JPH10209571A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH10209571A
JPH10209571A JP9008191A JP819197A JPH10209571A JP H10209571 A JPH10209571 A JP H10209571A JP 9008191 A JP9008191 A JP 9008191A JP 819197 A JP819197 A JP 819197A JP H10209571 A JPH10209571 A JP H10209571A
Authority
JP
Japan
Prior art keywords
band
active layer
light emitting
layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008191A
Other languages
Japanese (ja)
Inventor
Takuya Ishikawa
卓哉 石川
Akihiko Kasukawa
秋彦 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9008191A priority Critical patent/JPH10209571A/en
Publication of JPH10209571A publication Critical patent/JPH10209571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the overflow problem of electrons which are overflown to a clad layer from an active layer of a semiconductor light emitting element. SOLUTION: AlGaInNP mixed crystal is used for the semiconductor laser active layer 13 having a 650nm band (visible light) and a 1300nm band (infrared rays). The ratio of N is set at 3% or smaller for the 650nm band and 5 to 10% for the 1300nm band laser. When the ratio of N is changed, the discontinuous energy quantity ΔEc of a conduction band becomes larger, and the overflow of electron to p-clad layers 12 and 14 from the active layer can be suppressed by the enlarged electronic barrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
関し、特に、600nm帯で発振する可視光半導体発光
素子、及び、1300nm帯で発振する赤外光半導体発
光素子の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to an improvement in a visible light semiconductor light emitting device oscillating in a 600 nm band and an infrared semiconductor light emitting device oscillating in a 1300 nm band.

【0002】[0002]

【従来の技術】大容量光ディスク光源や計測用光源とし
て、600nm帯で発振する可視光半導体レーザの開発
が進んでいる。この分野では、集光スポットのサイズ低
減及び視感度向上のために、より短い波長で発振するレ
ーザの出現が望まれている。600nm帯の可視光レー
ザは、一般に、GaAs基板上の活性層としてGaInP系
の材料を用いて製造されており、活性層のGaInPに伸
張歪を導入して用い、或いは、Alを添加してAlGaI
nP活性層として用い、更には、これら物質を量子井戸
構造に形成するなどして、より短波長で発振するレーザ
素子が得られている。
2. Description of the Related Art Visible light semiconductor lasers oscillating in the 600 nm band have been developed as light sources for large-capacity optical disks and light sources for measurement. In this field, the emergence of a laser that oscillates at a shorter wavelength is desired in order to reduce the size of the focused spot and improve the visibility. A visible light laser in the 600 nm band is generally manufactured using a GaInP-based material as an active layer on a GaAs substrate, and is used by introducing tensile strain into GaInP of the active layer or by adding Al to the active layer.
A laser device that oscillates at a shorter wavelength has been obtained by using it as an nP active layer and further forming these materials into a quantum well structure.

【0003】一般的にAlGaInP系の可視光半導体レ
ーザでは、活性層からp型クラッド層への電子のオーバ
ーフロー(以下、単に、電子のオーバーフローとも呼
ぶ)が問題となっている。つまり、この系で一般にクラ
ッド層として用いられるAlGaInPでは、Al組成が増
すほどバンドギャップが大きくなるが、(Al0.7Ga0.
30.5In0.5Pが直接遷移と間接遷移の境界であるよう
に、或る限度以上にAl組成を増加させると活性層内に
電子を閉じ込めることが出来ず、pクラッド層に電子が
オーバーフローすることである。このため、Alの組成
を増すことには限界がある。
[0003] In general, in AlGaInP-based visible light semiconductor lasers, an overflow of electrons from the active layer to the p-type cladding layer (hereinafter, also simply referred to as an overflow of electrons) poses a problem. That is, in AlGaInP generally used as a cladding layer in this system, the band gap increases as the Al composition increases, but (Al 0.7 Ga 0.
3 ) If the Al composition is increased beyond a certain limit such that 0.5 In 0.5 P is the boundary between the direct transition and the indirect transition, electrons cannot be confined in the active layer and the electrons overflow to the p-cladding layer. That is. For this reason, there is a limit to increasing the composition of Al.

