JPS60193343A - Heat treatment device - Google Patents

Heat treatment device

Info

Publication number
JPS60193343A
JPS60193343A JP59048154A JP4815484A JPS60193343A JP S60193343 A JPS60193343 A JP S60193343A JP 59048154 A JP59048154 A JP 59048154A JP 4815484 A JP4815484 A JP 4815484A JP S60193343 A JPS60193343 A JP S60193343A
Authority
JP
Japan
Prior art keywords
gas
heat treatment
irradiated
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59048154A
Other languages
Japanese (ja)
Inventor
Shigeru Yasuami
安阿弥 繁
Katsuyoshi Fukuda
福田 勝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59048154A priority Critical patent/JPS60193343A/en
Publication of JPS60193343A publication Critical patent/JPS60193343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to control the cooling speed of a substance to be irradiated by infrared rays independent of heat capacity of a heat treatment device by a method wherein cooling gas is introduced to the substance to be irradiated. CONSTITUTION:Infrared beams 3 radiated from halogen lamps 1 are projected to a sample 5 to be irradiated passing in a furnace tube 4 directly or through reflectors 2. Inactive gas or reducing gas 7 is flowed in the furnace tube 4 during the sample 5 is heat-treated. After the sample is held at the heat treatment temperature for the prescribed hours in such a way, the gas 7 is changed at once over cooling gas, nitrogen gas generated from liquid nitrogen for example. Or cooling gas is mixed to the gas 7. Accordingly, the desired temperature descending speed can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は熱処理装置に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a heat treatment apparatus.

〔従来技術とその問題点〕[Prior art and its problems]

半導体素子製造プロセスにおいて、注入不純物の活性化
、オーミックコンタクト金属の合金化。
In the semiconductor device manufacturing process, activation of implanted impurities and alloying of ohmic contact metals.

配線用金属のシンク等に熱処理工程は不可欠である。そ
して素子の微細化、高性能化に伴い、熱処理も短時間に
過渡状態で行なうことが要求される様になった。例えば
イオン注入層の活性化においては、素子の設計基準を満
たすために、注入時の不純物分布を出来る限シ保ったま
\活性化されることが望ましい。或いはオーミックコン
タクトを金属の合金化によって形成する場合1合金化温
度への昇温、及び降温の速度が得られるオーミックコン
タクトの特性、コンタクト抵抗を左右する。
A heat treatment process is essential for metal wiring sinks, etc. With the miniaturization and higher performance of devices, it has become necessary to perform heat treatment in a short period of time in a transient state. For example, when activating an ion-implanted layer, it is desirable to maintain the impurity distribution during implantation as much as possible in order to satisfy device design standards. Alternatively, when an ohmic contact is formed by alloying metals, the rate at which the temperature is raised to the alloying temperature and the rate at which the temperature is lowered affects the properties and contact resistance of the ohmic contact.

こうした事情のもとで、レーザアニール、或いは電子線
ビームアニール法が開発されたが1例えばレーザにおい
てはウェハ内で均一な照射を行なうことができないため
に特性の不均一を招き、或いは電子線ビームにおいては
、活性層内でキャリアの移動度が低い等の問題が生じて
現時点では実用化に到っていない。
Under these circumstances, laser annealing or electron beam annealing methods have been developed.1 For example, laser annealing cannot uniformly irradiate within a wafer, leading to non-uniform properties, or electron beam annealing However, problems such as low carrier mobility within the active layer have arisen, so that it has not been put to practical use at present.

これに対して赤外線等の光線を用いる熱処理炉では、上
述のレーザ、電子線ビームを用いる方法に対して秀れた
ウェハ内での均一性が得られること、或いは、加熱速度
がこの両者と電気炉の中間に位置し、半導体基板に熱歪
による塑性変形を生じさせない程度の急熱が出来ること
、装置の取り扱いが容易である等の利点がある。
On the other hand, heat treatment furnaces that use infrared rays or other light beams can achieve superior uniformity within the wafer compared to the above-mentioned methods that use lasers or electron beams, or that the heating rate is higher than that of both of these methods and electricity. It is located in the middle of the furnace, and has the advantages of being able to rapidly heat the semiconductor substrate to an extent that does not cause plastic deformation due to thermal strain, and that the device is easy to handle.

しかしながら被照射物を光線の照射領域に置き。However, the object to be irradiated is placed in the irradiation area of the light beam.

