JPS6340876B2 - - Google Patents

Info

Publication number
JPS6340876B2
JPS6340876B2 JP5507581A JP5507581A JPS6340876B2 JP S6340876 B2 JPS6340876 B2 JP S6340876B2 JP 5507581 A JP5507581 A JP 5507581A JP 5507581 A JP5507581 A JP 5507581A JP S6340876 B2 JPS6340876 B2 JP S6340876B2
Authority
JP
Japan
Prior art keywords
membrane
fibers
conductive
porous layer
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5507581A
Other languages
Japanese (ja)
Other versions
JPS57171679A (en
Inventor
Yoshio Oda
Takeshi Morimoto
Koji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5507581A priority Critical patent/JPS57171679A/en
Publication of JPS57171679A publication Critical patent/JPS57171679A/en
Publication of JPS6340876B2 publication Critical patent/JPS6340876B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解用陽イオン交換膜、特には水、酸
又はアルカリ水溶液、ハロゲン化アルカリ、炭酸
アルカリ水溶液などの水性溶液の電解に適した陽
イオン交換膜に関する。 上記水性溶液、なかでも塩化アルカリ水溶液を
電解して苛性アルカリと塩素とを得る方法は、近
年公害防止の見地から水銀法に代り、隔膜法が、
そして更に高純度、高濃度の苛性アルカリを高効
率で得る目的でイオン交換膜を用いる方法が実用
化されている。 一方、省エネルギーの観点からこの種の電解に
おいては、電解電圧を極力低くすることが要求さ
れ、そのための種々の手段が提案されているが、
今なお電圧低減効果が十分でなかつたり、或いは
電解槽が複雑になつたりしてその目的は十分に達
成されていない。 本発明者は、水性溶液の電解を可及的に小さい
負荷電圧で行なうべく研究を続けたところ、陽イ
オン交換膜の陽極又は陰極の少なくとも一方に面
する表面に、導電性又は非導電性の微小繊維を結
合せしめることにより形成された多孔質層を有す
る陽イオン交換膜を使用することにより、意外な
ことに上記目的が十分に達成されうることを見い
出した。 かゝる多孔質層を表面に有する陽イオン交換膜
の使用による電解電圧の低減効果は、微小繊維の
材質及び形成、繊維により形成された多孔質層の
多孔率及び厚みによつて異なる。しかしながら、
多孔質層が、下記するように導電性も有しなく、
且つイオン交換性能も有しない微小繊維から形成
される場合においても、このような低減効果が発
揮されることは、予想外の現象である。更に、
かゝる多孔質層を有するイオン交換膜を使用する
場合の電極は、必ずしも膜に接触させて配置する
必要はなく、膜面から離して配置する場合におい
ても電解電圧は低減せしめられる。 陽イオン交換膜の表面に結合される微小繊維
は、好ましくは、直径0.01〜50μ、特には0.1〜
40μそして長さ0.1〜300μ、特には1〜200μが使用
される。そしてアスベスト比(長さ/直径の比)
5以上、特には10以上のものが良好に使用され
る。これら微小繊維の膜面への付着量は、形成す
る多孔質層の多孔率及び厚みによつて異なり、更
には繊維の形状及び材質によつても異なるが、本
発明者の研究によると、膜面の単位cm2当り、好ま
しくは0.001〜50mg、特には0.005〜10mgにするの
が好ましいことが判明した。過度に小さい繊維の
付着量は、所期の効果が達成できなく、一方、過
度に大きい付着量は、場合により電解電圧の上昇
を招くので好ましくない。 本発明の陽イオン交換膜の表面に設けられるガ
ス及び液透過性の多孔質層を形成する繊維は、上
記のように導電性又は非導電性材質から形成され
る。かゝる繊維としては、好ましくは結晶質割合
が大きく、従つて硬度が大きく、更にまた大きい
耐食性と耐熱性を有するものが好ましい。このよ
うな材質の繊維をもつてイオン交換膜に多孔質層
を形成する場合、各繊維は、常に安定した繊維形
を保持し、ひいては常に所定の物性を有する多孔
質層が得られるので、優れた性能が達成される。 本発明で使用される繊維として、金属繊維、炭
素(黒鉛、カーボン)繊維、有機ポリマー繊維、
非酸化物セラミツクス繊維が良好に使用される。
金属繊維としては、好ましくは同期律表の−B
族(銅、銀など)、−A族(アルミニウム、タ
リウムなど)、−B族(チタン、ジルコン、ハ
フニウムなど)、−B族(ニオブ、タンタル)、
鉄族金属(鉄、コバルト、ニツケルなど)の単体
又は合金の繊維又はその酸化物の繊維が使用され
る。また、炭素繊維は、黒鉛質繊維、炭素質繊維
が、いずれも使用され、有機ポリマー繊維として
は、含フツ素ポリマー繊維、ポリプロピレン繊
維、ポリスルホン繊維、ポリイミド繊維、ポリフ
エニレンオキシド繊維などが使用される。 また、非酸化物セラミツクスの繊維としては好
ましくは炭化物、窒化物、ケイ化物、ホウ化物又
は硫化物の繊維が使用される。そして、例えば、
炭化物としては、HfC、TaC、SiC、B4C、WC、
TiC、CrC、UC、BeCが例示され、また、窒化
物としては、BN、Si3N4、TiC、AlNが例示さ
れ、ケイ化物としては、Cr、Mo、W、Ti、Nb
又はZrのケイ化物が例示され、ホウ化物として
は、Ti、Zr、Hf、Ce、Mo、W、Ta、Nb又は
Laのホウ化物が例示され、更に硫化物としては、
Fe3S4、MoS2が例示される。なかでも、SiC、