【0004】発振波長がより短波長化し、活性層のバン
ドギャップが大きくなればなるほど、前記電子のオーバ
ーフロー問題は無視できなくなる。電子に対する等価的
な障壁の高さは、pクラッド層のドーパント濃度にも依
存し、ドーパントが多いほど、障壁が等価的に大きくな
ることが知られている。このため、pクラッド層のドー
ピング濃度を高くすることが試みられている。
As the oscillation wavelength becomes shorter and the band gap of the active layer becomes larger, the electron overflow problem cannot be ignored. It is known that the equivalent barrier height for electrons also depends on the dopant concentration of the p-cladding layer, and the more the dopant, the greater the barrier equivalently. For this reason, attempts have been made to increase the doping concentration of the p-cladding layer.

【0005】電子のオーバーフロー問題に関しては、上
記試みとは別に、活性層とpクラッド層との間に非常に
薄い多層膜を挿入し、この多層膜中での電子の干渉効果
を利用して、等価的に障壁高さを大きくしようとする、
いわゆる多重量子障壁(MQB)を用いることも提案さ
れている。
Regarding the problem of electron overflow, apart from the above-mentioned attempt, a very thin multilayer film is inserted between the active layer and the p-cladding layer, and the interference effect of electrons in this multilayer film is used. Equivalently trying to increase the barrier height,
It has also been proposed to use so-called multiple quantum barriers (MQBs).

【0006】次に、1300nm帯で発振する赤外光半
導体レーザに目を向けてみると、この波長帯のレーザ
は、一般に光加入者系で用いられるため、低コストのモ
ジュール開発が特に要請されている。そのため、コスト
が高い温調機能を発光モジュールから省く試みがある。
しかし、温調機能を省いたときには、高温環境下でのレ
ーザ特性の劣化原因として、600nm帯の可視光レー
ザと同様な電子のオーバーフロー問題が発生することが
知られている。この問題を解決する方法として、最近、
例えば「Japanese Journal of Applied Physics」,Vol.
35,pp.1273-1275(1996)に記載されているように、GaA
s基板上に格子整合したGaInNAsを活性層として用い
る、1.3μm帯の赤外光レーザが提案されている。
Turning now to an infrared semiconductor laser that oscillates in the 1300 nm band, lasers in this wavelength band are generally used in optical subscriber systems, and there is a particular demand for the development of low-cost modules. ing. Therefore, there has been an attempt to omit the costly temperature control function from the light emitting module.
However, when the temperature control function is omitted, it is known that a problem of electron overflow similar to that of a visible light laser in the 600 nm band occurs as a cause of deterioration of laser characteristics in a high temperature environment. To solve this problem, recently,
For example, `` Japanese Journal of Applied Physics '', Vol.
35, pp. 1273-1275 (1996).
A 1.3 μm band infrared laser using GaInNAs lattice-matched on an s substrate as an active layer has been proposed.

【0007】[0007]

【発明が解決しようとする課題】600nm帯の可視レ
ーザでは、AlGaInPは、p型ドーパントを高濃度に
ドープすることが非常に難しく、せいぜい1×1018
-3程度にとどまってしまう。このため、pクラッド層
のドーピング濃度を高くして、等価的に障壁の高さを高
くすることにはやはり限界がある。また、多重量子障壁
は、理論的には非常に大きな効果をもたらすことが期待
されているものの、設計通りの超薄膜多層構造を得るこ
とが実際的に困難などの理由により、現状では理論通り
の効果が得られていない。つまり、従来技術の範囲で
は、AlGaInP系のレーザ構造に存在する電子のオー
バーフロー問題は十分には解決されていなかった。
With a visible laser in the 600 nm band, it is very difficult for AlGaInP to dope a p-type dopant at a high concentration, and at most 1 × 10 18 c
m -3 . Therefore, there is still a limit to increasing the barrier height equivalently by increasing the doping concentration of the p-cladding layer. Although the multi-quantum barrier is expected to produce a very large effect in theory, it is currently difficult to obtain an ultra-thin multilayer structure as designed. No effect has been obtained. That is, the overflow problem of electrons existing in the AlGaInP-based laser structure has not been sufficiently solved in the range of the related art.

【0008】また、1300nm帯の赤外レーザでは、
本来はGaAs基板に格子整合しないGaInAsにNを添
加することにより格子整合を図るものであるから、Ga
Asへの格子整合条件とバンドギャップとを決めると、
その組成が一義的に定まってしまい、活性層の設計に関
して自由度が低いという問題があった。
In the case of an infrared laser in the 1300 nm band,
Since the lattice matching is achieved by adding N to GaInAs which is not originally lattice matched to the GaAs substrate,
Determining the lattice matching condition and band gap for As,
There is a problem that the composition is uniquely determined and the degree of freedom in designing the active layer is low.