光線照射後も炉が冷却する迄放置した場合には、被照射
物の冷却速度は炉全体の熱容量に依存するために、第1
図に示す如く限られた冷却速度しか得られない、従って
上述の例における注入層の拡がシを充分抑えることがで
きない、或いはオーミックコンタクトの合金化が長い時
間にわたってしまう等の不都合が生じてきた。
If the furnace is left until it cools down after irradiation, the cooling rate of the irradiated object depends on the heat capacity of the entire furnace, so the first
As shown in the figure, only a limited cooling rate can be obtained, and therefore, the expansion of the implanted layer in the above example cannot be sufficiently suppressed, or the alloying of the ohmic contact takes a long time. .

〔発明の目的〕[Purpose of the invention]

この発明は、上述の諸問題を解決するために。 This invention aims to solve the above-mentioned problems.

冷却速度の制御可能な熱処理装置を提供することにある
An object of the present invention is to provide a heat treatment device that can control the cooling rate.

〔発明の概要〕[Summary of the invention]

本発明は被照射物に冷却用気体を導入することにより、
熱処理装置の熱容量とは独立に被照射物の冷却速度を調
節可能としたルの乙1ある・〔発明の効果〕 本発明による熱処理装置を用いれば、高出力の非干渉光
を短時間に照射し、熱処理を行ない、それに引き続き直
ちに所望の降温か行なわれる0例えば半導体のイオン注
入層の活性化に使用した場合、光線照射により例えば1
00℃/secといった早い昇温速度で処理温度に到達
したのち、速やかに降温を行なうことによシ、注入不純
物の再分布を防ぐことが出来る。或いは1例えばAu−
(ト)系の金属をGa入S結晶と合金化させてオーミッ
クコンタクトを得る場合には、特性を左右する昇温、及
び降温か速やかに行なわれることにより、均一な合金層
が得るに低い接触抵抗値を得ることができる。
The present invention introduces a cooling gas into the object to be irradiated.
The cooling rate of the irradiated object can be adjusted independently of the heat capacity of the heat treatment equipment. [Effects of the Invention] By using the heat treatment equipment according to the present invention, high-output incoherent light can be irradiated in a short time. For example, when used for activating an ion-implanted layer of a semiconductor, a heat treatment is performed, followed immediately by a desired temperature drop.
Redistribution of implanted impurities can be prevented by quickly lowering the temperature after reaching the processing temperature at a rapid temperature increase rate of 00° C./sec. Or 1 for example Au-
(g) When obtaining ohmic contact by alloying a metal of the Ga-containing S crystal with a Ga-containing S crystal, the heating and cooling, which affect the characteristics, are carried out quickly, making it possible to obtain a uniform alloy layer with low contact. You can get the resistance value.

更にWNなどの化合物とGaAsの組み合わせによりシ
目ットキー接合を形成する場合にもとの昇温・降温速度
が早いことによ)、急峻なシッットキー障壁を実現でき
る。
Furthermore, when a Schittky junction is formed by combining a compound such as WN with GaAs, a steep Schittky barrier can be realized (because the original temperature rise/fall rate is fast).

〔発明の実施例〕[Embodiments of the invention]

以下1図面を用いて本発明の熱処理装置を説明する。第
1図は本発明の熱処理装置の基本的構成を示す図である
0例えばハロゲンランプ1から発した赤外線ビーム2は
、直接、或いは1反射焼3を経て1石英等の赤外線に対
する吸収係数の低い材料で作られた炉管4を通して管内
に置いた被照射試料5に照射する。被照射試料5は、炉
管4と同様赤外線に対する吸収の低い材料で作られた試
料台6の上に設置される。試料5を熱処理する関に、炉
管4中には、試料5の酸化をはじめとする化学反応を防
ぐため不活性ガス或いは水素ガス等の還元性ガス7が流
されることが多い、更に反射鏡3を構成する支持台8に
は、装置の過熱を防ぐために冷却用の水等9が流されて
いる。
The heat treatment apparatus of the present invention will be explained below using one drawing. FIG. 1 is a diagram showing the basic configuration of the heat treatment apparatus of the present invention. For example, an infrared beam 2 emitted from a halogen lamp 1 is transmitted directly or through a reflection process 3 to a material such as quartz, which has a low absorption coefficient for infrared rays. A sample 5 to be irradiated placed inside the tube is irradiated through a furnace tube 4 made of the same material. The sample 5 to be irradiated is placed on a sample stage 6 made of a material with low absorption of infrared rays, like the furnace tube 4 . When heat-treating the sample 5, a reducing gas 7 such as an inert gas or hydrogen gas is often flowed into the furnace tube 4 to prevent chemical reactions such as oxidation of the sample 5. Cooling water or the like 9 is poured onto the support stand 8 constituting the device 3 in order to prevent the device from overheating.

