A double-hetero structure in which a layer (referred to as a "based semiconductor") is used as an active layer and a cladding layer is used as a semiconductor light-emitting element that oscillates or emits light in the visible light region of about 580 nm to 690 nm in wavelength. Conventional structure of a semiconductor laser made of AeGaInP system (Electronics Luthers)
A schematic perspective view of the Electron, Lett, X1985) is shown in FIG. n-(Ae□, 5Gao, s)o, 5Ino, with a thickness of lpm on the n-GaAs substrate 51.
5P clad R52, 0.1 pm thick undoped (
Aro, IGao, 9)o, 5Ino, 5P active layer 53
, p-(Ae□,5 Ga□,5)0.5 with thickness lpm
An n-GaAs current blocking layer 55 made of In□, 5P54, and 0.5 pm thick is sequentially grown epitaxially.

次にフォトリソグラフィ等により、幅10pm程度のス
トライプ状部分59のみ、n−GaAsブロック層55
を選択的にエツチングして除去する。続いてp−GaA
sキャップ層56を約1pm成長し、その上に、Ti/
Pt/Auによるp−電極57、n−GaAs基板51
の裏面にAu/Geによるn−電極58を形成する。こ
のレーザは660nmの赤色で発振する。
Next, by photolithography or the like, only the striped portion 59 with a width of about 10 pm is formed on the n-GaAs block layer 55.
selectively etched and removed. Then p-GaA
s cap layer 56 is grown to a thickness of about 1 pm, and Ti/
P-electrode 57 made of Pt/Au, n-GaAs substrate 51
An n-electrode 58 made of Au/Ge is formed on the back surface of the substrate. This laser oscillates in red at 660 nm.

(発明が解決しようとする問題点) ダブルヘテロ構造を構成した場合、そのヘテロ接合部に
形成されるエネルギステップの高さく伝導帯におけるも
のをΔEc、価電帯におけるものをΔEvとする)は、
エネルギギャップ差(ΔEg)と各層への配分比で決ま
る。ダブルヘテロ構造で半導体レーザを構成した場合、
その発振閾値および温度特性はこのエネルギステップの
高さに依存する。つまり、低発振閾値で高温動作可能な
素子を得るには、このエネルギステップの高さを十分確
保せねばならない。IILV族半導体の場合は伝導帯の
状態密度が小さいので、伝導帯ではエネルギの高い準位
まで、電子がつまるので、特にΔEcを十分大きくする
必要がある。AeGaInP系の場合は、InGaAs
P/InP系やAeGaAs系などと較べて、ΔEgの
ΔEcに対する配分比が小さ゛い。このことは、InG
aAsP/InP系やAeGaAs系でとっていたヘテ
ロ接合部での△Egと同じ値をAeGaInP系でとっ
てもΔEcは前2者と較べて小さくなることを意味する
(Problems to be Solved by the Invention) When a double heterostructure is constructed, the height of the energy step formed at the heterojunction (where the height of the energy step in the conduction band is ΔEc and that in the valence band is ΔEv) is as follows:
It is determined by the energy gap difference (ΔEg) and the distribution ratio to each layer. When a semiconductor laser is configured with a double heterostructure,
Its oscillation threshold and temperature characteristics depend on the height of this energy step. In other words, in order to obtain an element that can operate at high temperatures with a low oscillation threshold, this energy step must be sufficiently high. In the case of IILV group semiconductors, the density of states in the conduction band is small, and the conduction band is filled with electrons up to high energy levels, so it is particularly necessary to make ΔEc sufficiently large. In the case of AeGaInP system, InGaAs
Compared to P/InP systems, AeGaAs systems, etc., the distribution ratio of ΔEg to ΔEc is small. This means that InG
This means that even if the same value as ΔEg at the heterojunction in the aAsP/InP system or the AeGaAs system is taken in the AeGaInP system, ΔEc will be smaller than in the former two.

このため、従来例では、Egを十分とっであるにも拘ら
ず、発振閾値が比較的高く、特に温度特性が悪かった。
For this reason, in the conventional example, the oscillation threshold was relatively high, and the temperature characteristics were particularly poor, although Eg was sufficiently set.

発振波長を短波長化するために活性層のエネルギギャッ
プを大きくしてゆくと、クラッド層としてエネルギギャ
ップの最も大きなArInPを用いても、低閾値化や温
度特性劣化防止が難しく、波長0.60pm付近での低
閾値発振や室温連続動作が困難であった。
When increasing the energy gap of the active layer in order to shorten the oscillation wavelength, even if ArInP, which has the largest energy gap, is used as the cladding layer, it is difficult to lower the threshold value and prevent deterioration of temperature characteristics, and the wavelength is 0.60 pm. Low threshold oscillation in the vicinity and continuous operation at room temperature were difficult.