【0009】本発明は、上記に鑑み、600nm帯及び
1300nm帯の各半導体発光素子において、活性層か
らp型クラッド層に電子がオーバーフローする問題を解
決することを目的とする。
In view of the above, it is an object of the present invention to solve the problem of electrons overflowing from the active layer to the p-type cladding layer in each of the 600 nm band and 1300 nm band semiconductor light emitting devices.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体発光素子は、活性層がAlGaInN
P混晶を含むことを特徴とする。
In order to achieve the above object, a semiconductor light emitting device according to the present invention has an active layer made of AlGaInN.
It is characterized by containing a P mixed crystal.

【0011】ここで、発振波長が600nm帯(600
〜680nm)の半導体発光素子に本発明を適用する場
合には、AlGaInNP混晶におけるNの比率を3%以
下とすることが好ましい。また、発振波長が1300n
m帯(1280〜1340nm)の発光素子に本発明を
適用する場合には、Nの比率を5%〜10%以下とする
ことが好ましい。
Here, the oscillation wavelength is in the 600 nm band (600 nm).
When the present invention is applied to a semiconductor light emitting device having a wavelength of about 680 nm (about 680 nm), the ratio of N in the AlGaInNP mixed crystal is preferably 3% or less. The oscillation wavelength is 1300n
In a case where the present invention is applied to a light-emitting element in the m band (1280 to 1340 nm), it is preferable that the ratio of N be 5% to 10% or less.

【0012】以下、図面を参照し、本発明の原理を更に
詳細に説明する。まず、(AlzGa1 -zxIn1-xv
1-vと表わされる混晶系において、GaAsに格子整合
し、かつバンドギャップ波長が650nm(GaInPの
バンドギャップ波長)となる条件を満たす(x、z、
v)の組を計算により求めた。図1は、上記条件を満た
す、N組成vとAl+Gaの組成x(破線)及びAlの組
成z(実線)との関係を示したグラフである。同図に示
すように、Al組成zを増やすと、バンドギャップを一
定とする条件からはN組成vを増やす必要があり、N組
成vを増やすと格子整合条件からAl+Gaの組成xを減
らす必要がある。このときのAl組成zに対するAlGa
InNP混晶のバンド位置をプロットしたものが図2で
ある。同図の実線は伝導帯のバンド位置を、破線は価電
子帯のバンド位置を夫々示す。
Hereinafter, the principle of the present invention will be described in more detail with reference to the drawings. First, (Al z Ga 1 -z) x In 1-x N v P
In a mixed crystal system represented by 1-v , lattice matching with GaAs is satisfied, and the condition that the band gap wavelength is 650 nm (band gap wavelength of GaInP) is satisfied (x, z,
The set v) was calculated. FIG. 1 is a graph showing the relationship between the N composition v and the composition x (broken line) of Al + Ga and the composition z (solid line) of Al satisfying the above conditions. As shown in the figure, when the Al composition z is increased, it is necessary to increase the N composition v from the condition that the band gap is constant. is there. AlGa with respect to the Al composition z at this time
FIG. 2 is a plot of the band position of the InNP mixed crystal. The solid line in the figure indicates the band position of the conduction band, and the broken line indicates the band position of the valence band.

