JPS6341212B2 - - Google Patents

Info

Publication number
JPS6341212B2
JPS6341212B2 JP9245181A JP9245181A JPS6341212B2 JP S6341212 B2 JPS6341212 B2 JP S6341212B2 JP 9245181 A JP9245181 A JP 9245181A JP 9245181 A JP9245181 A JP 9245181A JP S6341212 B2 JPS6341212 B2 JP S6341212B2
Authority
JP
Japan
Prior art keywords
substrate
annealing
light irradiation
irradiation
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9245181A
Other languages
Japanese (ja)
Other versions
JPS57207345A (en
Inventor
Takashi Yahano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9245181A priority Critical patent/JPS57207345A/en
Publication of JPS57207345A publication Critical patent/JPS57207345A/en
Publication of JPS6341212B2 publication Critical patent/JPS6341212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Description

【発明の詳細な説明】 本発明は、光照射アニール装置、特にイオン注
入を行なつた半導体基板表面の結晶性回復のため
の光照射アニールをなす際に該基板表面を加熱す
るための赤外線照射を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light irradiation annealing apparatus, particularly an infrared irradiation apparatus for heating the surface of a semiconductor substrate after ion implantation when performing light irradiation annealing to restore the crystallinity of the surface of the substrate. The present invention relates to a device for performing

シリコン基板に不純物拡散層を形成するために
イオン(例えばほう素、B+)注入がなされる事
例は多い。このとき、イオン注入によつて基板表
面付近のイオン注入部分の結晶性が乱され、また
注入イオンはそのままでは電気的に不活性である
ことが知られている。かかるイオン注入層の回復
及び注入イオンの活性化は、従来は電気炉アニー
ルにより、また最近では光照射アニールまたは電
子ビーム、イオンビームなどを用いて行なわれよ
うとしている。
In many cases, ions (eg, boron, B + ) are implanted to form an impurity diffusion layer in a silicon substrate. At this time, it is known that the ion implantation disturbs the crystallinity of the ion implanted portion near the substrate surface, and that the implanted ions are electrically inactive as they are. Such recovery of the ion-implanted layer and activation of the implanted ions have conventionally been carried out by electric furnace annealing, and recently, light irradiation annealing, electron beams, ion beams, etc. are being used.

本願の発明者は光照射アニールにおいてイオン
注入層の回復或いは活性化を計るには、基板表面
を適当な温度(300〜500℃)に予備加熱しておく
と効果的であることを確認した。
The inventor of the present application has confirmed that preheating the substrate surface to an appropriate temperature (300 to 500° C.) is effective in recovering or activating the ion-implanted layer during light irradiation annealing.

本発明は光照射アニールにおいて効果的に基板
表面を予備加熱するにあり、そのために赤外線ヒ
ータを使用し、該赤外線ヒータを、基板をガス雰
囲気にさらすためのチエンバと切離して配置し、
装置構成上の容易さ、および装置性能の向上、拡
大を計るものである。
The present invention is to effectively preheat the substrate surface during light irradiation annealing, and for this purpose, an infrared heater is used, and the infrared heater is disposed separately from a chamber for exposing the substrate to a gas atmosphere.
This is intended to facilitate equipment configuration and improve and expand equipment performance.

