JPS6341638B2 - - Google Patents

Info

Publication number
JPS6341638B2
JPS6341638B2 JP55074088A JP7408880A JPS6341638B2 JP S6341638 B2 JPS6341638 B2 JP S6341638B2 JP 55074088 A JP55074088 A JP 55074088A JP 7408880 A JP7408880 A JP 7408880A JP S6341638 B2 JPS6341638 B2 JP S6341638B2
Authority
JP
Japan
Prior art keywords
sludge
cod
added
stirring tank
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074088A
Other languages
Japanese (ja)
Other versions
JPS56168898A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP7408880A priority Critical patent/JPS56168898A/en
Publication of JPS56168898A publication Critical patent/JPS56168898A/en
Publication of JPS6341638B2 publication Critical patent/JPS6341638B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、CODを含む廃水の処理方法、とく
に鉄塩と過酸化水素(H2O2)を添加する化学酸
化法の改良に関するものである。 〔従来技術〕 従来、活性汚泥などの生物処理によつても除去
されない難分解性のCODを除去するために、凝
集沈殿法、化学酸化法、吸着法などの方法が知ら
れている。とくに化学酸化法の一方法として、古
くから有機化学の分野で特異な酸化剤として知ら
れているフエントン試薬(鉄塩とH2O2を酸性条
件下で作用させるもの)の原理を水処理の分野に
おける難生物分解性COD成分の除去に適用する
試みがかなり実施されてきている。また、このフ
エントン処理の結果生成する水酸化第2鉄を主体
とするスラツジを再度利用してスラツジ発生量を
減少させるために、スラツジに鉱酸を添加し、水
酸化第2鉄を溶解させて第2鉄イオン状にして原
水にリサイクル方法が知られている。 〔発明が解決しようとする問題点〕 しかしながら、前記化学酸化法における生成ス
ラツジを再利用する方法では、次のような重大な
問題点を生じることが本発明者の追試実験によつ
て明らかになつた。 すなわち、従来のいわゆるフエントン処理にお
いて、酸化反応後の中和工程の結果生成する水酸
化第2鉄を主体とするスラツジ中では、酸化分解
を受けなかつたCOD成分が水酸化第2鉄フロツ
クに吸着しているため(この吸着有機物をOrgと
表示し、また、Fe(OH)3・OrgはOrgが水酸化第
2鉄に吸着した状態を表示するとすれば)酸
(H+)を添加して水酸化第2鉄ををイオン状に溶
解すると Fe(OH)3・Org+3H+→Fe3++Org+3H2O によりOrgが再溶解し、液側に移行してしまう結
果、酸による溶解液を原水にリサイクルして再利
用すると、Fe3+と共にOrgも同時に添加されてし
まうことになり、結局、COD除去率の低下を招
くという問題があることが認められた。 本発明は、上記の問題点を効果的に解決し、
Fe3+を循環再利用してもCOD除去率の低下が極
めて少なくなる方法を提供することを目的とする
ものである。 〔問題点を解決するための手段〕 本発明は、COD含有廃水に鉄塩とH2O2を添加
して酸性条件下で反応させたのち、マグネシウム
系アルカリ剤を添加して生成するFe(OH)3を主
体とするSSを固液分離すると共に、該分離スラ
ツジに鉱酸を添加してFe(OH)3を溶解し、該溶
解液にH2O2を添加して撹拌し未分解COD成分を
酸化分解したのち、前記COD含有廃水に添加す
ることを特徴とするCOD含有廃水の処理方法で
ある。 〔作用〕 次に、本発明の作用をその一実施態様を示す図
面を参照して説明すれば、COD含有廃水(例え
ばし尿生物処理水)1を第1撹拌槽2に導いて
H2O23と硫酸第1鉄(FeSO4)などの鉄塩4が
添加され通常PH2〜4の酸性条件下で所定時間撹
拌される。 この場合、H2O2とオゾン(O3)の併用も可能
である。なお、第1撹拌槽2における撹拌時間
は、原水COD濃度、水温などによつて異なるの
で、実験により、撹拌時間を決定すればよい。 しかして、第1撹拌槽2において酸化反応の完
了した反応液5は第2撹拌槽6に流入し、アルカ
リ剤7(水酸化マグネシウム、酸化マグネシウム
などのマグネシウム系アルカリ剤)の添加により
PH5〜8程度に中和され、水酸化第2鉄(Fe
(OH)3)を主体とする沈殿物を析出したのち、
必要ならば高分子凝集剤17が添加され、沈殿装
置8において処理水9とスラツジ10に分離され
る。 H2O23と鉄塩4による酸化処理(フエントン
処理)後の中和工程において使用するアルカリ剤
7の種類は、従来、苛性ソーダまたは消石灰のみ
が採用されているが、本発明者の実験結果による
と、生成する水酸化第2鉄が極めてバルキーでフ
ワフワとした綿状のフロツクであり、濃縮性が悪
いという重大な欠点があることが認められ、この
欠点を解決するためには、マグネシウム系アルカ
リ剤によつて中和することが非常に好ましいこと
を見出した。これは本発明の重要ポイントの一つ
になつている。 しかして、前記スラツジ10は極めて濃縮性が
良好で従来法のようにシツクナーは不要となるの
で、そのまま第3撹拌槽11に導入され、鉱酸と
しての硫酸12の添加によりスラツジ10が溶解
され、次いで第4撹拌槽14において前記酸化剤
としてのH2O213が添加される。 上記スラツジ10の溶解工程と該溶解液中への
H2O213の添加による有機物(Org)の酸化分
解反応も本発明の骨子となつており、詳しくその
機能を説明すると、スラツジ10は、酸化分解さ
れなかつた有機物が水酸化第2鉄に吸着した状態
になつているので、第3撹拌槽11でこれに酸
(H+)を添加すると、 Fe(OH)3・Org+3H+→Fe3++Org+3H2O の反応によつてスラツジ10が溶解する。 次に、第4撹拌槽14においてH2O213を添
加して、上記の反応によつてスラツジ10から溶
出したFe3+を利用してスラツジ10から溶出し
た有機物(Org)を酸化分解する。このようにス
ラツジ10中のFe(OH)3のFe3+を利用してH2O2
13の酸化力を増強する点が本発明の最重要ポイ
ントであり、従来例を見ない技術思想である。 しかして、スラツジ10に含まれていた有機物
の大部分は第4撹拌槽14内において酸化分解さ
れる結果、廃水1にリサイクルされ、添加される
返送液15(回収Fe3+含有液)中にはCOD成分
が非常に少なくなつているので、従来法のように
COD成分の蓄積およびCOD除去率の減少を招く
ことがない。この結果、新鮮な鉄塩4の添加量
は、大幅に節減できることになり、系外へのスラ
ツジ排出量もそれに応じて大幅に減少する。 なお、排泥管16は廃水1中にSS成分が含ま
れている場合に全く排泥しないと、系内にSS成
分の蓄積をもたらすので、これを防止するために
スラツジ10の一部を排泥するために備えたもの
である。 〔実施例〕 以下に本発明の実施例を説明する。 し尿を生物学的硝化脱窒素プロセスで処理した
処理水を原水(COD含有廃水1)として前記実
施態様の説明で引用した図面のフローシートに則
した廃水処理プラントによつて実験を行つた。 (1) 原水水質