【0013】図2を参照すると、AlGaInPにNを微
量添加することによって、格子整合条件及びバンドギャ
ップ一定の条件を満足しつつ、バンドの相対位置をほぼ
線形に変化させ得ることが判る。つまり、図に例示した
(Al0.7Ga0.3)InPの伝導帯及び価電子帯のバンド
位置(1.65eV及び−0.25eV)を考慮する
と、従来のGaInP活性層では、伝導帯の不連続エネル
ギー量ΔEcが約250meV、価電子帯の不連続エネ
ルギー量ΔEvが約150meVと夫々一定であるのと
は異なり、本発明に従ってAlGaInNP活性層を用い
ることにより、発振波長が600nm帯の半導体レーザ
において、伝導帯の不連続エネルギー量ΔEcを250
meVから550meVまで任意に変化させることが可
能である。つまり、電子に対するpクラッド障壁の高さ
は飛躍的に大きくなり、電子のオーバーフロー問題を抑
制することができる。
Referring to FIG. 2, it can be seen that by adding a small amount of N to AlGaInP, the relative position of the band can be changed almost linearly while satisfying the lattice matching condition and the constant band gap condition. That is, in consideration of the band positions (1.65 eV and -0.25 eV) of the conduction band and the valence band of (Al 0.7 Ga 0.3 ) InP illustrated in the figure, the discontinuous energy of the conduction band is obtained in the conventional GaInP active layer. Unlike the case where the amount ΔEc is about 250 meV and the discontinuous energy amount ΔEv of the valence band is about 150 meV, which is constant, the use of the AlGaInNP active layer according to the present invention makes it possible to obtain a semiconductor laser having an oscillation wavelength of 600 nm. The discontinuous energy of the band ΔEc is 250
It can be arbitrarily changed from meV to 550 meV. In other words, the height of the p-cladding barrier for electrons is dramatically increased, and the problem of overflow of electrons can be suppressed.

【0014】ここで、あまり多くのNを添加すると、バ
ンドギャップが小さくなり過ぎ、特に可視光半導体レー
ザの活性層には適さなくなる。従って、650nm帯の
発光素子では、AlGaInPに添加するNの量は、図2
からも理解できるように、3%以下が望ましい。
Here, if too much N is added, the band gap becomes too small, and is not particularly suitable for an active layer of a visible light semiconductor laser. Therefore, in the light emitting device in the 650 nm band, the amount of N added to AlGaInP is as shown in FIG.
As can be understood from FIG.

【0015】一方1300nm帯のレーザでは、活性層
としてAlGaInPにNを添加したAlGaInNPを用い
ることにより、活性層の設計における自由度を高めるこ
とが出来る。(AlzGa1-zxIn1-xv1-vと表わさ
れる混晶系において、GaAsに格子整合し、かつバンド
ギャップ波長が1310nmとなる条件を満たす(x、
z、v)の組を計算により求めた。図3は、上記条件を
満たす、N組成vとAl+Gaの組成x(破線)及びAl
組成z(実線)との関係を示したグラフである。
On the other hand, in the case of a laser in the 1300 nm band, the degree of freedom in designing the active layer can be increased by using AlGaInNP obtained by adding N to AlGaInP as the active layer. (Al z Ga 1-z) x In 1-x N v in P 1-v and mixed crystal represented, lattice-matched to GaAs, and satisfies the bandgap wavelength is 1310 nm (x,
The set of z, v) was calculated. FIG. 3 shows N composition v and Al + Ga composition x (broken line) and Al satisfying the above conditions.
4 is a graph showing a relationship with a composition z (solid line).

【0016】Al組成zを増やすと、バンドギャップ一
定の条件からはN組成vを増やす必要があり、N組成v
を増やすと格子整合条件からAl+Gaの組成xを減らす
必要がある。このときのAl組成zに対するAlGaIn
NP混晶のバンド位置をプロットしたものが図4であ
る。同図の実線は伝導帯のバンド位置を、破線は価電子
帯のバンド位置を夫々示す。同図を参照すると、AlGa
InPにNを微量添加することによって、1300nm
帯の半導体レーザにおいて、格子整合条件及びバンドギ
ャップ一定の条件を満足しつつ、バンドの相対位置をほ
ぼ線形に変化させ得ることが判る。
When the Al composition z is increased, it is necessary to increase the N composition v from the condition that the band gap is constant.
Increases, it is necessary to reduce the composition x of Al + Ga from the lattice matching condition. AlGaIn with respect to the Al composition z at this time
FIG. 4 is a plot of the band positions of NP mixed crystals. The solid line in the figure indicates the band position of the conduction band, and the broken line indicates the band position of the valence band. Referring to FIG.
By adding a small amount of N to InP, 1300 nm
It is understood that the relative position of the band can be changed substantially linearly while satisfying the lattice matching condition and the constant band gap condition in the semiconductor laser in the band.