第1図には、本願発明者の実施した実験結果の
線図が示され、それは基板温度と活性化率の関係
を表わす。同図において、実線aはアニール光照
射エネルギーが19Jcm-2、点線bは10Jcm-2の場合
を、また△は電気炉アニールの場合を示す。同図
を参照すると、光照射エネルギーを一定にしたと
き基板温度が室温付近の場合、100〜200μsec照射
しても活性化率(注入した不純物が電気的にどの
程度有効になつているかを示す量)は0に等しい
が、基板温度が300〜500℃になると活性化率が80
%以上になる。この値は同図に示される電気炉ア
ニール(600℃、N2雰囲気内で5分)のみの値と
比べてきわめて大きい。なお基板温度を室温程度
にして大きな活性化率を得ようとすると、かなり
大きな照射エネルギー密度が必要であり、必要以
上に大きなエネルギーを照射すると基板表面が損
傷したり、場合によつては基板自身が割れたりす
ることも確認された。さらに、本願発明者は、光
照射アニールにおいて、基板温度一定の下では適
当な照射エネルギー密度(20Jcm-2程度)で200〜
500μsec照射すると大きな活性化率が得られるこ
とを確認した(第2図)。第2図は、1回の照射
エネルギー密度と活性化率の関係を表わし、実線
aは200μsec照射、点線bは400μsec照射の場合
を、また△は電気炉アニール(600℃、N2雰囲気
で5分)の場合を表わす。以上の実験により、本
願の発明者は、イオン注入層回復は適当な基板温
度、照射エネルギー、照射時間の下で、光照射ア
ニールによつて効果的に行なえることを確認し
た。
FIG. 1 shows a diagram of the results of an experiment conducted by the inventor of the present invention, which represents the relationship between substrate temperature and activation rate. In the figure, solid line a indicates the case where the annealing light irradiation energy is 19 Jcm -2 , dotted line b indicates the case where the annealing light irradiation energy is 10 Jcm -2 , and Δ indicates the case of electric furnace annealing. Referring to the same figure, when the light irradiation energy is constant and the substrate temperature is around room temperature, even if irradiation is performed for 100 to 200 μsec, the activation rate (quantity that indicates how electrically effective the implanted impurity is) ) is equal to 0, but when the substrate temperature is 300-500℃, the activation rate is 80
% or more. This value is extremely large compared to the value obtained only by electric furnace annealing (600° C., 5 minutes in N 2 atmosphere) shown in the figure. Note that in order to obtain a high activation rate by keeping the substrate temperature at room temperature, a considerably high irradiation energy density is required, and irradiating more energy than necessary may damage the substrate surface or, in some cases, damage the substrate itself. It was also confirmed that the material cracked. Furthermore, in light irradiation annealing, the inventor of the present application has determined that, under a constant substrate temperature, an appropriate irradiation energy density (approximately 20 Jcm -2 )
It was confirmed that a large activation rate was obtained when irradiated for 500 μsec (Figure 2). Figure 2 shows the relationship between the energy density of one irradiation and the activation rate. The solid line a is for 200μsec irradiation, the dotted line b is for 400μsec irradiation, and △ is for electric furnace annealing (600℃, 55μsec irradiation in N2 atmosphere). minutes). Through the above experiments, the inventor of the present application has confirmed that the ion-implanted layer recovery can be effectively performed by light irradiation annealing under appropriate substrate temperature, irradiation energy, and irradiation time.

従来の光照射アニールにおいては、第3図に示
す如く、基板3の加熱には抵抗加熱ヒータ2を用
い基板3の下方から加熱した上で、キセノン
(Xe)ランプ1の照射を行う。なお図において
Xeランプ1は簡略化のため1個しか示されない
が、実際には復数個のランプが配列されている。
かかる方法においては次のような欠点が見出され
た。
In conventional light irradiation annealing, as shown in FIG. 3, a resistance heater 2 is used to heat the substrate 3, and the substrate 3 is heated from below, and then irradiated with a xenon (Xe) lamp 1. In addition, in the figure
Although only one Xe lamp 1 is shown for simplicity, several lamps are actually arranged.
The following drawbacks were found in this method.

(1) 基板加熱を基板下方より行なうため、加熱が
必要な基板表面を適当な温度にするにはむだが
多く効率的でない。
(1) Since the substrate is heated from below the substrate, it is wasteful and inefficient to bring the surface of the substrate that requires heating to an appropriate temperature.

(2) アニールを特殊雰囲気内で行なう場合、ヒー
タの設定など装置設計上困難を伴い、基板加
熱、ガス供給方法に制約が生ずる。
(2) When annealing is performed in a special atmosphere, there are difficulties in equipment design such as heater settings, and there are restrictions on substrate heating and gas supply methods.

(3) Xeランプ1は、そのまわりの温度が高くな
つてそれ自体が加熱されると、光照射をなさな
いことがあり、基板3の加熱による輻射熱が
Xeランプ1に加わらないようにするについて
適切な手段が設けられていない。
(3) If the temperature around the Xe lamp 1 becomes high and the lamp itself is heated, it may not emit light, and the radiant heat due to the heating of the substrate 3 may
No appropriate means are provided to prevent this from entering the Xe lamp 1.

本発明の目的は、上述の欠点を解決するにあ
り、かかる目的を達成するため、本願の発明者
は、基板加熱に赤外線ヒータを使用し、ガスチエ
ンバ内にセツトされる基板をチエンバ外部から加
熱する装置を発明した。
An object of the present invention is to solve the above-mentioned drawbacks, and in order to achieve such an object, the inventor of the present invention uses an infrared heater to heat the substrate, and heats the substrate set in the gas chamber from outside the chamber. invented a device.

以下、本発明装置の実施例を添付図面を参照し
て説明する。
Embodiments of the apparatus of the present invention will be described below with reference to the accompanying drawings.