本発明の目的は前述の問題を解決した半導体発光素子の
構造を提供することにある。
An object of the present invention is to provide a structure of a semiconductor light emitting device that solves the above-mentioned problems.

(問題を解決するための手段) この発明の要旨とするところは、活性層をクラッド層を
挟んだダブルヘテロ構造を少なくとも備えた半導体レー
ザにおいて、III族元素として、アルミニウム、ガリ
ウム、インジウムのうち一部或いはすべてを含み、V族
元素として燐を含むエエI−V族半導体で活性層および
クラッド層を構成し、・さらにその活性層に砒素を加え
て含有したダブルヘテロ構造を採用することにより、前
述の従来技術による問題点を解決することにある。電流
狭窄構造は、内部ストライプ構造、プレーナストライブ
構造、埋込構造等その他如何なる構造でもよい。
(Means for Solving the Problem) The gist of the present invention is to provide a semiconductor laser having at least a double heterostructure in which an active layer is sandwiched between cladding layers, in which one of aluminum, gallium, and indium is selected as a group III element. By adopting a double heterostructure in which the active layer and the cladding layer are made of a group IV semiconductor containing part or all of phosphorus as a group V element, and further containing arsenic in the active layer, The object of the present invention is to solve the problems caused by the prior art described above. The current confinement structure may be any other structure such as an internal stripe structure, a planar stripe structure, a buried structure, or the like.

電流狭9構造を必ずしもとる必要はない。また光の導波
領域に回折格子を備えたDFB型あるいはDBR型でも
よい。本発明は活性層となるArGaInPに、さらに
砒素(As)を加える点が、重要な点である。単にAs
を加えるのみならず、格子定数およびバンドギャップエ
ネルギを保ちつつ他の元素組成を変えると、この方法は
一層効果的となる。活性層はGaInPでもよい。各層
の製法は、有機金属熱分解気相エビタクシャル(MOV
PE)法、分子ビームエピタクシャル(MBE)法、ハ
ロゲン輸送気相エビタクシアル(HT−VPE)法、液
相エピタクシャル(LPE)法などがあり、その製法は
いずれによってもよい。
It is not necessarily necessary to take the current narrow 9 structure. Alternatively, a DFB type or DBR type may be used, which has a diffraction grating in the light waveguide region. An important point of the present invention is that arsenic (As) is further added to ArGaInP which becomes the active layer. Simply As
This method becomes even more effective if the composition of other elements is changed while maintaining the lattice constant and bandgap energy. The active layer may be made of GaInP. The manufacturing method for each layer is metal organic pyrolysis vapor phase epitaxial (MOV)
PE) method, molecular beam epitaxial (MBE) method, halogen transport vapor phase epitaxial (HT-VPE) method, liquid phase epitaxial (LPE) method, etc., and any of these methods may be used.

(作用) ヘテロ接合界面での、伝導帯のエネルギステップの高さ
ΔEcは、ヘテロ接合を構成する半導帯の電子親和度の
差として定義され、一義的に決まる。
(Function) The height ΔEc of the energy step of the conduction band at the heterojunction interface is defined as the difference in electron affinity of the semiconductor bands constituting the heterojunction, and is uniquely determined.

ところがIII + V族半導体、特に、その多元混晶
では電子親和力の値は不明確であった。ところでΔEc
が電子親和度の差として求まることから、逆にヘテロ接
合の性質を、光電子分光法、量子井戸の準位の測定によ
る方法等により調べることにより、ΔEcを知り、電子
親和力の差を知ることができる。
However, the electron affinity value of III+V group semiconductors, especially their multicomponent mixed crystals, has been unclear. By the way, ΔEc
can be determined as the difference in electron affinity.Conversely, by investigating the properties of the heterojunction using photoelectron spectroscopy, quantum well level measurements, etc., we can find out ΔEc and find out the difference in electron affinity. can.