【0017】従来技術では、本来はGaAs基板に格子整
合しないGaInAsにNを添加することにより格子整合
させるものであり、GaAsへの格子整合条件とバンドギ
ャップを決めると組成が一義的に定まってしまう。この
従来技術では、伝導帯の不連続エネルギー量ΔEcが大
きくなるようなバンド配置が偶然に得られたにすぎな
い。一方、本発明では、上述したように格子整合条件及
びバンドギャップ一定の条件を満足し、更にそれに加え
て、バンド配置を任意に調整し得るため、設計の自由度
が大幅に向上する。1310nm帯の発振波長を得るに
は、AlGaInPに添加するNの量は、図4からも理解
できるように、6%以上9%以下が望ましい。
In the prior art, lattice matching is performed by adding N to GaInAs, which is not originally lattice matched to the GaAs substrate, and the composition is uniquely determined if the lattice matching conditions for GaAs and the band gap are determined. . In this conventional technique, a band arrangement in which the amount of discontinuous energy ΔEc in the conduction band becomes large is merely obtained by accident. On the other hand, in the present invention, the lattice matching condition and the constant band gap condition are satisfied as described above, and in addition, the band arrangement can be arbitrarily adjusted, so that the degree of freedom in design is greatly improved. In order to obtain an oscillation wavelength in the 1310 nm band, the amount of N added to AlGaInP is preferably 6% or more and 9% or less, as can be understood from FIG.

【0018】[0018]

【発明の実施の形態】図5は、本発明の一実施形態例で
ある、GaAs基板上に作製したAlGaInNP系の半導
体レーザの断面図である。この半導体レーザは以下のよ
うにして得られる。まず、n型GaAs(n−GaAs、以
下同様)基板10上に、MOCVD法により、n−Ga
Asバッファ層11、n−(Al0.7Ga0.30.5In0.5
下部クラッド層12、AlGaInNP活性層13、p−
(Al0.7Ga0.30.5In0.5P第1上部クラッド層1
4、p−GaInPエッチストップ層15、p−(Al0.7
Ga0 .30.5In0.5P第2上部クラッド層16、p−Ga
InP中間層17を順次に成長形成する。
FIG. 5 is a cross-sectional view of an AlGaInNP-based semiconductor laser fabricated on a GaAs substrate according to an embodiment of the present invention. This semiconductor laser is obtained as follows. First, on an n-type GaAs (n-GaAs, the same applies hereinafter) substrate 10, n-GaAs is formed by MOCVD.
As buffer layer 11, n- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P
Lower cladding layer 12, AlGaIn NP active layer 13, p-
(Al 0.7 Ga 0.3 ) 0.5 In 0.5 P First upper cladding layer 1
4, p-GaInP etch stop layer 15, p- (Al 0.7
Ga 0 .3) 0.5 In 0.5 P second upper cladding layer 16, p-Ga
An InP intermediate layer 17 is sequentially grown and formed.

【0019】上記で形成した積層上に、図示しない絶縁
膜(例えばSiN)を堆積し、フォトリソグラフィ及び
化学エッチング法を採用して、第2上部クラッド層16
及びp−GaInP中間層17をメサ構造に形成する。S
iN絶縁膜を残したまま、2回目のMOCVD成長によ
りn−GaAs電流阻止層18を成膜し、メサ構造の両側
部を埋め込む。SiN絶縁膜を除去し、3回目のMOC
VD成長により、p−GaAsコンタクト層19を全面に
成長し、更に、上部電極20及び下部電極21を夫々形
成することで、図5に示す発光素子が得られる。
An insulating film (not shown) (for example, SiN) is deposited on the lamination formed above, and the second upper cladding layer 16 is formed by photolithography and chemical etching.
And the p-GaInP intermediate layer 17 is formed in a mesa structure. S
With the iN insulating film left, an n-GaAs current blocking layer 18 is formed by the second MOCVD growth to bury both sides of the mesa structure. 3rd MOC after removing the SiN insulating film
By growing the p-GaAs contact layer 19 over the entire surface by VD growth, and further forming the upper electrode 20 and the lower electrode 21, the light emitting device shown in FIG. 5 is obtained.

