JPS6342166A - Manufacture of solid-state image sensing device - Google Patents

Manufacture of solid-state image sensing device

Info

Publication number
JPS6342166A
JPS6342166A JP61185572A JP18557286A JPS6342166A JP S6342166 A JPS6342166 A JP S6342166A JP 61185572 A JP61185572 A JP 61185572A JP 18557286 A JP18557286 A JP 18557286A JP S6342166 A JPS6342166 A JP S6342166A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin layer
thin film
solid
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185572A
Other languages
Japanese (ja)
Inventor
Mitsuru Nagai
永井 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61185572A priority Critical patent/JPS6342166A/en
Publication of JPS6342166A publication Critical patent/JPS6342166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To prevent intrusion of moisture into a defective part, by burying the defective part of a photodetector with a low viscosity polyimide resin, providing a completely close contact by degassing, and depositing a polyimide resin layer and an inorganic thin film thereon. CONSTITUTION:A first polyimide resin layer 9 is formed on a substrate 1 on which a thin film transistor and a photodetector are formed. In order to compensate for the defect of the photodetector, the viscosity of the polyimide resin is adjusted at 50-1,000 cps. The resin undergoes degassing in a vacuum. Adhesion among the polyimide resin layer, the thin film transistor and the photodetector, especially adhesion with the defect part of the photodetector, is improved. After the degassing is finished, a second polyimide resin layer 10 is formed on the first polyimide resin layer 9 which undergoes prebake at 90-100SoC. The first polyimide resin layer 9 and the second polyimide resin layer 10 are simultaneously cured. After SiO2 (an organic thin film) is deposited on the formed second polyimide resin layer, a hole for a pad part is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像装置の製造方法に関し、特にそのバッ
ジベージ1ン層に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a solid-state imaging device, and particularly to a badge page one layer thereof.

〔従来の技術〕[Conventional technology]

従来の薄膜トランジスタを用いた固体撮像装置は、特願
昭60−73701号に記載されているように、固体撮
像装置の最上部に有機系樹脂コーティング層を有し、ざ
らに該有機系樹脂コーティング層上に無機質薄膜を有す
るバクシベーシlン構造が知られている。
As described in Japanese Patent Application No. 60-73701, a conventional solid-state imaging device using a thin film transistor has an organic resin coating layer on the top of the solid-state imaging device, and the organic resin coating layer is roughly coated. A bacchibasin structure having an inorganic thin film thereon is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の技術では第1図の水素化アモルフ
ァスシリコン7(以下、α−3i:Hと略す)の上にフ
レークなどによる欠陥やアモルファスシリコンの異常成
長に起因する欠陥が存在した場合、その欠陥部分におい
て有機系樹脂が密着せず空洞となり、加湿不良を誘発す
る。つまり、この状態で高温高湿試験を行なった場合、
有機系樹脂がV;着していない部分に水分が集まり、セ
ンサ上下電極のリークなどの不具合を発生するという耐
湿性及び信頼性低下の問題点を有していた。
However, in the conventional technology, if a defect due to flakes or the like or a defect due to abnormal growth of amorphous silicon exists on the hydrogenated amorphous silicon 7 (hereinafter abbreviated as α-3i:H) shown in FIG. In some areas, the organic resin does not adhere tightly and forms cavities, leading to poor humidification. In other words, if a high temperature and high humidity test is conducted in this condition,
Moisture collects in areas where the organic resin is not coated with V;, causing problems such as leakage between the upper and lower electrodes of the sensor, resulting in a reduction in moisture resistance and reliability.

なお、上記フレークなどによる欠陥は製造工程の管理に
より最小限に抑えることができるが、アモルファスシリ
コンの異常成長はOVD技術において周知の事実であり
、異常成長をなくすことは非常に困難なうえ前述の様な
大きな問題となる。
Note that defects caused by flakes and the like mentioned above can be minimized by controlling the manufacturing process, but abnormal growth of amorphous silicon is a well-known fact in OVD technology, and it is extremely difficult to eliminate abnormal growth, as well as the above-mentioned problems. It becomes a big problem.

本発明はこの様な問題点を解決するもので、その目的と
するところは、耐湿性及び信頼性の高い固体撮像装置の
製造方法を提供するところにある〔問題を解決するため
の手段〕 本発明の固体撮像装置の製造方法は、 α)絶縁性基板上に受光素子と、該受光素子を駆動させ
る薄膜トランジスタとを形成して成る固体撮像装置にお
いて、 b)粘度が50〜1000cp日のポリイミド樹脂を塗
布する工程と、 C)前記ポリイミド樹脂を脱泡する工□と、d)前記ホ
゛リイミド樹脂の上に、第2Nポリイミド樹脂層を形成
する工程と、 C)前記第2層ポリイミド樹脂層の上に無機質薄膜を堆
積させる工程とによりバッジベージ嘗ン層を形成するこ
とを特徴とする。
The present invention solves these problems, and its purpose is to provide a method for manufacturing a solid-state imaging device with high moisture resistance and reliability. The method for manufacturing a solid-state imaging device of the invention includes: α) a solid-state imaging device comprising a light receiving element and a thin film transistor for driving the light receiving element formed on an insulating substrate, b) a polyimide resin having a viscosity of 50 to 1000 cp days; C) defoaming the polyimide resin; d) forming a second N polyimide resin layer on the polyimide resin; C) on the second polyimide resin layer. The badge layer is formed by depositing an inorganic thin film on the base plate.

本発明に使用するポリイミド樹脂は、半導体に使用でき
る程度の純度であれば何でも良く、例えばデュポン化の
138680−6C商品名)、東し社のLP−54(商
品名)、フォトニース(商品名)などがある。第1層ポ
リイミド樹脂層9は、受光素子部の欠陥部分の段差(1
〜10μm〕を埋めるために使用するものであり、その
粘度は50cps未満では欠陥部分の段差を完全に埋め
ることができないためその効果が得られず、10QOc
psを越えると欠陥部分への密着低下を招くため上述の
範囲が望ましい。
The polyimide resin used in the present invention may be of any purity as long as it can be used in semiconductors, such as DuPont's 138680-6C (trade name), Toshisha's LP-54 (trade name), Photonice (trade name). )and so on. The first polyimide resin layer 9 has a level difference (1
~10 μm], and if its viscosity is less than 50 cps, it will not be able to completely fill the level difference at the defective part, and the effect will not be obtained.
If it exceeds ps, the adhesion to the defective portion will deteriorate, so the above range is desirable.

また、受光素子に存在する欠陥の大きさは様々であり、
すべての欠陥に第1層ポリイミド樹脂を密着させるには
後工程の脱泡が必要である。もし、脱泡を行なわないと
、大きな欠陥については第1層ポリイミド樹脂が密着し
ない部分ができ、その部分が加湿不良を招くため望まし
くない。
In addition, the size of defects that exist in the photodetector varies,
In order to make the first layer polyimide resin adhere to all defects, degassing is required in the post-process. If defoaming is not carried out, large defects will result in areas to which the first layer polyimide resin does not adhere, which is not desirable because such areas will result in poor humidification.

〔実施例〕〔Example〕

第1図は本発明における1実施例の構造断面図であり、
#膜トランジスタ及びα−8i:H受光素子付近を示す
。なお、ここで薄膜トランジスタは多結晶シリコンを用
いた。
FIG. 1 is a structural sectional view of one embodiment of the present invention,
The vicinity of #film transistor and α-8i:H light receiving element is shown. Note that polycrystalline silicon was used for the thin film transistor here.

第1図において、1は絶縁性基板、2は多結晶シリコン
、3はゲート酸化膜、4は多結晶シリコンゲート電極、
5は層間絶縁膜、6はアルミ電極、7はα−3i:H,
8は透明電極、9,10゜11はバッジベージ璽ン層で
あり、9は第1層ポリイミド樹上層、10は第2層ポリ
イミド樹脂層、11は二酸化ケイ素(S1O,)である
In FIG. 1, 1 is an insulating substrate, 2 is polycrystalline silicon, 3 is a gate oxide film, 4 is a polycrystalline silicon gate electrode,
5 is an interlayer insulating film, 6 is an aluminum electrode, 7 is α-3i:H,
Reference numeral 8 indicates a transparent electrode, reference numerals 9 and 10.degree. 11 indicate a badge binder layer, 9 indicates a first polyimide resin layer, 10 indicates a second polyimide resin layer, and 11 indicates silicon dioxide (S1O,).