[Industrial Application Field] The present invention relates to a method for treating wastewater containing COD, particularly to an improvement in a chemical oxidation method in which iron salts and hydrogen peroxide (H 2 O 2 ) are added. [Prior Art] Conventionally, methods such as a coagulation sedimentation method, a chemical oxidation method, and an adsorption method are known in order to remove persistent COD that cannot be removed even by biological treatment such as activated sludge. In particular, as a method of chemical oxidation, the principle of Fuenton's reagent (a method in which iron salt and H 2 O 2 are made to react under acidic conditions), which has long been known as a unique oxidizing agent in the field of organic chemistry, has been applied to water treatment. Considerable attempts have been made to apply it to the removal of non-biodegradable COD components in the field. In addition, in order to reuse the sludge mainly composed of ferric hydroxide produced as a result of this Fuenton treatment and reduce the amount of sludge generated, mineral acid is added to the sludge to dissolve the ferric hydroxide. A method is known in which iron is converted into ferric ions and recycled into raw water. [Problems to be Solved by the Invention] However, the inventor's follow-up experiments have revealed that the method of reusing the sludge produced in the chemical oxidation method causes the following serious problems. Ta. In other words, in the conventional so-called Fenton treatment, in the sludge mainly composed of ferric hydroxide produced as a result of the neutralization step after the oxidation reaction, the COD components that have not undergone oxidative decomposition are adsorbed to the ferric hydroxide flocs. (If this adsorbed organic substance is expressed as Org, and Fe(OH) 3・Org indicates the state in which Org is adsorbed to ferric hydroxide), acid (H + ) is added. When ferric hydroxide is dissolved in ionic form, Fe(OH) 3・Org+3H + →Fe 3+ +Org+3H 2 O causes Org to be redissolved and transferred to the liquid side, resulting in the acid solution being converted into raw water. It was recognized that if recycled and reused, Org would be added at the same time as Fe 3+ , which would eventually lead to a decrease in the COD removal rate. The present invention effectively solves the above problems,
The purpose of this invention is to provide a method in which the reduction in COD removal rate is extremely small even when Fe 3+ is recycled. [ Means for Solving the Problems] The present invention provides Fe ( In addition to solid-liquid separation of SS mainly composed of OH) 3 , mineral acid is added to the separated sludge to dissolve Fe(OH) 3 , and H 2 O 2 is added to the solution and stirred to remove undecomposed sludge. This method of treating COD-containing wastewater is characterized in that the COD component is oxidized and decomposed and then added to the COD-containing wastewater. [Function] Next, the function of the present invention will be explained with reference to a drawing showing one embodiment of the present invention.
H 2 O 2 3 and an iron salt 4 such as ferrous sulfate (FeSO 4 ) are added and stirred for a predetermined period of time under acidic conditions, usually at a pH of 2 to 4. In this case, it is also possible to use H 2 O 2 and ozone (O 3 ) in combination. Note that the stirring time in the first stirring tank 2 varies depending on the raw water COD concentration, water temperature, etc., so the stirring time may be determined by experiment. The reaction liquid 5, which has completed the oxidation reaction in the first stirring tank 2, flows into the second stirring tank 6, and by adding an alkaline agent 7 (a magnesium-based alkaline agent such as magnesium hydroxide or magnesium oxide),