B4C、BN、Si3N4、TiN、AlN、MoSi2、LaB6
の繊維が良好に使用される。 本発明で使用される使用形態としては、モノフ
イラメント(単糸)でもよいし、撚糸などのマル
チフイラメントでもよく、いずれの形態でも使用
される。 これら導電性又は非導電性の小繊維をイオン交
換膜の表面に結合させて多孔質層を形成する場
合、好ましくは以下のようにされる。 即ち、多孔質層の形成される微小繊維は、必要
に応じて適宜の助剤又は媒体を用いて、該繊維を
含む分散液又はシロツプ乃至ペースト状物を調製
し、かゝる形態にてイオン交換膜面に適用され
る。かゝる繊維を含む分散液又はシロツプ乃至ペ
ースト状物の調製に際しては、もちろん必須のも
のではないが、必要に応じてポリテトラフルオロ
エチレンなどがフツ素ポリマーを結合剤として併
用される。 更に、カルボキシメチルセルロース、メチルセ
ルロース、ヒドロキシエチルセルロースなどのセ
ルロース類、ポリエチレングリコール、ポレビニ
ルアルコール、ポリビニルピロリドン、ポリアク
リル酸ソーダ、ポリメチルビニルエーテル、カゼ
イン、ポリアクリルアミドなどの水可溶性物質な
どの増粘剤が使用される。これら結合剤又は増粘
剤は上記粉末に対して、好ましくは0〜50重量
%、特には0.5〜30重量%使用される。 また、この際必要ならば更に長鎖炭化水素、フ
ツ素化炭化水素などの適宜の界面活性剤を加える
ことにより多孔質層の形成を容易にすることがで
きる。 多孔質層を形成する微小繊維の陽イオン交換膜
に対する結合は、例えば、上記繊維状物質、そし
て必要に応じて使用される結合剤(バインダー)、
増粘剤をアルコール、ケトン、炭化水素などの適
宜の媒体中で十分に混合して、該混合物のペース
ト状物を得、これを膜面に転写又は印刷すること
により行なわれる。更に本発明では上記繊維を含
む混合物のペースト状物に代えて、繊維を含むシ
ロツプ又はスラリー状物を、膜面に直接噴霧又は
スプレーすることによつても、繊維をイオン交換
膜面に付着せしめられる。 イオン交換膜面に付着された多孔質層を形成す
る繊維状物質は、次いで好ましくはプレス又はロ
ールを使用して、好ましくは80〜220℃、1〜150
Kg/cm2にてイオン交換膜に加熱圧着させて、好ま
しくは繊維又は繊維群の一部を膜面に埋め込むよ
うにされる。 かくして膜面に結合された繊維又は繊維群から
形成される多孔質層は、好ましくは多孔率が10%
以上、特には20%以上有するようにし、また、厚
みは好ましくは0.01〜200μ、特には0.1〜100μと
するのが適切である。 本発明において、膜面に多孔質層が形成される
イオン交換膜としては、カルボン酸基、スルホン
酸基、ホスホン酸基、フエノール性水酸基などの
陽イオン交換基を有する、好ましくは含フツ素重
合体からなる膜が好ましい。かかる膜としては、
例えばテトラフルオロエチレン、クロロトリフル
オロエチレンなどのビニルモノマーと、スルホン
酸、カルボン酸、リン酸基などのイオン交換基含
有フルオロビニルモノマーとの共重合体構造を有
するものが好ましい。 特に、以下の(イ)、(ロ)の構造からなる重合体の使
用が特に好ましい。 (イ)(−CF2−CXX′)−、(ロ)
The present invention relates to a cation exchange membrane for electrolysis, and particularly to a cation exchange membrane suitable for electrolysis of aqueous solutions such as water, acid or alkali aqueous solutions, alkali halides, and alkali carbonate aqueous solutions. The method for obtaining caustic alkali and chlorine by electrolyzing the above aqueous solution, especially aqueous alkali chloride solution, has recently been replaced by the mercury method from the viewpoint of pollution prevention, and the diaphragm method has been adopted.
Furthermore, a method using an ion exchange membrane has been put into practical use for the purpose of obtaining highly purified and highly concentrated caustic alkali with high efficiency. On the other hand, from the viewpoint of energy saving, it is required in this type of electrolysis to lower the electrolysis voltage as much as possible, and various means have been proposed for this purpose.