【0020】上記実施形態例の半導体発光素子の作製方
法及び素子の構造自体は従来とほぼ同じであるが、活性
層としてAlGaInNPを用いたことが従来とは異なっ
ている。比較のため、上記実施形態例の構造と同様な構
造を有し、活性層のNの割合が0%(つまり、従来技術
のGaInP活性層)のもの(比較例1)、0.7%のも
の(実施例1)、及び、1.6%のもの(比較例2)を
夫々試作した。素子のしきい値電流は、Nの添加量が0
%のもので約45mA、0.7%のもので約45mA、
1.6%のもので約60mAであった。
Although the method of manufacturing the semiconductor light emitting device of the above embodiment and the structure of the device itself are almost the same as the conventional one, the difference from the conventional one is that AlGaInNP is used as the active layer. For comparison, a structure having a structure similar to that of the above-described embodiment, in which the ratio of N in the active layer is 0% (that is, the conventional GaInP active layer) (Comparative Example 1) is 0.7%. (Example 1) and 1.6% (Comparative Example 2) were prototyped. The threshold current of the device is such that the amount of N added is 0.
% Of about 45 mA, 0.7% of about 45 mA,
It was about 60 mA at 1.6%.

【0021】Nの添加量が1.6%のもの(比較例2)
は、図2から理解できるように、価電子帯での不連続エ
ネルギー量ΔEvがほとんど0であり、正孔に対する閉
じ込めが弱くなってしまったことから、しきい値の上昇
が生じたものと考えられる。なお、発振波長はいずれも
652nmであった。次に、しきい値電流の温度依存性
を測定し、特性温度T0を求めた。
When the amount of N added is 1.6% (Comparative Example 2)
It can be understood from FIG. 2 that, as can be understood from FIG. 2, the discontinuous energy amount ΔEv in the valence band is almost 0, and the confinement of holes is weakened, so that the threshold value is increased. Can be The oscillation wavelength was 652 nm in each case. Next, the temperature dependence of the threshold current was measured to determine the characteristic temperature T 0 .

【0022】特性温度T0は、Nの添加量が0%のもの
(比較例1)で約60K、0.7%のもの(実施例1)
で約120K、1.6%のもの(比較例2)で約150
Kであった。このことから、本発明に従ってNを添加し
たAlGaInNP活性層を用いることにより、600n
m帯の半導体レーザにおいて、活性層からpクラッド層
への電子のオーバーフローが抑制され、レーザの温度特
性が著しく改善されることが判明した。
The characteristic temperature T 0 is about 60 K and 0.7% (Example 1) when the amount of N added is 0% (Comparative Example 1).
About 120K, 1.6% (Comparative Example 2) about 150
It was K. From this, the use of the AlGaIn NP active layer to which N is added in accordance with the present invention makes it possible to obtain 600 n
In an m-band semiconductor laser, it was found that the overflow of electrons from the active layer to the p-cladding layer was suppressed, and the temperature characteristics of the laser were significantly improved.

【0023】図6は、本発明の第2の実施形態例の半導
体レーザである、GaAs基板上に作製したAlGaInN
P系の半導体レーザの断面図である。同図の半導体レー
ザは、図5の半導体レーザと同様に作製されるが、Al
0.5In0.5Pをクラッド層32、34、36に用いた
点、及び、Nを約6%添加したAlGaInNPを活性層
33に用いた点において、先の実施形態例とは異なる。
FIG. 6 shows a semiconductor laser according to a second embodiment of the present invention, which is an AlGaInN fabricated on a GaAs substrate.
It is sectional drawing of a P type semiconductor laser. The semiconductor laser shown in the figure is manufactured in the same manner as the semiconductor laser shown in FIG.
The present embodiment is different from the previous embodiment in that 0.5 In 0.5 P is used for the cladding layers 32, 34, and 36, and AlGaIn NP to which N is added about 6% is used for the active layer 33.

【0024】本実施形態例の半導体レーザ(実施例2)
を実際に作製して、その発振波長を測定したところ、1
310nmであった。次に、しきい値電流の温度依存性
を測定し、特性温度T0を求めた。測定された特性温度
0は、約180Kであった。比較のため、発振波長1
310nmのレーザで一般的に用いられている、InP
基板上のGaInAsP系半導体レー(比較例3)の特性
温度を測定したところ、その特性温度T0は80Kであ
った。このことから、本発明に従ってNを添加したAl
GaInNP活性層を用いることにより、1300nm帯
の半導体レーザにおいて、活性層からpクラッド層への
電子のオーバーフローが抑制され、レーザの温度特性が
著しく改善される旨が確認された。
Semiconductor laser of this embodiment (Example 2)
Was actually fabricated and its oscillation wavelength was measured.
310 nm. Next, the temperature dependence of the threshold current was measured to determine the characteristic temperature T 0 . The measured characteristic temperature T 0 was about 180K. For comparison, oscillation wavelength 1
InP commonly used in 310 nm lasers
The characteristic temperature of GaInAsP-based semiconductor laser on the substrate (Comparative Example 3) was measured and the characteristic temperature T 0 was 80K. From this, Al added with N according to the present invention is
By using the GaInNP active layer, it was confirmed that in a 1300 nm band semiconductor laser, the overflow of electrons from the active layer to the p-cladding layer was suppressed, and the temperature characteristics of the laser were significantly improved.

