JPS6341968B2 - - Google Patents

Info

Publication number
JPS6341968B2
JPS6341968B2 JP55083337A JP8333780A JPS6341968B2 JP S6341968 B2 JPS6341968 B2 JP S6341968B2 JP 55083337 A JP55083337 A JP 55083337A JP 8333780 A JP8333780 A JP 8333780A JP S6341968 B2 JPS6341968 B2 JP S6341968B2
Authority
JP
Japan
Prior art keywords
strength
fiber
wear
fibers
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55083337A
Other languages
Japanese (ja)
Other versions
JPS579851A (en
Inventor
Yoshinobu Takeda
Atsushi Kuroishi
Mitsuo Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8333780A priority Critical patent/JPS579851A/en
Publication of JPS579851A publication Critical patent/JPS579851A/en
Publication of JPS6341968B2 publication Critical patent/JPS6341968B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は軽量、かつ高強度で、しかも耐摩耗
性、摺動性に優れた耐摩耗性用アルミ複合材料に
関する。 [背景技術] アルミ合金は、鉄鋼材料に比べ、比重が約1/3
と軽量であり、しかも低温で塑性加工が容易であ
るため、機器の軽量化と省エネルギーに適した金
属材料である。しかしながら、Al自身は本来軟
質で強度の低い金属であり、そのまま高強度の機
械部品用材料とするには適していなかつた。この
ため、種々の合金や、熱処理方法が開発され、例
えばジユラルミンのような優れた材料が開発され
た。このような合金により、高強度化あるいは程
度達成されたが、耐摩耗性や摺動性に関しては、
Alはむしろ軟質で相手材と凝着し、焼付き易く、
問題であつた。AlにSi12〜20%を含有させた、
いわゆるアルジル合金は、Siの硬質粒子を析出さ
せて耐摩耗性を向上させた優れた材料であるが、
強度自身は析出したSi粒子のノツチ効果によつて
弱められており、高強度化が必要であつた。又一
方、摺動特性を向上させるために、固体潤滑剤、
例えば黒鉛を分散して含有させることが考えられ
るが、均一に分散させることが困難で、経済的に
得ることができなかつた。又高強度のAl合金を
得る全く別な手法として、炭素繊維等との複合材
料化方法が考案され、特殊な用途に用いられるよ
うにはなつたが、このような材料は耐摩耗性、摺
動性が充分でなく、しばしば高価なわりには効果
が得られなかつた。 [発明の構成] 本発明は、上述の問題点を解決するために成さ
れたもので、アルミニウム合金中に、Siよりなる
耐耗硬質粒子、黒鉛または炭素繊維からなる固体
潤滑成分、およびスチールフアイバー、又は
Al2O3フアイバーよりなる繊維強化用高強度繊維
を分散して含有させて焼結することにより、機械
部品用材料として要求される3要素、即ち高強
度、高耐摩耗性および高摺動性を兼ね備えた耐摩
耗用アルミ複合材料を提供せんとするものであ
る。 本発明においては、前述の3要素のうち、先ず
高強度化のために繊維強化を行なう。この繊維強
化は、著しく高強度の繊維を母材であるアルミニ
ウム合金マトリツクス中に均一に分散させること
により、その複合強度を向上させるものであり、
一般に次の複合則に合致すると言われている。 σc=σf・Vf+σm(1−Vf) ……(1) ただし、σc:複合材料の引張り強さ σf:高強度繊維の引張り強さ σm:母材の引張り強さ Vf:高強度繊維の全体に対する容積比。 母材がアルミ合金の場合σm=約30Kg/mm2であ
り、高強度繊維として、例えばσf=200Kg/mm2
ものを選べば、(1)式より σc=200Vf+30(1−Vf) σc=170Vf+30 ……(2) となる。 今高強度繊維の容積比を、例えば10%とすれ
ば、(2)式よりσcは47Kg/mm2となり、複合材料の
引張強さが大幅に改善される。 このように本発明では、繊維の形で入れること
により、繊維強化現象によつて粉末法の欠点が補
われ、強度も耐摩耗性も優れたものが得られる。
このような繊維強化用高強度繊維としては、スチ
ールフアイバー又はAl2O3フアイバーの繊維が最
適である。 次に、本発明においては、前述の3要素のう
ち、高耐摩耗性を得るために、アルミニウム合金
マトリツクスを硬質にする方法以外に、耐摩硬質
粒子を分散させる方法を採ることにより達成され
る。しかしこの方法では、硬質粒子が一般にマト
リツクスから脱落し易いことが欠点であり、如何
にしてマトリツクスと硬質粒子の接着強度を高め
るかが問題であり、本発明においては、硬質粒子
として、Siを選び、しかもSiの粒子をマトリツク
スから析出させることによつて著しく接着強度の
高い硬質相を得ることができたものである。この
様なマトリツクス中から硬質粒子を析出するもの
としては、Siが最も容で、かつ効果的で、好まし
いものであつた。 又本発明においては、前述の3要素のうち、高
摺動性を得るために、潤滑性を有する固体潤滑成
分の粒子又は繊維をアルミニウム合金マトリツク
スに添加することにより達成される。従来、例え
ば黒鉛、二硫化モリブデンのような固体潤滑剤を
含有させた溶製アルミ合金は皆無ではなかつた
が、高価なプロセスであり、実用性に乏しかつ
た。しかるに本発明においては、固体潤滑成分の
粉末粒子又は繊維の形で混合により添加すること
により、容易に潤滑性を付与することが可能とな
つた。固体潤滑成分の粒子としては黒鉛、同じく
繊維としては炭素繊維が適当である。 このように本発明においては、上述の3つの成
分をマトリツクス中に分散して含有させることに
より、前述の3要素の機能を兼ね備えた全く新し
い機能の複合材料が得られたもので、その性能は
過去のアルミ合金にない優れたものである。 実施例:アルジル合金(Si17%)の粉末と、表1
に示す固体潤滑成分、強化用繊維のチヨツ
プを良く混合した後、熱間押出し加工を行
ない、28mmφの棒を作成した。 得られた棒について、引張試験および摩耗試験
を行つた結果は表1に示す通りである。比摩耗量
は大越式摩耗試験機を用い、負荷々重P=6.6Kg、
試験速度V=3.9mm/秒、摩耗距離L=600mの条
件で行つた時の比摩耗量を示す。