Even now, the purpose has not been fully achieved because the voltage reduction effect is not sufficient or the electrolytic cell is complicated. The present inventor continued his research in order to perform electrolysis of an aqueous solution with as low a load voltage as possible, and found that a conductive or non-conductive material was added to the surface facing at least one of the anode or the cathode of the cation exchange membrane. It has surprisingly been found that by using a cation exchange membrane having a porous layer formed by bonding microfibers, the above object can be satisfactorily achieved. The effect of reducing electrolytic voltage by using a cation exchange membrane having such a porous layer on its surface varies depending on the material and formation of the microfibers, and the porosity and thickness of the porous layer formed by the fibers. however,
The porous layer does not have electrical conductivity as described below,
It is an unexpected phenomenon that such a reduction effect is exhibited even when the fibers are formed from microfibers that do not have ion exchange performance. Furthermore,
When using an ion exchange membrane having such a porous layer, the electrode does not necessarily need to be placed in contact with the membrane, and even if it is placed away from the membrane surface, the electrolytic voltage can be reduced. The microfibers bound to the surface of the cation exchange membrane preferably have a diameter of 0.01 to 50μ, especially 0.1 to 50μ.
40μ and lengths from 0.1 to 300μ, in particular from 1 to 200μ, are used. and asbestos ratio (length/diameter ratio)
Those with a number of 5 or more, especially 10 or more are preferably used. The amount of these microfibers attached to the membrane surface varies depending on the porosity and thickness of the porous layer to be formed, and also varies depending on the shape and material of the fibers. It has been found that it is preferable to use from 0.001 to 50 mg, in particular from 0.005 to 10 mg, per cm 2 of area. If the amount of fibers attached is too small, the desired effect cannot be achieved. On the other hand, if the amount of attached fibers is too large, it may lead to an increase in the electrolytic voltage, which is not preferable. The fibers forming the gas- and liquid-permeable porous layer provided on the surface of the cation exchange membrane of the present invention are made of a conductive or non-conductive material as described above. Such fibers preferably have a high crystalline content, therefore high hardness, and also high corrosion resistance and heat resistance. When forming a porous layer on an ion exchange membrane using fibers made of such materials, each fiber always maintains a stable fiber shape, and as a result, a porous layer that always has predetermined physical properties is obtained, making it an excellent choice. performance is achieved. The fibers used in the present invention include metal fibers, carbon (graphite, carbon) fibers, organic polymer fibers,
Non-oxide ceramic fibers are preferably used.