【0025】なお、上記の各実施形態例では、活性層を
バルク構造としたもので説明したが、いわゆる量子井戸
構造を採用し、AlGaInNPを量子井戸層として用い
ても本発明の効果は同様に得られる。
In each of the above embodiments, the active layer has a bulk structure. However, even if a so-called quantum well structure is employed and AlGaInNP is used as the quantum well layer, the effect of the present invention is similarly obtained. can get.

【0026】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の半導体発光素子は、上記実
施形態例の構成にのみ限定されるものではなく、上記実
施形態例の構成から種々の修正及び変更を施した半導体
発光素子も、本発明の範囲に含まれる。
Although the present invention has been described based on the preferred embodiments, the semiconductor light-emitting device of the present invention is not limited to the configuration of the above-described embodiments, but rather the configuration of the above-described embodiments. Various modifications and changes of the semiconductor light emitting device are also included in the scope of the present invention.

【0027】[0027]

【発明の効果】以上説明したように、本発明の半導体発
光素子によると、活性層がAlGaInNP混晶を含む構
成を採用したことにより、Nの組成を制御することで伝
導帯の不連続エネルギー量ΔEcを大きくでき、活性層
からpクラッド層への電子のオーバーフローを抑制する
ことができ、温度特性の良好な発光素子が得られる効果
がある。
As described above, according to the semiconductor light emitting device of the present invention, since the active layer has a structure including AlGaInNP mixed crystal, the composition of N is controlled to thereby control the discontinuous energy of the conduction band. ΔEc can be increased, the overflow of electrons from the active layer to the p-cladding layer can be suppressed, and there is an effect that a light emitting element having good temperature characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GaAsに格子整合し、バンドギャップがGaIn
Pのバンドギャップに等しいという条件を満たすときの
AlGaInPに添加するNの割合と、Al+Ga組成x及
びAl組成zとの関係を示すグラフ。
FIG. 1 is lattice matched to GaAs, and the band gap is GaIn.
9 is a graph showing the relationship between the proportion of N added to AlGaInP and the Al + Ga composition x and the Al composition z when the condition that the band gap is equal to P is satisfied.

【図2】図1と同じ条件下でのAlGaInPに添加する
Nの割合と、その混晶のバンド位置との関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between the ratio of N added to AlGaInP and the band position of a mixed crystal thereof under the same conditions as in FIG.

【図3】GaAsに格子整合し、バンドギャップが131
0nmに等しいという条件を満たすときのAlGaInP
に添加するNの割合と、Al+Ga組成x及びAl組成z
との関係を示すグラフ。
FIG. 3 shows lattice matching with GaAs, and a band gap of 131.
AlGaInP when the condition of being equal to 0 nm is satisfied
And the Al + Ga composition x and the Al composition z
The graph which shows the relationship with.

【図4】図3と同じ条件下でのAlGaInPに添加する
Nの割合と、その混晶のバンド位置との関係を示すグラ
フ。
4 is a graph showing the relationship between the ratio of N added to AlGaInP and the band position of the mixed crystal under the same conditions as in FIG.

【図5】本発明の第1の実施形態例の、GaAs基板上に
作製したAlGaInNP系600nm帯レーザの断面
図。
FIG. 5 is a cross-sectional view of an AlGaInNP-based 600 nm band laser fabricated on a GaAs substrate according to the first embodiment of the present invention.