第4図と第5図とは、かかる実施例の概略断面
図である。この装置において、反射ミラー13は
可動であり、第4図の状態と第5図の状態の2つ
の状態をとることができる。反射ミラー13は、
反射率のよい銀フイルムを透明材に付着したもの
か、また表面をよく研磨したアルミニウム板を用
いる。チエンバ14は反射ミラー13の下方に位
置し、内部に基板15がセツトされる。この装置
によつて基板15を加熱する場合は、第4図に示
されるように反射ミラー13を配置し、赤外線ヒ
ータ12から出る赤外線によつてチエンバ14内
の基板15を加熱する。このとき反射ミラー13
は赤外線反射と同時にXeランプ11を基板15
の加熱による輻射熱からシールドする効果を持
つ。赤外線ヒータ12の出力は2Kw程度で、照
射時間は30秒ぐらいが適当である。
4 and 5 are schematic cross-sectional views of such an embodiment. In this device, the reflecting mirror 13 is movable and can assume two states, the state shown in FIG. 4 and the state shown in FIG. The reflective mirror 13 is
Use a transparent material with a silver film attached to it, or an aluminum plate with a well-polished surface. The chamber 14 is located below the reflecting mirror 13, and a substrate 15 is set inside. When heating the substrate 15 with this device, a reflecting mirror 13 is arranged as shown in FIG. 4, and the substrate 15 in the chamber 14 is heated by infrared rays emitted from the infrared heater 12. At this time, the reflecting mirror 13
At the same time as infrared reflection, the Xe lamp 11 is connected to the substrate 15.
It has the effect of shielding from radiant heat caused by heating. The output of the infrared heater 12 is about 2Kw, and the appropriate irradiation time is about 30 seconds.

基板15の表面が適当な温度(300〜500℃)ま
で加熱されたとき、反射ミラー13を第5図の位
置にし、Xeランプ11を200μsecほど照射する。
このとき光照射アニールをガス雰囲気中で行ない
たい場合には、チエンバ14内にN2のような雰
囲気ガスを矢印の方向に流す。なお、チエンバ1
4には、赤外線およびXeランプより照射される
光に対して透明度のよいもの、例えば石英を使用
する。
When the surface of the substrate 15 is heated to an appropriate temperature (300 to 500° C.), the reflecting mirror 13 is placed in the position shown in FIG. 5, and the Xe lamp 11 is irradiated for about 200 μsec.
At this time, if it is desired to perform the light irradiation annealing in a gas atmosphere, an atmospheric gas such as N 2 is flowed into the chamber 14 in the direction of the arrow. In addition, Chamber 1
For 4, use a material that is transparent to infrared rays and light emitted from a Xe lamp, such as quartz.

なお、赤外線ヒータ12をXeランプ11と平
行に配置させることも考えられるが、Xeランプ
11への熱的悪影響の点から本装置の配置にし、
しかも反射ミラー13によつて赤外線や基板から
の熱輻射によるランプ11の加熱を防ぐ。更に
は、基板15を図に見てチエンバ14の下方から
加熱することも考えられるが、基板11はイオン
注入のなされた図に見て上表面のみを加熱すれば
足りるのであるから、基板11を下方から加熱す
ることは時間と電力の浪費であるだけでなく、上
記したXeランプの加熱という悪影響を発生する
ので実際的でない。
Note that it is possible to arrange the infrared heater 12 in parallel with the Xe lamp 11, but in view of the adverse thermal effect on the Xe lamp 11, we decided to arrange the infrared heater 12 in this device,
Moreover, the reflective mirror 13 prevents the lamp 11 from being heated by infrared rays or heat radiation from the substrate. Furthermore, it is possible to heat the substrate 15 from below the chamber 14 as shown in the figure, but since it is sufficient to heat only the upper surface of the substrate 11 as seen in the figure where ions have been implanted, the substrate 11 can be heated from below. Heating from below is not only a waste of time and power, but is also impractical as it causes the adverse effect of overheating the Xe lamp mentioned above.