つまり、電子親和力の測定は困難であるが、その差は上
述の如く、比較的容易に知られるようになった。また、
GaAsと格子整合するGa□、5In□、5Pまたは
(ArxGat−x)o、5In□、5P(0≦X≦1
)は、その構成元素としてAsを加えても、Ae及びG
aの組成として適当な値をとり、(AeX’ Ga1−
z′)yInl−yPl−zAsz(0≦X゛≦1、O
≦y≦1.0≦2≦1)とすることにより、エネルギギ
ャップ値および格子定数の値を、Asを加える前の値と
等しくすることができる。ところで前述の条件を満たし
つつ、Asを加えると、電子親和力の値が大きくなるこ
とがわかった。
In other words, although it is difficult to measure electron affinity, the difference can now be known relatively easily, as described above. Also,
Ga□, 5In□, 5P or (ArxGat-x)o, 5In□, 5P (0≦X≦1
), even if As is added as a constituent element, Ae and G
Taking an appropriate value as the composition of a, (AeX' Ga1-
z') yInl-yPl-zAsz (0≦X゛≦1, O
≦y≦1.0≦2≦1), the energy gap value and the lattice constant value can be made equal to the value before adding As. By the way, it has been found that when As is added while satisfying the above-mentioned conditions, the value of electron affinity increases.

第2図に、等しいエネルギギャップをもつ(Alz’ 
Gap−x′)yInl−yP1喜izにおける電子親
和力のZ依存性(As組成依存性)を、Ga□、5In
□、5Pの電子親和力の値に対する相対値として示す。
In Fig. 2, the energy gap with equal energy gap (Alz'
The Z dependence (As composition dependence) of the electron affinity in Ga□, 5In
□, shown as a relative value to the electron affinity value of 5P.

図に示すように、例えばEg=1.9eVの場合、Ga
□、5In□、5Pよりも(AeO,2Ga□、B)0
.7In□、3P□、5As□、5の方が電子親和力は
約0.15eV大となる。(Aeo、5Gao、4)o
、5Ino、5Pをクラッド層とした時Ga□、5In
□、5Pを活性層とした場合はΔEcが0.1eVとな
るが(Aeo、2Ga0.8)0.7In0.5P0.
5AS0.5を活性層とするとΔEcは0.25eVと
なる。活性層のエネルギギャップは両者で等しくΔEg
はともに0.4eVとなるが、ΔEcについては後者の
方が大きくなっている。その結果、ダブルヘテロ構造を
形成して発振波長と660nmとした場合、(Aeo、
6Gao、4) 0.5 Ino、sPをクラッド層と
して活性層を(Aeo、5Gao、2)o、7Ino、
5Po、5Aso、5とした方が、活性層を。
As shown in the figure, for example, when Eg=1.9eV, Ga
□, 5In□, 5P than (AeO, 2Ga□, B) 0
.. The electron affinity of 7In□, 3P□, 5As□, and 5 is approximately 0.15 eV larger. (Aeo, 5Gao, 4)o
, 5Ino, 5P as the cladding layer, Ga□, 5In
□, ΔEc is 0.1 eV when 5P is used as the active layer, but (Aeo, 2Ga0.8)0.7In0.5P0.
When 5AS0.5 is used as an active layer, ΔEc becomes 0.25 eV. The energy gap of the active layer is equal for both ΔEg
are both 0.4 eV, but ΔEc is larger in the latter. As a result, when a double heterostructure was formed and the oscillation wavelength was 660 nm, (Aeo,
6Gao, 4) 0.5 Ino, active layer with sP as cladding layer (Aeo, 5Gao, 2)o, 7Ino,
The active layer is 5Po, 5Aso, and 5.

Ga□、5In□、5Pとしたものよりも発振閾値を低
くかつ、温度特性を良好にすることができる。またAe
□、5In□。
The oscillation threshold can be lowered and the temperature characteristics can be made better than those using Ga□, 5In□, and 5P. Also Ae
□, 5In□.

5Pをクラッド層とすることにより、(AezGai−
x)0゜5In0.5Pを活性層とした場合は、活性層
をx = 0.3として発振波長600nm位までが限
度であるが、活性層を(Aro、45Gao、55)o
、6Ino、4Po、5Aso、2とすることによりΔ
Ec=0.15eV、ΔEv = 0.05eVとなり
室温連続動作でも発振波長570nm程度(黄緑)で発
振可能となる。
By using 5P as the cladding layer, (AezGai-
x) When 0゜5In0.5P is used as the active layer, the oscillation wavelength is limited to about 600 nm when the active layer is x = 0.3, but if the active layer is (Aro, 45 Gao, 55) o
, 6Ino, 4Po, 5Aso, 2, Δ
Ec = 0.15 eV, ΔEv = 0.05 eV, which makes it possible to oscillate at an oscillation wavelength of about 570 nm (yellow-green) even in continuous operation at room temperature.