【図6】本発明の第2の実施形態例の、GaAs基板上に
作製したAlGaInNP系1300nm帯レーザの断面
図。
FIG. 6 is a cross-sectional view of an AlGaInNP-based 1300 nm band laser fabricated on a GaAs substrate according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10、30 n−GaAs基板 11、31 n−GaAsバッファ層 12 n−(Al0.7Ga0.30.5In0.5P下部クラッド
層 13、33 AlGaInNP活性層 14 p−(Al0.7Ga0.30.5In0.5P第1上部クラ
ッド層 15、35 p−GaInPエッチストップ層 16 p−(Al0.7Ga0.30.5In0.5P第2上部クラ
ッド層 17、37 p−GaInP中間層17 18、38 n−GaAs電流阻止層18 19、39 p−GaAsコンタクト層 20、40 上部電極 21、41 下部電極21 32 n−Al0.5In0.5P下部クラッド層 34 n−Al0.5In0.5P上部第1上部クラッド層 36 n−Al0.5In0.5P上部第2上部クラッド層
10, 30 n-GaAs substrate 11, 31 n-GaAs buffer layer 12 n- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P lower cladding layer 13, 33 AlGaInNP active layer 14 p- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P First upper cladding layer 15, 35 p-GaInP etch stop layer 16 p- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P second upper cladding layer 17, 37 p-GaInP intermediate layer 17 18, 38 n-GaAs current blocking layer 18 19, 39 p-GaAs contact layer 20, 40 upper electrode 21, 41 lower electrode 21 32 n-Al 0.5 In 0.5 P lower cladding layer 34 n-Al 0.5 In 0.5 P upper first upper cladding layer 36 n-Al 0.5 In 0.5 P upper second upper cladding layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性層がAlGaInNP混晶を含むこと
を特徴とする半導体発光素子。
2. A semiconductor light emitting device according to claim 1, wherein the active layer contains an AlGaInNP mixed crystal.
【請求項2】 発振波長が600〜680nmであり、
かつNの比率が3%以下であることを特徴とする、請求
項1に記載の発光素子。
2. An oscillation wavelength of 600 to 680 nm,
The light emitting device according to claim 1, wherein the ratio of N is 3% or less.
【請求項3】 発振波長が1280〜1340nmであ
り、かつNの比率が5%以上10%以下であることを特
徴とする、請求項1に記載の発光素子。
3. The light emitting device according to claim 1, wherein the oscillation wavelength is 1280 to 1340 nm and the ratio of N is 5% or more and 10% or less.
JP9008191A 1997-01-21 1997-01-21 Semiconductor light emitting element Pending JPH10209571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008191A JPH10209571A (en) 1997-01-21 1997-01-21 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008191A JPH10209571A (en) 1997-01-21 1997-01-21 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH10209571A true JPH10209571A (en) 1998-08-07

Family

ID=11686402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008191A Pending JPH10209571A (en) 1997-01-21 1997-01-21 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH10209571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884291B1 (en) * 1998-04-13 2005-04-26 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength band
US7198972B2 (en) 1998-04-13 2007-04-03 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength band
US7384479B2 (en) 1998-04-13 2008-06-10 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884291B1 (en) * 1998-04-13 2005-04-26 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength band
US7198972B2 (en) 1998-04-13 2007-04-03 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength band
US7384479B2 (en) 1998-04-13 2008-06-10 Ricoh Company, Ltd. Laser diode having an active layer containing N and operable in a 0.6 μm wavelength

Similar Documents

Publication Publication Date Title
US5321712A (en) Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound
JP3129779B2 (en) Semiconductor laser device
JPH11274635A (en) Semiconductor light emitting device
JPH08195522A (en) Semiconductor laser
EP1081817B1 (en) A semiconductor device
JPH07162086A (en) Manufacture of semiconductor laser
JP2002076514A (en) Laser diode and production method therefor
JPH0685401A (en) Semiconductor laser
US6909733B2 (en) Semiconductor laser device
JPH10209571A (en) Semiconductor light emitting element
JP3938976B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP3552642B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2001144375A (en) Semiconductor light-emitting device
JP2001251010A (en) Semiconductor laser and method of manufacturing the same
JPH05267797A (en) Light-emitting semiconductor diode
JP2003008147A (en) Semiconductor laser device and its manufacturing method
JPH0541560A (en) Semiconductor laser element
JPH10294524A (en) Semiconductor laser
JP3033333B2 (en) Semiconductor laser device
JP2002033553A (en) Semiconductor laser device and its manufacturing method
JP4048695B2 (en) Manufacturing method of semiconductor mixed crystal layer, semiconductor device and semiconductor light emitting device
JP2909144B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0669589A (en) Semiconductor laser element
JP2001251015A (en) Semiconductor laser device and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees