JPS60145629A - Heat treating method - Google Patents

Heat treating method

Info

Publication number
JPS60145629A
JPS60145629A JP59002175A JP217584A JPS60145629A JP S60145629 A JPS60145629 A JP S60145629A JP 59002175 A JP59002175 A JP 59002175A JP 217584 A JP217584 A JP 217584A JP S60145629 A JPS60145629 A JP S60145629A
Authority
JP
Japan
Prior art keywords
film
light
substrate
transparent substrate
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59002175A
Other languages
Japanese (ja)
Inventor
Yasuo Ono
泰夫 大野
Ichiro Moriyama
森山 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59002175A priority Critical patent/JPS60145629A/en
Publication of JPS60145629A publication Critical patent/JPS60145629A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To uniformly heat even if a pattern is formed in any shape and density on a transparent substrate by bonding a film for absorbing a light on the back surface of the substrate heat treated by light heating. CONSTITUTION:When patterns 2, 3 of opaque films formed on a transparent substrate 1 are heated by a light heating method, a film 4 for absorbing a light is formed on the entire surface at the side having no patterns 2, 3 of the substrate 1 and heated with light. The film 4 is formed, for example, ith a polycrystalline silicon film. A lamp annealing may be performed from the side of the film 4 or from the opposite side. Thus, since the light not absorbed to the film 3 of small size is absorbed to the film 4, the films 2, 3 become the same temperature irrespective of the magnitude of the size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体デバイスの製造方法、特に透明基板上の
不透明膜、特に半導体膜を光加熱によって熱処理する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for heat-treating an opaque film on a transparent substrate, particularly a semiconductor film, by optical heating.

(従来技術) 従来の電気炉法に替り、近年ハロゲンランプ等を用いた
短時間アニール法が注目されている。この方法は発熱源
の温度を、熱処理温度よシ尚くすることによシ、よシ大
きな輻射熱を発生させ、短時間で加熱し、所定の温度に
達すると発熱を弱めて温度を一定に保つというものであ
る。
(Prior Art) In place of the conventional electric furnace method, a short-time annealing method using a halogen lamp or the like has recently been attracting attention. This method generates a large amount of radiant heat by raising the temperature of the heat source to a level higher than the heat treatment temperature, heats it in a short time, and when it reaches a predetermined temperature, the heat generation is reduced to keep the temperature constant. That is what it is.

(従来技術の問題点) この方法を5OS(シリコン・オン・ザファイア)など
透明基板上に半導体デバイスを形成する工程に用いると
、輻射光が基板を透過してしまい吸収量が少ないため短
時間で加熱することができない。
(Problems with the prior art) When this method is used in the process of forming semiconductor devices on a transparent substrate such as 5OS (Silicon on the Fire), the radiation light passes through the substrate and the amount of absorption is small, so it can be completed in a short time. cannot be heated.

またIC−?LSIの製造工程において透明基板上に厚
さ0.5μm程度の薄いシリコン膜でできたパターンが
存在すると、薄いシリコン膜はある程度光を吸収するた
めパターンの密度によって吸lA駄がかわり、温度の上
昇率や、到達温度が変シテバイス特性に大きな変動を与
え不都合を生じる。
IC- again? In the LSI manufacturing process, when a pattern made of a thin silicon film with a thickness of about 0.5 μm exists on a transparent substrate, the thin silicon film absorbs a certain amount of light, so the absorption capacity changes depending on the density of the pattern, causing a rise in temperature. The rate of change and the temperature reached will cause large fluctuations in the device characteristics, causing inconvenience.

第1図は従来法を説明するための基板の断面模式図であ
る。透明基板1上に、2で示すように、基板1の厚さに
比し大きな寸法の不透明半導体膜がある場合、光臨から
の光はこの半導体膜2に吸収され、半導体膜2は短時間
で同温に達する。しかし、3に示した、基板1の厚さに
比し小さな寸法の不透明半導体膜では、光源からの光は
半導体3で吸収される以外は透過して加熱に寄与せず、
半導体膜3で吸収した熱エネルギーは半導体膜3の10
下のみならず近傍を3改元的拡りをもって加熱する必要
があるため短時間では昇温しない。特にランプアニール
のような短時間アニールでは最高温度がパターン形状に
より変わり、イオン注入不純物原子の活性化や拡散に不
均一が生じる。
FIG. 1 is a schematic cross-sectional view of a substrate for explaining the conventional method. When there is an opaque semiconductor film on the transparent substrate 1, which has a larger size than the thickness of the substrate 1, as shown by 2, the light from the light is absorbed by the semiconductor film 2, and the semiconductor film 2 is absorbed by the semiconductor film 2 in a short time. reach the same temperature. However, in the opaque semiconductor film shown in 3, which is smaller in size than the thickness of the substrate 1, the light from the light source is transmitted, except for being absorbed by the semiconductor 3, and does not contribute to heating.
Thermal energy absorbed by the semiconductor film 3 is
Since it is necessary to heat not only the bottom but also the vicinity in a three-dimensional manner, the temperature will not rise in a short period of time. In particular, in short-time annealing such as lamp annealing, the maximum temperature varies depending on the pattern shape, causing non-uniform activation and diffusion of ion-implanted impurity atoms.

(発明の目的) 本発明は上記欠点を除去し、透明基板上にどのような形
状、密MEでパターンが形成されていても均一に加熱が
できる方法を提供することを目的とする0 (発明の構成) 本発明は、光加熱によって熱処理される透明基板の裏面
に光を吸収する膜を付けることにより構成される。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method that can uniformly heat a pattern no matter what shape or density ME is formed on a transparent substrate. (Constitution) The present invention is constituted by attaching a light-absorbing film to the back surface of a transparent substrate that is heat-treated by optical heating.

((1#成の詳細な説明) 第2図は本発明のように光吸収膜4例えば多結晶シリコ
ン膜を付けた試料の断面模式図である。
(Detailed Description of 1# Formation) FIG. 2 is a schematic cross-sectional view of a sample provided with a light absorption film 4, for example, a polycrystalline silicon film, as in the present invention.

この場合、寸法の小さい半導体膜3に吸収されなかった
光も光吸収膜4で吸収されるだめ、寸法の大小にかかわ
らず半導体膜2.3は同一の温度になる。透明基板1の
厚みによる熱伝導の遅れの時定数は基板1の熱伝導度を
A、比熱をB、比重をC1厚みをWとするとw2BC/
Aと表わされ、基板1の拐質を石英とするとA=0.0
2 J/cm−set・K 。
In this case, the light that is not absorbed by the semiconductor film 3, which is small in size, is also absorbed by the light absorption film 4, so that the semiconductor film 2.3 has the same temperature regardless of its size. The time constant of the delay in heat conduction due to the thickness of the transparent substrate 1 is w2BC/, where the thermal conductivity of the substrate 1 is A, the specific heat is B, the specific gravity is C1, and the thickness is W.
It is expressed as A, and if the matrix of the substrate 1 is quartz, then A=0.0
2 J/cm-set・K.

B=1.OJ/f・K、C=2.2t/crAでWは通
常の半導体製造プロセスでは0.03Crn程度なので
約0.1secとな9、ハロゲンランプアニールなどで
通常用いる108程度の加熱時間にくらべれば無視でき
る。
B=1. OJ/f・K, C=2.2t/crA, W is about 0.03Crn in a normal semiconductor manufacturing process, so it is about 0.1 sec9, compared to the heating time of about 108 normally used in halogen lamp annealing etc. Can be ignored.

なおラングアニールは光吸収膜4の側から行なっても、
その反対側から行なってもどちらでもよい。
Note that even if run annealing is performed from the light absorption film 4 side,
You can do it from the opposite side.

寸だ透明基板1としては石英に限らず、ザファイア、ス
ピネル等ももちろん使うことができる。
The material for the transparent substrate 1 is not limited to quartz, but may also be made of zaphire, spinel, etc.