[Industrial Field of Application] The present invention relates to a wear-resistant aluminum composite material that is lightweight, has high strength, and has excellent wear resistance and sliding properties. [Background technology] Aluminum alloy has a specific gravity that is approximately 1/3 that of steel materials.
It is a metal material that is suitable for reducing the weight and energy saving of equipment because it is lightweight and easy to plastically process at low temperatures. However, Al itself is originally a soft and low-strength metal, and was not suitable as a material for high-strength mechanical parts. For this reason, various alloys and heat treatment methods have been developed, and excellent materials such as duralumin have been developed. With such alloys, high strength or degree of strength has been achieved, but in terms of wear resistance and sliding properties,
Al is rather soft and tends to adhere to the other material and seize.
It was a problem. Al contains 12-20% Si,
The so-called argyle alloy is an excellent material that has improved wear resistance by precipitating hard particles of Si.
The strength itself was weakened by the notch effect of precipitated Si particles, and it was necessary to increase the strength. On the other hand, solid lubricants,
For example, it is conceivable to include graphite in a dispersed manner, but it is difficult to disperse it uniformly and it has not been possible to obtain it economically. In addition, as a completely different method of obtaining high-strength Al alloys, a method of making composite materials with carbon fibers, etc., was devised and has come to be used for special purposes, but such materials have poor wear resistance and slip resistance. They lacked sufficient mobility and were often expensive and ineffective. [Structure of the Invention] The present invention was made to solve the above-mentioned problems, and includes a wear-resistant hard particle made of Si, a solid lubricant component made of graphite or carbon fiber, and a steel fiber in an aluminum alloy. , or
By dispersing and sintering high-strength fiber-reinforcing fibers made of Al 2 O 3 fibers, we can achieve the three elements required as materials for mechanical parts: high strength, high wear resistance, and high sliding properties. We aim to provide a wear-resistant aluminum composite material that has the following properties. In the present invention, among the three elements mentioned above, fiber reinforcement is first performed in order to increase the strength. This fiber reinforcement improves the composite strength by uniformly dispersing extremely high-strength fibers into the aluminum alloy matrix that is the base material.