Neutralized to pH 5 to 8, ferric hydroxide (Fe
After precipitating a precipitate mainly consisting of (OH) 3 ),
If necessary, a polymer flocculant 17 is added, and the water is separated into treated water 9 and sludge 10 in a settling device 8. Conventionally, only caustic soda or slaked lime has been used as the type of alkaline agent 7 used in the neutralization process after oxidation treatment (Fuenton treatment) with H 2 O 2 3 and iron salt 4, but the inventor's experimental results According to the study, it was recognized that the ferric hydroxide produced was extremely bulky, fluffy, and fluffy, and had a serious drawback of poor concentrating properties.In order to solve this drawback, magnesium-based We have found that neutralization by alkaline agents is highly preferred. This is one of the important points of the present invention. Therefore, the sludge 10 has extremely good thickening properties and does not require a thickener unlike the conventional method, so it is introduced into the third stirring tank 11 as it is, and the sludge 10 is dissolved by adding sulfuric acid 12 as a mineral acid. Next, in the fourth stirring tank 14, H 2 O 2 13 as the oxidizing agent is added. The process of dissolving the sludge 10 and adding it to the solution
The oxidative decomposition reaction of organic matter (Org) by the addition of H 2 O 2 13 is also the gist of the present invention, and to explain its function in detail, the sludge 10 converts organic matter that has not been oxidized into ferric hydroxide. Since the sludge 10 is in an adsorbed state, when acid (H + ) is added to it in the third stirring tank 11, the sludge 10 is dissolved by the reaction Fe(OH) 3・Org+3H + →Fe 3+ +Org+3H 2 O. do. Next, H 2 O 2 13 is added in the fourth stirring tank 14 to oxidize and decompose the organic matter (Org) eluted from the sludge 10 using Fe 3+ eluted from the sludge 10 by the above reaction. . In this way, using Fe 3+ of Fe(OH) 3 in sludge 10, H 2 O 2
The most important point of the present invention is to enhance the oxidizing power of No. 13, and it is a technical idea unprecedented in the prior art. As a result, most of the organic matter contained in the sludge 10 is oxidized and decomposed in the fourth stirring tank 14, and as a result is recycled to the wastewater 1 and added to the returned liquid 15 (recovered Fe 3+ -containing liquid). Since the COD component is very low, it cannot be used like the conventional method.
It does not cause accumulation of COD components and decrease in COD removal rate. As a result, the amount of fresh iron salt 4 added can be significantly reduced, and the amount of sludge discharged outside the system is also significantly reduced. Note that if the sludge drain pipe 16 does not drain the sludge at all when the wastewater 1 contains SS components, the SS components will accumulate in the system, so in order to prevent this, a part of the sludge 10 is drained. It was prepared for getting muddy. [Example] Examples of the present invention will be described below. An experiment was conducted using a wastewater treatment plant in accordance with the flow sheet of the drawing cited in the description of the above embodiment, using treated water obtained by treating human waste through a biological nitrification and denitrification process as raw water (COD-containing wastewater 1). (1) Raw water quality