(実施例) 以下一実施例を用いて本発明を説明する。第1図は本発
明の一実施例の模式的斜視図である。これは波長570
nm(黄緑色)で発振する可視光レーザである。n型G
aAs基板1の上に、MO−VPE法等により、厚さl
pmのn型Ae□、5In□、5Pクラッド層2、厚さ
0.1pmのアンドープ(Aeo、45Gao、55)
o、6Ino、4Po、5Aso、2活性層3、厚さl
pmのp型Ae□、5In□、5Pクラッド層4、厚さ
0.5pmのn型GaAs電流ブロック層5を順次成長
する。次にフォトリソグラフィ等により幅2〜10pm
程度のストライプ状部分9のみ、n−GaAsブロック
層5を選択的にエツチングして除去する。続いてp−G
aAsキャップ層6を約1pm成長し、その上に、Ti
/Pt/Auによるp−電極7、n−GaAs基板1の
裏面にAu/Geによるn−電極8を形成する。この実
施例のレーザ素子は、活性層を波長570nm(黄色)
で発振するまでエネルギギャップを大きくしてもΔEc
が0.15eV程度、ΔEvが0.05eV程度に保た
れる。このため、レーザ発振閾値が下がり、温度上昇に
よる閾値上昇が小さくなるため、室温連続発振が容易に
なり、信頼性も向上する。Asを含まないArGaIn
P系で(Aeo、a5Gao、5s)o、5Ino、5
Pを活性層として、発振波長570nmを得ようとする
と、ΔEcが0.075eV程度迄しかとれないため、
レーザ発振が難しくなる。従って実施例では、従来技術
では得られないより短波長の発振波長を得ることができ
る。
(Example) The present invention will be described below using an example. FIG. 1 is a schematic perspective view of an embodiment of the present invention. This is a wavelength of 570
It is a visible light laser that oscillates at nm (yellow-green). n-type G
A layer with a thickness of l is formed on the aAs substrate 1 by MO-VPE method or the like.
pm n-type Ae□, 5In□, 5P cladding layer 2, undoped with a thickness of 0.1 pm (Aeo, 45Gao, 55)
o, 6Ino, 4Po, 5Aso, 2 active layer 3, thickness l
A p-type Ae□, 5In□, 5P cladding layer 4 of 0.5 pm and an n-type GaAs current blocking layer 5 of 0.5 pm are sequentially grown. Next, the width is 2 to 10 pm by photolithography etc.
The n-GaAs block layer 5 is selectively etched and removed only in the striped portions 9 of about 100 mL. Then p-G
An aAs cap layer 6 is grown to a thickness of about 1 pm, and a Ti
A p-electrode 7 made of /Pt/Au and an n-electrode 8 made of Au/Ge are formed on the back surface of the n-GaAs substrate 1. The laser device of this example has an active layer with a wavelength of 570 nm (yellow).
Even if the energy gap is increased until oscillation occurs at ΔEc
is maintained at approximately 0.15 eV, and ΔEv is maintained at approximately 0.05 eV. Therefore, the laser oscillation threshold value is lowered, and the rise in the threshold value due to temperature rise is reduced, so continuous oscillation at room temperature is facilitated and reliability is improved. ArGaIn containing no As
In the P system (Aeo, a5Gao, 5s) o, 5Ino, 5
When trying to obtain an oscillation wavelength of 570 nm using P as the active layer, ΔEc can only be about 0.075 eV, so
Laser oscillation becomes difficult. Therefore, in the embodiment, it is possible to obtain a shorter oscillation wavelength that cannot be obtained with the prior art.

(発明の効果) このように本発明の構造を採ることにより、発振閾値が
小さく、温度上昇による特性劣化の小さな優れた半導体
レーザ素子が得られる。さらにその結果、従来技術では
得られなかったより短波長のレーザ発振波長をもつ、半
導体レーザ素子を得ることができる。
(Effects of the Invention) As described above, by employing the structure of the present invention, an excellent semiconductor laser device with a small oscillation threshold and little characteristic deterioration due to temperature rise can be obtained. Furthermore, as a result, it is possible to obtain a semiconductor laser element having a shorter laser oscillation wavelength than could be obtained with the conventional techniques.