It is generally said that the following compound rule is met. σc=σf・Vf+σm(1-Vf)...(1) However, σc: Tensile strength of composite material σf: Tensile strength of high-strength fiber σm: Tensile strength of base material Vf: Tensile strength of high-strength fiber as a whole Volume ratio. If the base material is an aluminum alloy, σm = approximately 30Kg/mm 2 , and if you choose a high-strength fiber with σf = 200Kg/mm 2 , for example, then from equation (1), σc = 200Vf + 30 (1 - Vf) σc = 170Vf+30...(2) If the volume ratio of the high-strength fibers is, for example, 10%, then from equation (2), σc becomes 47 Kg/mm 2 , which significantly improves the tensile strength of the composite material. As described above, in the present invention, by incorporating the fibers in the form of fibers, the disadvantages of the powder method are compensated for by the fiber reinforcement phenomenon, and a product with excellent strength and wear resistance can be obtained.
As such high-strength fibers for reinforcing fibers, steel fibers or Al 2 O 3 fibers are most suitable. Next, in the present invention, in order to obtain high wear resistance among the above-mentioned three factors, in addition to the method of making the aluminum alloy matrix hard, it is achieved by adopting a method of dispersing wear-resistant hard particles. However, this method has the disadvantage that the hard particles generally fall off easily from the matrix, and the problem is how to increase the adhesive strength between the matrix and the hard particles.In the present invention, Si is selected as the hard particles. Moreover, by precipitating Si particles from the matrix, a hard phase with extremely high adhesive strength could be obtained. As a material for precipitating hard particles from such a matrix, Si was the most convenient and effective, and therefore preferred. Furthermore, in the present invention, among the three elements mentioned above, high sliding properties are achieved by adding particles or fibers of a solid lubricating component having lubricity to the aluminum alloy matrix. Hitherto, there have been some molten aluminum alloys containing solid lubricants such as graphite and molybdenum disulfide, but these have been expensive processes and have been impractical. However, in the present invention, it has become possible to easily impart lubricity by adding the solid lubricant component in the form of powder particles or fibers by mixing. Graphite is suitable as the particles of the solid lubricant component, and carbon fiber is suitable as the fiber. In this way, in the present invention, by dispersing and containing the above-mentioned three components in a matrix, a completely new functional composite material that has the functions of the above-mentioned three elements was obtained, and its performance is It is superior to previous aluminum alloys. Example: Algyl alloy (Si17%) powder and Table 1
After thoroughly mixing the solid lubricant component and reinforcing fiber chops shown in Figure 1, hot extrusion was performed to create a rod with a diameter of 28 mm. The obtained rods were subjected to a tensile test and an abrasion test, and the results are shown in Table 1. The specific wear amount was measured using an Okoshi type abrasion tester, and the load weight P = 6.6Kg,
The specific wear amount is shown when the test was carried out under the conditions of speed V = 3.9 mm/sec and wear distance L = 600 m.