【表】 (2) フエントン酸化条件(前記第1撹拌槽2)【table】 (2) Fenton oxidation conditions (first stirring tank 2)

【表】 (3) 中和条件(第2撹拌槽6) 水酸化マグネシウムを使用しPH6.0に中和し
た。 (4) 沈殿スラツジ10濃度 150g/ 一方、中和用アルカリ剤としてNaOHを用
いたときは、ゲル状の沈殿物が生成し濃縮性が
極めて悪く、スラツジ濃度は10g/以上に濃
縮することはできなかつた。 次に、SS濃度150g/の沈殿スラツジ10
を第3撹拌槽11に導入し、H2SO4を添加し
てPH1.2に調整し2時間撹拌した結果、沈殿ス
ラツジ10の大部分が溶解した。この溶解液中
のCOD濃度は700mg/であつた。次に、この
溶解液を第4撹拌槽14に導いてH2O2を1500
mg/添加してPH2.5の条件で24時間撹拌した
結果、溶解液中のCODは85mg/に低下した。
この酸化分解後の溶解液を前記撹拌槽2にリサ
イクルして使用した結果、新鮮な鉄塩
(FeSO4・7H2O)の消費量は300mg/に減少
できた。 (5) 処理水の水質 上記廃水処理開始当初の処理水水質は第3表
のとおりであり、一方1ケ月間連続運転後の処
理水の水質は第4表のようであり、運転開始当
初と比べてCOD除去率の低下はごくわずかで
あつた。 このように本発明によれば、前記沈殿スラツ
ジが相当長期間、何度もリサイクルして利用で
きることが確認された。
[Table] (3) Neutralization conditions (second stirring tank 6) Neutralization was performed to pH 6.0 using magnesium hydroxide. (4) Precipitated sludge 10 concentration 150g/ On the other hand, when NaOH is used as an alkaline agent for neutralization, a gel-like precipitate is formed and the concentration is extremely poor, making it impossible to concentrate the sludge to a concentration of 10g/or more. Nakatsuta. Next, 10 precipitated sludge with an SS concentration of 150 g/
was introduced into the third stirring tank 11, the pH was adjusted to 1.2 by adding H 2 SO 4, and the mixture was stirred for 2 hours. As a result, most of the precipitated sludge 10 was dissolved. The COD concentration in this solution was 700 mg/. Next, this solution is led to the fourth stirring tank 14 and H 2 O 2 is added at 1500 ml.
As a result of adding mg/24 hours of stirring at pH 2.5, the COD in the solution decreased to 85 mg/.
As a result of recycling the dissolved solution after this oxidative decomposition into the stirring tank 2 and using it, the amount of fresh iron salt (FeSO 4 .7H 2 O) consumed could be reduced to 300 mg/. (5) Water quality of treated water The quality of treated water at the beginning of the above wastewater treatment is as shown in Table 3, while the quality of treated water after one month of continuous operation is as shown in Table 4, which is the same as that at the beginning of operation. In comparison, the decrease in COD removal rate was very small. Thus, according to the present invention, it has been confirmed that the precipitated sludge can be recycled and used many times over a considerable period of time.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のような本発明構成によつて、次のような
工業上重要な利益を得ることができる。 分離スラツジ中のCOD成分を合理的に分解
できるので、スラツジ中のFe(OH)3を酸に溶
解して再利用しても、COD除去率の低下が従
来法より少なくなる。 新鮮な鉄塩の添加が大幅に少なくなるので、
スラツジ発生量が大幅に減少し、汚泥処理工程
が合理化される。 アルカリ剤としてマグネシウム系アルカリ剤
でフエントン処理液を中和する新しい着想を採
用した結果、スラツジの沈降性、濃縮性が極め
て良好でありスラツジ濃度が高いため、沈殿ス
ラツジを溶解するための前記鉱酸の添加量が少
なくなる。
With the configuration of the present invention as described above, the following industrially important benefits can be obtained. Since the COD components in the separated sludge can be decomposed rationally, even if Fe(OH) 3 in the sludge is dissolved in acid and reused, the COD removal rate will decrease less than in conventional methods. Since the addition of fresh iron salts is significantly less,
The amount of sludge generated is significantly reduced and the sludge treatment process is streamlined. As a result of adopting a new idea of neutralizing the Fenton treatment liquid with a magnesium-based alkaline agent as an alkaline agent, the sedimentation and concentration properties of the sludge are extremely good, and the sludge concentration is high. The amount of addition will be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施態様を示す系統説明図で
ある。 1……COD含有廃水、2……第1撹拌槽、3
……H2O2、4……鉄塩、5……反応液、6……
第2撹拌槽、7……アルカリ剤、8……沈殿装
置、9……処理水、10……スラツジ、11……
第3撹拌槽、12……硫酸、13……H2O2、1
4……第4撹拌槽、15……返送液、16……排
泥管、17……高分子凝集剤。
The drawing is a system explanatory diagram showing one embodiment of the present invention. 1... COD-containing wastewater, 2... First stirring tank, 3
...H 2 O 2 , 4 ... iron salt, 5 ... reaction solution, 6 ...
2nd stirring tank, 7... Alkaline agent, 8... Precipitation device, 9... Treated water, 10... Sludge, 11...
Third stirring tank, 12...Sulfuric acid, 13...H 2 O 2 , 1
4... Fourth stirring tank, 15... Return liquid, 16... Sludge removal pipe, 17... Polymer flocculant.