(発明の効果) 以上のように本発明によれば透明基板上の不透明膜にパ
ターン形状の差や密度の差があっても均一な短時間光加
熱が可能となる。
(Effects of the Invention) As described above, according to the present invention, even if there is a difference in pattern shape or density in an opaque film on a transparent substrate, uniform short-time optical heating is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による試料の断面模式図で、1は透明基
板、2は大きな面積の被熱処理不透明膜、3は小さな面
積の被熱処理不透明膜である。 第2図は本発明による試料の断面模式図で、4は本発明
による光吸収膜である。 オI図
FIG. 1 is a schematic cross-sectional view of a sample according to a conventional method, in which 1 is a transparent substrate, 2 is a large area of an opaque film to be heat treated, and 3 is a small area of an opaque film to be heat treated. FIG. 2 is a schematic cross-sectional view of a sample according to the present invention, and 4 is a light-absorbing film according to the present invention. O I diagram

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に形成された不透明膜のパターンを光加熱法
によって加熱する熱処理法において、光を吸収する膜を
前記基板のlIJ記パターンのない側に全面に形成した
状態で光加熱を行なうことを特徴とする熱処理法。
In a heat treatment method in which an opaque film pattern formed on a transparent substrate is heated by optical heating, optical heating is performed with a light-absorbing film formed entirely on the side of the substrate where the pattern is not provided. Characteristic heat treatment method.
JP59002175A 1984-01-10 1984-01-10 Heat treating method Pending JPS60145629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002175A JPS60145629A (en) 1984-01-10 1984-01-10 Heat treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002175A JPS60145629A (en) 1984-01-10 1984-01-10 Heat treating method

Publications (1)

Publication Number Publication Date
JPS60145629A true JPS60145629A (en) 1985-08-01

Family

ID=11522025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002175A Pending JPS60145629A (en) 1984-01-10 1984-01-10 Heat treating method

Country Status (1)

Country Link
JP (1) JPS60145629A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265425A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPS63265424A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
US5463975A (en) * 1987-03-02 1995-11-07 Canon Kabushiki Kaisha Process for producing crystal
DE19544525C2 (en) * 1994-11-30 1999-10-21 New Japan Radio Co Ltd Process for the heat treatment of a semiconductor body
US7218847B2 (en) * 2003-10-24 2007-05-15 Ushio Denki Kabushiki Kasiha Heating unit for heating a workpiece with light-absorbing heat conducting layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463975A (en) * 1987-03-02 1995-11-07 Canon Kabushiki Kaisha Process for producing crystal
JPS63265425A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPS63265424A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
DE19544525C2 (en) * 1994-11-30 1999-10-21 New Japan Radio Co Ltd Process for the heat treatment of a semiconductor body
US7218847B2 (en) * 2003-10-24 2007-05-15 Ushio Denki Kabushiki Kasiha Heating unit for heating a workpiece with light-absorbing heat conducting layer

Similar Documents

Publication Publication Date Title
JP2961123B2 (en) Rapid heat treatment of semiconductor disks by electromagnetic radiation.
GB2065973A (en) Processes for manufacturing semiconductor devices
JPS58223320A (en) Diffusing method for impurity
US4504730A (en) Method for heating semiconductor wafer by means of application of radiated light
JP2001007039A5 (en)
JPS60145629A (en) Heat treating method
JPH0377657B2 (en)
JPS6072227A (en) Method of diffusing dopant into semiconductor wafer in high temperature drive-in manner
JP2615783B2 (en) Heating equipment
JPS60137027A (en) Optical irradiation heating method
JPS61116820A (en) Annealing method for semiconductor
JPS6294925A (en) Heat treatment device
JP2530158B2 (en) Selective heating method for transparent substrates
JP4286978B2 (en) Semiconductor substrate heat treatment method
JPH07119647B2 (en) Light intensity measuring device
JPS6242519A (en) Manufacture of semiconductor device
JPS6027115A (en) Heat treatment of semiconductor wafer by light irradiation furnace
JPS6163019A (en) Formation of semiconductor thin film
JP2530157B2 (en) Selective heating method for transparent substrates
JPS60239400A (en) Process for annealing compound semiconductor
JP2778068B2 (en) Heat treatment method for semiconductor device
JPH0240480Y2 (en)
JPS58118112A (en) Heat treating device for semiconductor material
JPS60193343A (en) Heat treatment device
JPS63257221A (en) Lamp annealing apparatus