【表】【table】

【表】 表1より、本発明による複合材料No.4〜No.7
は、アルジル合金のみのNo.1に比べ、引張強さが
13Kg/mm2以上高く、通常のアルミ合金では得られ
ない50Kg/mm2以上も可能であり、又摩耗量が少な
く、摩擦係数も低く、耐摩耗性、摺動性が優れて
いることが分る。又強化用繊維のないNo.2は、強
度が充分でない。 [発明の効果] 以上述べたように、本発明の耐摩耗性用アルミ
複合材料は、アルミ合金中に、Siよりなる耐摩硬
質粒子、固体潤滑成分の黒鉛、または炭素繊維、
および繊維強化用高強度繊維としてスチールフア
イバー、又はAl2O3フアイバーを含有して粉末法
によつて構成したものであるから、耐摩硬質Si粒
子をマトリツクスから析出させて著しく接着強度
の高い硬質相を得ることにより、高耐摩耗性を
得、固体潤滑成分を前記粒子又は繊維の形で添加
することにより容易に潤滑性を付与して高摺動性
を得、さらに前記強化用繊維の分散により複合強
度を向上させて高強度を得ることができるので、
機械部品用材料として要求される3要素、即ち高
強度、高耐摩耗性および高摺動性を兼ね備えた全
く新しい耐摩耗用アルミ複合材料を提供する利点
があり、その性能は従来のアルミ合金にない優れ
たものである。従つて本発明による複合材料は、
例えばコンプレツサー用部品のような高強度、高
耐摩耗性、高摺動性を要求される部所や、軽量化
と小型化が必要な自動車部品等に使用されること
によつて、その特性を発揮することが期待され
る。
[Table] From Table 1, composite materials No. 4 to No. 7 according to the present invention
has higher tensile strength than No. 1, which is made only of Algyl alloy.
It has been found that it has a high value of 13Kg/mm 2 or more, and is capable of achieving a value of 50Kg/mm 2 or more, which cannot be obtained with ordinary aluminum alloys, and has low wear, low friction coefficient, and excellent wear resistance and sliding properties. Ru. Also, No. 2 without reinforcing fibers did not have sufficient strength. [Effects of the Invention] As described above, the wear-resistant aluminum composite material of the present invention contains wear-resistant hard particles made of Si, graphite as a solid lubricant component, or carbon fiber, in an aluminum alloy.
Since it contains steel fiber or Al 2 O 3 fiber as a high-strength fiber for fiber reinforcement and is constructed by a powder method, wear-resistant hard Si particles are precipitated from the matrix to form a hard phase with extremely high adhesive strength. By adding the solid lubricating component in the form of particles or fibers, it is easy to impart lubricity and obtain high slidability, and furthermore, by dispersing the reinforcing fibers, it is possible to obtain high wear resistance. Because it is possible to obtain high strength by improving composite strength,
It has the advantage of providing a completely new wear-resistant aluminum composite material that combines the three elements required as a material for mechanical parts: high strength, high wear resistance, and high sliding properties, and its performance is superior to that of conventional aluminum alloys. Not an excellent one. The composite material according to the invention therefore has:
For example, its characteristics are improved by being used in parts such as compressor parts that require high strength, high wear resistance, and high sliding properties, and automobile parts that require weight reduction and miniaturization. It is expected that he will demonstrate his abilities.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム合金中に、Siよりなる耐耗硬質
粒子、黒鉛または炭素繊維からなる固体潤滑成
分、およびスチールフアイバー、又はAl2O3フア
イバーよりなる繊維強化用高強度繊維を分散して
含有させて焼結してなることを特徴とする耐摩耗
用アルミ複合材料。
1 In an aluminum alloy, wear-resistant hard particles made of Si, a solid lubricant component made of graphite or carbon fiber, and high-strength fiber reinforcing fibers made of steel fiber or Al 2 O 3 fiber are dispersed and baked. A wear-resistant aluminum composite material that is characterized by being bonded together.
JP8333780A 1980-06-18 1980-06-18 Wear-resistant aluminum composite material Granted JPS579851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333780A JPS579851A (en) 1980-06-18 1980-06-18 Wear-resistant aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333780A JPS579851A (en) 1980-06-18 1980-06-18 Wear-resistant aluminum composite material