絶縁性基板は両面研磨した石英基板を用い、多結晶シリ
コンは減圧0’7D法で、層間絶縁膜はSiO□を常圧
C’VD法で、アルミ電極、透明電極はスパッタ法で、
α−3i:HはプラズマCvD法でそれぞれ形成した。
The insulating substrate is a quartz substrate polished on both sides, the polycrystalline silicon is made by low pressure 0'7D method, the interlayer insulating film is SiO□ by normal pressure C'VD method, the aluminum electrode and transparent electrode are made by sputtering method.
α-3i:H was formed by plasma CvD method.

透明電極はSnO□をトークシたIn、03(工To)
を用いた。以下、工程を追いながら詳細に説明する。
The transparent electrode is In, 03 (To) made of SnO□.
was used. The process will be explained in detail below.

まず、薄膜トランジスタ及び受光素子まで作りこまれた
基板に、第1層ポリイミド樹脂層9を形成する。受yt
J素子の欠陥を完全に埋めるために、該ポリイミド樹脂
の粘度を50〜1000cpsにpI4整するのだが、
調整は市販ポリイミド樹脂をN−メチル−2−ピロリド
ン等の有機溶剤で希釈すればよい。このように調整した
ポリイミド樹脂溶液をディッピング法あるいはスピン塗
布法により基板上に均一に塗布する。さらに、これを1
0〜60分真空脱泡し、ポリイミド樹脂層と薄膜トラン
ジスタ及び受光素子との密着性、特に受光素子欠陥部分
との密着性を向上させる。なお、脱泡方法は真空脱泡に
限らず、加圧脱泡など他の方法でも同等の効果が得られ
ろ。脱泡終了後、90〜100℃でブレベークした第1
層ポリイミド樹脂層9の上に、第2層ポリイミド樹脂層
10を形成する。該第2層ポリイミド樹脂層10は、薄
膜トランジスタ及び受光素子の段差部分を緩和しSin
、11をステップカバレッジ性良く堆積させる役割を果
たすため、その厚さは1〜4μmとするのが望ましい。
First, a first polyimide resin layer 9 is formed on a substrate on which thin film transistors and light receiving elements are fabricated. Receiving yt
In order to completely fill the defects in the J element, the viscosity of the polyimide resin is adjusted to 50 to 1000 cps, but
For adjustment, commercially available polyimide resin may be diluted with an organic solvent such as N-methyl-2-pyrrolidone. The polyimide resin solution prepared in this manner is uniformly applied onto the substrate by dipping or spin coating. Furthermore, add this to 1
Vacuum defoaming is carried out for 0 to 60 minutes to improve the adhesion between the polyimide resin layer and the thin film transistor and the light receiving element, especially the adhesion between the defective parts of the light receiving element. Note that the defoaming method is not limited to vacuum defoaming, and other methods such as pressure defoaming may also be used to obtain the same effect. After defoaming, the first
A second polyimide resin layer 10 is formed on the polyimide resin layer 9 . The second polyimide resin layer 10 relaxes the stepped portions of the thin film transistor and the light receiving element, and
, 11 with good step coverage, the thickness is preferably 1 to 4 μm.

形成方法によりポリイミド樹脂溶液を塗布し、90〜1
00℃でプレベークする。なお、塗布方法は段差部分を
完全に被覆するためにはスピン塗布法が望ましい。最後
に、第1層ポリイミド樹脂層9と第2層ポリイミド樹脂
層10を同時にキュアする。キュア温度は300℃以下
とし、キュア時間は30分以上あれば十分な性能を得る
ことができる。キュア温度を300℃以下とする理由は
、α−3i:Hを補償している水素が300℃を越える
と放出され光電特性が劣化してしまうからである。
A polyimide resin solution is applied according to the forming method, and 90-1
Pre-bake at 00°C. As for the coating method, a spin coating method is preferable in order to completely cover the step portion. Finally, the first polyimide resin layer 9 and the second polyimide resin layer 10 are cured simultaneously. Sufficient performance can be obtained if the curing temperature is 300° C. or less and the curing time is 30 minutes or more. The reason why the curing temperature is set to 300° C. or lower is that hydrogen that compensates for α-3i:H is released when the temperature exceeds 300° C., resulting in deterioration of the photoelectric properties.

このように形成された第2層ポリイミド樹脂層10の上
に、S1O,(無機質薄膜)11を堆積させろ。本実施
例では無機質薄膜としてSin。
On the thus formed second polyimide resin layer 10, deposit S1O (inorganic thin film) 11. In this example, Sin is used as the inorganic thin film.