この発明は、多元混晶の新材料により新たに開かれた可
視光半導体レーザへの応用に対してその効果の大なるも
のである。
This invention is highly effective in its application to visible light semiconductor lasers, which have been newly opened using new multi-component mixed crystal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の模式的斜視図、第2図は
、(Arx’ Ga1−x’ )yInl−yPl−z
Aszにおける電子親和力のAs組成Z依存性、第3図
は従来例の模式的斜視図をそれぞれ示す。 図中、 1、51 ・n型GaAs基板、2.−n−Ae□、5
In(1,5Pクラッド層 3、・・・アンドープ(Aeo、4sGao、5s)o
、6Ino、4Po、5Aso、2活性層 4、 ・= p−A<0.5In□、5Pクラッド層5
、55−n−GaAsブロック層、6.56−p−Ga
Asキャップ層 7.57・・・p−電極、8.58・・・n電極9、5
9 ・・・電流注入ストライプ領域、52−n−(Ar
□、5Ga□。 s)o、5Ino、sPクラッド層 53、・・・アンドープ(Aro、xGao、9)o、
5Ino、sP活性層6 廿 −& 第2図 0 0、+  0.2 0.3 0.4 0.5As組
成2
FIG. 1 is a schematic perspective view of one embodiment of the present invention, and FIG. 2 is a schematic perspective view of (Arx'Ga1-x')yInl-yPl-z
Dependency of electron affinity in Asz on As composition Z. FIG. 3 is a schematic perspective view of a conventional example. In the figure: 1, 51 - n-type GaAs substrate, 2. -n-Ae□, 5
In(1,5P cladding layer 3,... undoped (Aeo, 4sGao, 5s)o
, 6Ino, 4Po, 5Aso, 2 active layer 4, ・=p-A<0.5In□, 5P cladding layer 5
, 55-n-GaAs block layer, 6.56-p-Ga
As cap layer 7.57...p-electrode, 8.58...n electrode 9, 5
9...Current injection stripe region, 52-n-(Ar
□, 5Ga□. s) o, 5Ino, sP cladding layer 53, ... undoped (Aro, xGao, 9) o,
5 Ino, sP active layer 6 - & Fig. 2 0 0, + 0.2 0.3 0.4 0.5 As composition 2

Claims (1)

【特許請求の範囲】[Claims] 活性層をクラッド層で挟みこんだダブルヘテロ構造を少
なくとも備え、III族元素として、アルミニウム、ガリ
ウム、インジウムのうち一部或いはすべてを含み、V族
元素として燐を含むIII−V族半導体で活性層およびク
ラッド層を構成し、さらにその活性層に砒素を加えて含
有したことを特徴とした半導体発光素子。
The active layer is a III-V group semiconductor that has at least a double heterostructure in which the active layer is sandwiched between cladding layers, and includes some or all of aluminum, gallium, and indium as the group III element, and phosphorus as the group V element. A semiconductor light emitting device comprising a cladding layer and an active layer further containing arsenic.
JP61186423A 1986-08-07 1986-08-07 Semiconductor light emitting device Pending JPS6342192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186423A JPS6342192A (en) 1986-08-07 1986-08-07 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186423A JPS6342192A (en) 1986-08-07 1986-08-07 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS6342192A true JPS6342192A (en) 1988-02-23

Family

ID=16188167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186423A Pending JPS6342192A (en) 1986-08-07 1986-08-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6342192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469323B1 (en) * 1992-11-20 2002-10-22 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469323B1 (en) * 1992-11-20 2002-10-22 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device

Similar Documents

Publication Publication Date Title
JPH0531837B2 (en)
US7613217B2 (en) Semiconductor surface emitting device
JPH06326407A (en) Semiconductor laser
EP0975073B1 (en) Semiconductor laser
US6486491B1 (en) Semiconductor device
US6931044B2 (en) Method and apparatus for improving temperature performance for GaAsSb/GaAs devices
US7986721B2 (en) Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer
EP0915542B1 (en) Semiconductor laser having improved current blocking layers and method of forming the same
JP2721185B2 (en) Rib waveguide type light emitting semiconductor device
JPH0654821B2 (en) Semiconductor light emitting element
US20040136427A1 (en) Semiconductor optical device
JPS6342192A (en) Semiconductor light emitting device
JPH04350988A (en) Light-emitting element of quantum well structure
JPH07112090B2 (en) Semiconductor light emitting device
US5170404A (en) Semiconductor laser device suitable for optical communications systems drive
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JP3033333B2 (en) Semiconductor laser device
JPH0669589A (en) Semiconductor laser element
JP4163321B2 (en) Semiconductor light emitting device
JP3403915B2 (en) Semiconductor laser
JP2748570B2 (en) Semiconductor laser device
US20050280021A1 (en) Semiconductor optical device
JP3795931B2 (en) Semiconductor light emitting device
JPH10294530A (en) Multiquantum well type semiconductor light emitting element
JPH10209571A (en) Semiconductor light emitting element