Publications (2)

Publication Number Publication Date
JPS579851A JPS579851A (en) 1982-01-19
JPS6341968B2 true JPS6341968B2 (en) 1988-08-19

Family

ID=13799615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333780A Granted JPS579851A (en) 1980-06-18 1980-06-18 Wear-resistant aluminum composite material

Country Status (1)

Country Link
JP (1) JPS579851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051555A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Heat-resistant aluminium alloy material and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2537654B2 (en) * 1982-06-17 1987-01-30 Pechiney Aluminium IMPROVEMENT OF ENGINE SHIRTS BASED ON ALUMINUM ALLOYS AND CALIBRATED SILICON GRAINS AND PROCESSES FOR OBTAINING SAME
JPS59162242A (en) * 1983-03-05 1984-09-13 Riken Corp Wear-resistant extrusion-molded body of aluminum-silicon alloy and its manufacture
JPS6050137A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS6050138A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS61157647A (en) * 1984-12-28 1986-07-17 Nippon Light Metal Co Ltd Manufacture of aluminum quality strengthened composite material
JPH0657859B2 (en) * 1985-05-21 1994-08-03 東芝セラミツクス株式会社 Al2O3-Al-Si composite material
JPH0657860B2 (en) * 1985-05-21 1994-08-03 東芝セラミツクス株式会社 Method for manufacturing Al2O3-Al-Si composite material
JPS63199837A (en) * 1987-02-16 1988-08-18 Honda Motor Co Ltd Fiber-reinforced light-alloy member
CN102051556B (en) * 2011-01-14 2012-08-22 南京信息工程大学 Preparation method of wear-resistant aluminium alloy material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011925A (en) * 1973-06-08 1975-02-06
JPS5137803A (en) * 1974-09-26 1976-03-30 Torishima Pump Mfg Co Ltd FUKUGOZAIRYONOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011925A (en) * 1973-06-08 1975-02-06
JPS5137803A (en) * 1974-09-26 1976-03-30 Torishima Pump Mfg Co Ltd FUKUGOZAIRYONOSEIZOHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051555A (en) * 2011-01-14 2011-05-11 南京信息工程大学 Heat-resistant aluminium alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPS579851A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
Fatile et al. Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles
Asif et al. Development of aluminium based hybrid metal matrix composites for heavy duty applications
JPS58208374A (en) Sintered friction material based on iron
JPS6341968B2 (en)
EP0076701B1 (en) Heat-resistant spheroidal graphite cast iron
JP2756407B2 (en) Sliding material excellent in corrosion resistance and abrasion resistance and method for producing the same
WO2017044234A1 (en) Impact resistant ductile iron castings
JP2000104138A (en) Cast iron material excellent in vibration damping performance and strength
US3705020A (en) Metals having improved machinability and method
JPH07107183B2 (en) Wear resistant Cu alloy with high strength and toughness
Dineshkumar et al. Characteristics, applications and processing of aluminium foams–A Review
WO2017222538A1 (en) Iron-based systems for friction applications
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPS6117895B2 (en)
JPH0788548B2 (en) Wear resistant Cu alloy with high strength and toughness
DE2113037A1 (en) Friction material, for example for brakes, clutches or the like.
Raj et al. A study on effect of primary and secondary reinforcements in hybrid metal matrix composite
JPH02194134A (en) Metal matrix composite excellent in characteristic of low friction and wear resistance
JPS626626B2 (en)
DE19857551A1 (en) Brake disc or brake drum for a motor vehicle
JPH02274802A (en) Joining sintered friction material
JPH0832937B2 (en) Wear resistant Cu alloy with high strength and toughness
JP2000345140A (en) Metallic friction material
JPH07116538B2 (en) Wear resistant Cu alloy with high strength and toughness
JP2000328171A (en) Inorganic frictional material