を使用したが、他にj’Lj120B  * F313
N4  +AIN、アモルファスカーボンなどでも同等
の性能が得られる。なお、形成方法としては、記述した
とおりα−31:Hの特性劣化を避けるために、低温で
薄膜を形成できるスパッタ法、プラズマcvD法1反応
性イオンプレーカイング法などが望ましい− 続いて、バット部の開孔を行なう。方法としてはフォト
エツチング法を用い、そのためのフォトレジストを塗布
してレジストマスクを形成する。
I used j'Lj120B * F313
Equivalent performance can be obtained with N4 +AIN, amorphous carbon, etc. As for the formation method, in order to avoid deterioration of the characteristics of α-31:H as described above, sputtering, plasma CVD, reactive ion plating, etc., which can form a thin film at low temperatures, are preferable.Subsequently, Make a hole in the butt part. As a method, a photoetching method is used, and a photoresist for this purpose is applied to form a resist mask.

S10,11を7ツ酸、7フ化アンモン、氷酢酸の混合
液によりエツチング後、C?4+O,混合ガスを用いた
グラズマエッチングを行なってポリイミド樹脂層9.1
0をエツチングする。この時、フォトレジストは同時に
剥離されるためレジスト剥離工程は不安である。
After etching S10 and S11 with a mixture of heptatric acid, ammonium heptafluoride, and glacial acetic acid, C? 4+O, perform glazma etching using mixed gas to form polyimide resin layer 9.1
Etch 0. At this time, the photoresist is removed at the same time, so the resist removal process is unstable.

このようにして、パッシベーション層を形成した固体撮
像装置に対して60℃、90%の高温高湿試験を行い、
その結果を次表に示す、第1表は各試料のパッジベージ
12層の形成条件を示し、第2表は高温高湿試験結果を
示す。
In this way, the solid-state imaging device with the passivation layer formed was subjected to a high temperature and high humidity test at 60°C and 90%.
The results are shown in the following table. Table 1 shows the formation conditions of the 12 layers of padge page for each sample, and Table 2 shows the results of the high temperature and high humidity test.

第  1  表 O・・・・・・光電特性変化なし ×・・・・・・光電特性劣化 第2表から明らかな如く、本発明による固体撮像装置t
(試料1〜4)は、いずれも2000時間経過後も光電
特性の劣化は見られない。これに対し比較例1〜4は、
500時間で光電特性が劣化してしまい実用的でない。
Table 1: O... No change in photoelectric properties ×... Deterioration in photoelectric properties As is clear from Table 2, the solid-state imaging device according to the present invention t
(Samples 1 to 4) show no deterioration in photoelectric properties even after 2000 hours. On the other hand, in Comparative Examples 1 to 4,
The photoelectric properties deteriorate after 500 hours, making it impractical.

本発明による固体撮像装置は、60℃、90%の高温高
湿という電子デバイスにとって過酷な試験に2000時
間以上入れても特性劣化がな―ということは、極めて高
い耐湿性及び信頼性が確保できたと言える。
The solid-state imaging device according to the present invention shows no characteristic deterioration even after being subjected to a test of 60°C and 90% high temperature and high humidity, which is harsh for electronic devices, for more than 2000 hours.This means that extremely high humidity resistance and reliability can be ensured. It can be said that

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、耐湿不良の原因であ
る受光素子部の欠陥部分を低粘度のH+)イミドw脂で
埋め、脱泡することで完全に密着させ、さらに七の上に
ポリイミド樹脂層と無機質薄膜を堆積させたので、欠陥
部分への水分の侵入を完全に遮断でき加湿不良のない極
めて高い信頼性の固体撮像装置を実現できる。さらに、
最上部が緻密で強度の高い無機質薄膜で形成されるため
、固体撮像装置の作製時、組立時にキズが入りにくくな
り、歩留り、品質の安定性が向上する。
As described above, according to the present invention, the defective portion of the light-receiving element, which is the cause of poor moisture resistance, is filled with low-viscosity H+)imide w fat, defoamed to achieve complete adhesion, and further Since a polyimide resin layer and an inorganic thin film are deposited, it is possible to completely block moisture from entering the defective area, making it possible to realize an extremely reliable solid-state imaging device with no humidification defects. moreover,
Since the top layer is formed of a dense and strong inorganic thin film, it is less likely to be scratched during manufacturing and assembly of the solid-state imaging device, improving yield and quality stability.