第2図は第1図で示した熱処理装置を用いた時に試料5
に付着させた熱電対で記録した温度プロファイルの一例
である。試料5の一例として。
Figure 2 shows sample 5 when using the heat treatment equipment shown in Figure 1.
This is an example of a temperature profile recorded with a thermocouple attached to a As an example of sample 5.

Ga A龜結晶にシリコンをイオン注入した注入ウエノ
1を用いた。注入不純物プロファイルの変イヒを最/j
%に留めるために、急峻な温度上昇をさせる必要力(あ
る。温度上昇が容易に行なわれるように約100秒間は
室温から約100秒間度に迄上昇させて保つ。
Implanted Ueno 1, in which silicon ions were implanted into a GaA crystal, was used. Minimize changes in implanted impurity profile
%, it is necessary to raise the temperature sharply (there is some force).In order to easily raise the temperature, the temperature is raised from room temperature to ℃ for about 100 seconds and maintained.

次に約100℃/s ecの温度勾配で100℃から9
50℃迄上昇させ、この温度で数秒保った後にランプの
入力を切り温度な下降させる。この時温度下降の速度は
熱処理炉の熱容量に依存する。
Next, with a temperature gradient of about 100°C/sec, from 100°C to 9
After raising the temperature to 50°C and keeping it at this temperature for a few seconds, the lamp input is turned off and the temperature is allowed to drop. At this time, the rate of temperature decrease depends on the heat capacity of the heat treatment furnace.

先に述べた様に注入層のプロファイルは可能な限シ注入
時のプロファイルを保つことが望ましい。
As mentioned above, it is desirable to maintain the profile of the injection layer as much as possible during injection.

従って昇温と共に、降温の速度も、不純物の再拡散を最
小に留める上から重要である。第1図に示す熱処理装置
では降温の速度はランプの消灯による赤外線照射の停止
後は、加えられた出力が冷却水、或いは周囲の空気によ
って吸収される速度に依存する。従って、装置に依存し
て一定の降温速度以上に早く冷却することは出来ない。
Therefore, in addition to temperature increase, the rate of temperature decrease is also important from the standpoint of minimizing re-diffusion of impurities. In the heat treatment apparatus shown in FIG. 1, the rate of temperature drop depends on the rate at which the applied output is absorbed by the cooling water or the surrounding air after infrared irradiation is stopped by turning off the lamp. Therefore, depending on the device, it is not possible to cool the temperature faster than a certain rate.

本発明では、この点を考慮して、熱処理温度。In the present invention, the heat treatment temperature is determined in consideration of this point.

ここでは900℃に所定の時間保った後、直ちに第1図
7で示したガスを冷却用気体例えば液体窒素からの窒素
ガスに切り換える、或いは、先に流しているガスに冷却
用ガスを混入させることにより。
Here, after maintaining the temperature at 900°C for a predetermined period of time, the gas shown in Figure 1 7 is immediately switched to a cooling gas, such as nitrogen gas from liquid nitrogen, or the cooling gas is mixed into the gas that is flowing first. By the way.

所望の降温速度を得ることを特徴とする。It is characterized by obtaining a desired temperature decreasing rate.

この結果、第2図に於いて破線で示す様に、昇温速度と
殆んど変らない急峻な冷却が実現できる。
As a result, as shown by the broken line in FIG. 2, steep cooling that is almost the same as the temperature increase rate can be realized.

〔発明の他の実施例〕[Other embodiments of the invention]

先の概要においては、ガスの流入方向は、試料クエへ面
に平行に設定されて・いるが、ウェア1面内での一様性
を考慮する場合には、一方向に限らず図面に垂直な方向
(2方向)から流入し、#!1図で示したガス7の糸路
(入口、出口の双方)から排気をする。或いは、その存
在に、第1図の糸路の出口、入口の双方からガスを導入
し、図面と垂直な2方向から排気をする等の変化が考え
られる。
In the above outline, the gas inflow direction is set parallel to the surface of the sample surface, but when considering uniformity within one surface of the ware, it is not limited to one direction but perpendicular to the drawing. Inflow from two directions (two directions), #! Exhaust gas 7 from the thread path (both inlet and outlet) shown in Figure 1. Alternatively, it is possible to consider a change in its existence, such as introducing gas from both the outlet and the inlet of the yarn path shown in FIG. 1 and exhausting it from two directions perpendicular to the drawing.