以上に説明した如く、本発明にかかる光照射ア
ニール装置において、基板15の表面の加熱に赤
外線ヒータ12を用い、該赤外線ヒータ12とチ
エンバ14を分離することにより、基板加熱、ガ
ス供給方法を容易にし、装置の性能向上、拡張性
を高めることができる。
As described above, in the light irradiation annealing apparatus according to the present invention, the infrared heater 12 is used to heat the surface of the substrate 15, and the infrared heater 12 and the chamber 14 are separated, thereby simplifying the substrate heating and gas supply methods. It is possible to improve the performance and expandability of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は厚さ50mmの酸化シリコン膜
(SiO2)を通して、ホウ素イオン(B+)を
100KeV、1014cm-2でシリコン基板に注入したイ
オン層に対する光照射および電気炉アニールの結
果を示す線図。第3図は従来の光照射アニール装
置の概略断面図。第4図と第5図は本発明にかか
る光照射アニール装置の概略断面図である。 11……Xeランプ、12……赤外線ヒータ、
13……反射ミラー、14……チエンバ、15…
…基板。
Figures 1 and 2 show boron ions (B + ) passing through a 50 mm thick silicon oxide film (SiO 2 ).
Diagram showing the results of light irradiation and electric furnace annealing on an ion layer implanted into a silicon substrate at 100KeV and 10 14 cm -2 . FIG. 3 is a schematic cross-sectional view of a conventional light irradiation annealing device. 4 and 5 are schematic cross-sectional views of a light irradiation annealing apparatus according to the present invention. 11...Xe lamp, 12...infrared heater,
13... Reflection mirror, 14... Chamber, 15...
…substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板のイオン注入層の結晶回復のため
の加熱装置において、光照射アニール用光源と、
該基板のイオン注入層側の表面加熱用の赤外線ヒ
ータと、反射ミラーとを、該基板を収容するガス
チエンバ外に設け、光照射アニール用光源は該基
板のイオン注入層側の面に対向せしめ、反射ミラ
ーは、赤外線照射時に該赤外線を該基板表面に向
けると共に光照射アニール用光源を基板の輻射熱
からシールドする位置に配置し、次いで赤外線照
射が終るとアニール用光照射の光路を遮らない位
置に移動することによつて、表面加熱用赤外線照
射とアニール用光照射を交互に行いうる如くに構
成されてなることを特徴とする光照射アニール装
置。
1. In a heating device for crystal recovery of an ion-implanted layer of a semiconductor substrate, a light source for light irradiation annealing;
An infrared heater for heating the surface of the ion-implanted layer side of the substrate and a reflection mirror are provided outside the gas chamber housing the substrate, and a light source for light irradiation annealing is opposed to the surface of the substrate on the ion-implanted layer side, The reflective mirror is placed in a position that directs the infrared rays toward the surface of the substrate during infrared irradiation and shields the light source for light irradiation annealing from the radiant heat of the substrate, and then, when the infrared irradiation is finished, it is placed in a position that does not block the optical path of the annealing light irradiation. A light irradiation annealing device characterized in that it is configured to alternately perform infrared irradiation for surface heating and light irradiation for annealing by moving.
JP9245181A 1981-06-16 1981-06-16 Light irradiation annealing device Granted JPS57207345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9245181A JPS57207345A (en) 1981-06-16 1981-06-16 Light irradiation annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9245181A JPS57207345A (en) 1981-06-16 1981-06-16 Light irradiation annealing device

Publications (2)

Publication Number Publication Date
JPS57207345A JPS57207345A (en) 1982-12-20
JPS6341212B2 true JPS6341212B2 (en) 1988-08-16

Family

ID=14054760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9245181A Granted JPS57207345A (en) 1981-06-16 1981-06-16 Light irradiation annealing device

Country Status (1)

Country Link
JP (1) JPS57207345A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981815A (en) * 1988-05-09 1991-01-01 Siemens Aktiengesellschaft Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors
JP2002141298A (en) * 2000-11-02 2002-05-17 Toshiba Corp Method for manufacturing semiconductor device
JP2007274007A (en) * 2007-06-18 2007-10-18 Toshiba Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS57207345A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
EP0075439B1 (en) Semiconductor processing
JPH01319934A (en) Method of quick heat treatment of semiconductor wafer using electromagnetic radiation application
US4659422A (en) Process for producing monocrystalline layer on insulator
JPH025294B2 (en)
IE802151L (en) Semiconductors
GB2070327A (en) Method and apparatus for annealing semiconductors
JP3531567B2 (en) Flash irradiation heating device
JPS6341212B2 (en)
JPS6244848B2 (en)
JPS5917253A (en) Heat treatment method for semiconductor wafer
JPH0377657B2 (en)
JPH0834191B2 (en) Method for high-temperature drive-in diffusion of dopant into semiconductor wafer
JPH01235232A (en) Heating method for semiconductor film on insulating substrate
JPS60137027A (en) Optical irradiation heating method
JP2979550B2 (en) Lamp annealing equipment
JPH02278720A (en) Plasma doping apparatus
JPH0525230Y2 (en)
JPS6027115A (en) Heat treatment of semiconductor wafer by light irradiation furnace
JPS60145629A (en) Heat treating method
JPS6244847B2 (en)
JPH0351091B2 (en)
JPS6352421A (en) Heat treatment method and device for wafer
JPS57111020A (en) Manufacture of semiconductor device
JPH02122618A (en) Apparatus for diffusing impurities
JPS593934A (en) Heating of semiconductor wafer with light irradiation