本発明は、半導体やCaSを用いた固体撮像装置等あら
ゆる電子デバイスに応用できるものであり、実用上極め
て有意義である。
The present invention can be applied to all kinds of electronic devices such as solid-state imaging devices using semiconductors and CaS, and is extremely meaningful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における固体撮像装置の主要断
面図である。 1・・・・・・・・・絶縁性基板 2・・・・・・・・・多結晶シリコン 3・・・・・・・・・ゲート酸化膜 4・・・・・・・・・多結晶シリコンゲート電極5・・
・・・・・・・層間絶縁膜 6・・・・・・・・・アルミ電極 7 ・・・・・・・・・ α −Si:H8・・・・・
・・・・透明電極(工To)9・・・・・・・・・第1
層ポリイミド樹脂層10・・・・・・第2層ポリイミド
樹脂層11・・・・・・S10゜
FIG. 1 is a main sectional view of a solid-state imaging device in an embodiment of the present invention. 1... Insulating substrate 2... Polycrystalline silicon 3... Gate oxide film 4... Crystalline silicon gate electrode 5...
...... Interlayer insulating film 6 ...... Aluminum electrode 7 ...... α -Si:H8 ......
...Transparent electrode (To)9...1st
Layer polyimide resin layer 10...Second layer polyimide resin layer 11...S10°

Claims (1)

【特許請求の範囲】[Claims] (1)a)絶縁性基板上に受光素子と、該受光素子を駆
動させる薄膜トランジスタとを形成して成る固体撮像装
置において、 b)粘度が50〜1000cpsのポリイミド樹脂を塗
布する工程と、 c)前記ポリイミド樹脂を脱泡する工程と、d)前記ポ
リイミド樹脂の上に、第2層ポリイミド樹脂層を形成す
る工程と、 e)前記第2層ポリイミド樹脂層の上に無機質薄膜を堆
積させる工程とによりパッシベーション層を形成するこ
とを特徴とする固体撮像装置の製造方法。
(1) a) A solid-state imaging device comprising a light receiving element and a thin film transistor for driving the light receiving element formed on an insulating substrate, b) a step of applying a polyimide resin having a viscosity of 50 to 1000 cps, and c) d) forming a second polyimide resin layer on the polyimide resin; and e) depositing an inorganic thin film on the second polyimide resin layer. A method for manufacturing a solid-state imaging device, comprising forming a passivation layer by.
JP61185572A 1986-08-07 1986-08-07 Manufacture of solid-state image sensing device Pending JPS6342166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185572A JPS6342166A (en) 1986-08-07 1986-08-07 Manufacture of solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185572A JPS6342166A (en) 1986-08-07 1986-08-07 Manufacture of solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPS6342166A true JPS6342166A (en) 1988-02-23

Family

ID=16173153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185572A Pending JPS6342166A (en) 1986-08-07 1986-08-07 Manufacture of solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPS6342166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227215A (en) * 2011-04-15 2012-11-15 Sumitomo Electric Device Innovations Inc Semiconductor light-receiving element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227215A (en) * 2011-04-15 2012-11-15 Sumitomo Electric Device Innovations Inc Semiconductor light-receiving element

Similar Documents

Publication Publication Date Title
US4152195A (en) Method of improving the adherence of metallic conductive lines on polyimide layers
JPH08124919A (en) Semiconductor protective film material and semiconductor device employing the same
JPH01307247A (en) Manufacture of semiconductor device
JPS6342166A (en) Manufacture of solid-state image sensing device
JPH03179778A (en) Insulating board for forming thin film semiconductor
JPS6373559A (en) Solid-state image sensing device
JPH038581B2 (en)
JPH0428231A (en) Manufacture of semiconductor device
US5506173A (en) Process of fabricating a dielectric film for a semiconductor device
JPS6341072A (en) Solid state image sensing device
JPS62232962A (en) Solid-state image sensing device
JPH0330992B2 (en)
JPH05234991A (en) Semiconductor device
JPH01183845A (en) Manufacture of solid-state image sensing device
JPH07245301A (en) Manufacture of semiconductor device
JPS62154643A (en) Manufacture of semiconductor device
JPH0419707B2 (en)
JPH0629282A (en) Manufacture of semiconductor device
JPS61231758A (en) Solid-state image pickup device
JPH0117254B2 (en)
JPH0669485A (en) Solid-state image pickup
JPH09232305A (en) Film forming method
JP2942063B2 (en) Method for manufacturing semiconductor device
JPS62221150A (en) Solid-state image pickup device
JPS62299068A (en) Solid-state image pickup device