冷却用の気体も液体窒素からの窒素の他に、液体ヘリウ
ムからのヘリウム、或いはこれ等と不活性ガスとの混合
気体等が考えられる。
In addition to nitrogen from liquid nitrogen, the cooling gas may include helium from liquid helium, or a mixture of these and an inert gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱処理装置の基本的構成を示す図1m
2図は本発明の熱処理装置と従来熱処理装置の昇温、降
温特性を比較して示した図である。 1・・・ハロゲンランプ、 2・・・赤外線ビーム、3
・・・反射鏡、 4・・・炉管、 5・・・被照射試料、 6・・・試料台。 7・・・ガス、 8・・・支持台。 9・・・水。 代理人 弁理士 則近憲佑 (ほか1名)第1図 第2図 時働(わ
Figure 1 is Figure 1m showing the basic configuration of the heat treatment apparatus of the present invention.
FIG. 2 is a diagram comparing the temperature rise and temperature drop characteristics of the heat treatment apparatus of the present invention and the conventional heat treatment apparatus. 1...Halogen lamp, 2...Infrared beam, 3
...Reflector, 4. Furnace tube, 5. Irradiated sample, 6. Sample stage. 7...Gas, 8...Support stand. 9...Water. Agent: Patent attorney Kensuke Norichika (and one other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 光線を発する手段と被照射物に気体を導入し。 冷却する機構を備えたことを特徴とする熱処理装置。[Claims] A gas is introduced into the means for emitting light and the object to be irradiated. A heat treatment device characterized by being equipped with a cooling mechanism.
JP59048154A 1984-03-15 1984-03-15 Heat treatment device Pending JPS60193343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048154A JPS60193343A (en) 1984-03-15 1984-03-15 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048154A JPS60193343A (en) 1984-03-15 1984-03-15 Heat treatment device

Publications (1)

Publication Number Publication Date
JPS60193343A true JPS60193343A (en) 1985-10-01

Family

ID=12795448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048154A Pending JPS60193343A (en) 1984-03-15 1984-03-15 Heat treatment device

Country Status (1)

Country Link
JP (1) JPS60193343A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849773A1 (en) * 1996-12-18 1998-06-24 Texas Instruments Incorporated Die attach material curing apparatus
JP2001297996A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit, annealing control method and annealing control device and information storage medium
JP2001297995A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit
JP2002176000A (en) * 2000-12-05 2002-06-21 Semiconductor Energy Lab Co Ltd Heat treatment apparatus and manufacturing method of semiconductor device
JP2012004584A (en) * 2011-08-09 2012-01-05 Renesas Electronics Corp Circuit manufacturing method, annealing control method, and information recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849773A1 (en) * 1996-12-18 1998-06-24 Texas Instruments Incorporated Die attach material curing apparatus
US5993591A (en) * 1996-12-18 1999-11-30 Texas Instruments Incorporated Coring of leadframes in carriers via radiant heat source
JP2001297996A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit, annealing control method and annealing control device and information storage medium
JP2001297995A (en) * 2000-04-13 2001-10-26 Nec Corp Manufacturing method of circuit and manufacturing device of circuit
JP2002176000A (en) * 2000-12-05 2002-06-21 Semiconductor Energy Lab Co Ltd Heat treatment apparatus and manufacturing method of semiconductor device
JP2012004584A (en) * 2011-08-09 2012-01-05 Renesas Electronics Corp Circuit manufacturing method, annealing control method, and information recording medium

Similar Documents

Publication Publication Date Title
US7226488B2 (en) Fast heating and cooling apparatus for semiconductor wafers
US8987123B2 (en) Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
US20130206747A1 (en) Heat treatment apparatus for heating substrate by irradiating substrate with flash of light
JPS58223320A (en) Diffusing method for impurity
US6809035B2 (en) Hot plate annealing
US4659422A (en) Process for producing monocrystalline layer on insulator
US20010040156A1 (en) System for controlling the temperature of a reflective substrate during rapid heating
US4543472A (en) Plane light source unit and radiant heating furnace including same
JPS60193343A (en) Heat treatment device
JPH045822A (en) Apparatus and method for lamp annealing
JPS5917253A (en) Heat treatment method for semiconductor wafer
JPS59211221A (en) Heat treatment of ion implanted semiconductor
JP3140227B2 (en) Wafer heat treatment method and guard ring structure used therein
JPS59178718A (en) Semiconductor substrate processing apparatus
US11164761B2 (en) Heat treatment method and heat treatment apparatus of light irradiation type
JP2979550B2 (en) Lamp annealing equipment
JPH0572096B2 (en)
JPH0325928A (en) Lamp type thermal treatment equipment for semiconductor wafer
JPS62271420A (en) Treatment equipment for semiconductor substrate
JPH01110726A (en) Lamp annealing
JPS60732A (en) Annealing method
JPH0376227A (en) Heat treatment device
JPH025295B2 (en)
JPH03187219A (en) Heat treatment device
JPH05251377A (en) Manufacture of semiconductor device