Claims (1)

【特許請求の範囲】[Claims] 1 COD含有廃水に鉄塩とH2O2を添加して酸性
条件下で反応させたのち、マグネシウム系アルカ
リ剤を添加して生成するFe(OH)3を主体とする
SSを固液分離すると共に、該分離スラツジに鉱
酸を添加してFe(OH)3を溶解し、該溶解液に
H2O2を添加して撹拌し未分解COD成分を酸化分
解したのち、前記COD含有廃水に添加すること
を特徴とするCOD含有廃水の処理方法。
1 Mainly Fe(OH) 3 produced by adding iron salts and H 2 O 2 to COD-containing wastewater and reacting under acidic conditions, then adding a magnesium-based alkaline agent.
At the same time as solid-liquid separation of SS, mineral acid is added to the separated sludge to dissolve Fe(OH) 3 and the dissolved liquid is
A method for treating COD-containing wastewater, which comprises adding H 2 O 2 and stirring to oxidize and decompose undecomposed COD components, and then adding the mixture to the COD-containing wastewater.
JP7408880A 1980-06-02 1980-06-02 Treatment of cod containing waste water Granted JPS56168898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7408880A JPS56168898A (en) 1980-06-02 1980-06-02 Treatment of cod containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7408880A JPS56168898A (en) 1980-06-02 1980-06-02 Treatment of cod containing waste water

Publications (2)

Publication Number Publication Date
JPS56168898A JPS56168898A (en) 1981-12-25
JPS6341638B2 true JPS6341638B2 (en) 1988-08-18

Family

ID=13537067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7408880A Granted JPS56168898A (en) 1980-06-02 1980-06-02 Treatment of cod containing waste water

Country Status (1)

Country Link
JP (1) JPS56168898A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720722B2 (en) * 2013-06-04 2015-05-20 栗田工業株式会社 Method and apparatus for treating water containing hardly biodegradable organic matter

Also Published As

Publication number Publication date
JPS56168898A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
CN105293775A (en) Method adopting combined technology of pre-oxidation and coagulating sedimentation to process wastewater containing thallium and ammonia-nitrogen
JPH0480758B2 (en)
CN114853220A (en) Method for removing COD (chemical oxygen demand) and recycling high-ammonia nitrogen high-salt organic wastewater
JPH04349997A (en) Treatment of organic waste water
JP2002030352A (en) Method for recovering valuable metal from metal- containing waste water
JPS6339308B2 (en)
JPS5834197B2 (en) High speed inosyoriho
JPS6211634B2 (en)
JP3642516B2 (en) Method and apparatus for removing COD components in water
JPH03106493A (en) Treating waste water
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JPS6341638B2 (en)
CN115140862A (en) Method for pretreating electroplating wastewater by adopting ozone and Fenton process in cooperation
JP2621090B2 (en) Advanced wastewater treatment method
JPS6339307B2 (en)
JPS591118B2 (en) How to treat organic wastewater
JPS6339309B2 (en)
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
JP2001232372A (en) Treatment process for water containing boron
JPH0141110B2 (en)
JPS59375A (en) Treatment of water containing difficultly biodegradative substance
CA1257019A (en) Method of cyanide destruction
JPH0278487A (en) Continuous treatment of waste water
JPS61234998A (en) Treatment of waste water containing chromium
JPH0137981B2 (en)