The metal fiber is preferably -B in the synchronous table.
Group (copper, silver, etc.), -A group (aluminum, thallium, etc.), -B group (titanium, zircon, hafnium, etc.), -B group (niobium, tantalum),
Fibers of single or alloyed iron group metals (iron, cobalt, nickel, etc.) or fibers of their oxides are used. In addition, graphite fibers and carbonaceous fibers are both used as carbon fibers, and fluorine-containing polymer fibers, polypropylene fibers, polysulfone fibers, polyimide fibers, polyphenylene oxide fibers, etc. are used as organic polymer fibers. Ru. Further, as the non-oxide ceramic fibers, preferably carbide, nitride, silicide, boride or sulfide fibers are used. And for example,
Carbides include HfC, TaC, SiC, B 4 C, WC,
Examples include TiC, CrC, UC, and BeC, examples of nitrides include BN, Si 3 N 4 , TiC, and AlN, and examples of silicides include Cr, Mo, W, Ti, and Nb.
Or Zr silicide is exemplified, and borides include Ti, Zr, Hf, Ce, Mo, W, Ta, Nb or
Examples include borides of La, and sulfides include:
Examples include Fe 3 S 4 and MoS 2 . Among them, SiC,
B4C , BN, Si3N4 , TiN, AlN , MoSi2 , LaB6
Fibers are often used. The form used in the present invention may be a monofilament (single thread) or a multifilament such as a twisted yarn, and either form may be used. When these conductive or non-conductive fibrils are bonded to the surface of an ion exchange membrane to form a porous layer, it is preferably done as follows. That is, the fine fibers forming the porous layer are prepared by preparing a dispersion, syrup, or paste containing the fibers using appropriate auxiliary agents or media as necessary, and ionizing them in such a form. Applied to the exchange membrane surface. When preparing such fiber-containing dispersions, syrups, or pastes, polytetrafluoroethylene or the like is used in combination with a fluoropolymer as a binder, although it is not essential, if necessary. Furthermore, thickeners such as celluloses such as carboxymethyl cellulose, methyl cellulose, and hydroxyethyl cellulose, and water-soluble substances such as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, polymethyl vinyl ether, casein, and polyacrylamide are used. Ru. These binders or thickeners are preferably used in an amount of 0 to 50% by weight, particularly 0.5 to 30% by weight, based on the powder. In addition, if necessary, a suitable surfactant such as a long-chain hydrocarbon or a fluorinated hydrocarbon may be added to facilitate the formation of the porous layer. The bonding of the microfibers forming the porous layer to the cation exchange membrane can be achieved by, for example, the above-mentioned fibrous material and, if necessary, a binder,
This is carried out by thoroughly mixing a thickener in a suitable medium such as alcohol, ketone, hydrocarbon, etc. to obtain a paste of the mixture, and transferring or printing this onto the membrane surface. Furthermore, in the present invention, the fibers can be attached to the ion exchange membrane surface by spraying or spraying a syrup or slurry containing the fibers directly onto the membrane surface instead of using the paste-like mixture containing the fibers. It will be done. The fibrous material forming the porous layer attached to the ion exchange membrane surface is then heated preferably at 80-220°C and 1-150°C, preferably using a press or roll.
It is heated and pressed onto an ion exchange membrane at a pressure of Kg/cm 2 to preferably embed a portion of the fibers or fiber groups in the membrane surface. The porous layer formed from the fibers or groups of fibers thus bonded to the membrane surface preferably has a porosity of 10%.
In particular, the thickness should preferably be 0.01 to 200μ, particularly 0.1 to 100μ. In the present invention, the ion exchange membrane in which a porous layer is formed on the membrane surface has a cation exchange group such as a carboxylic acid group, a sulfonic acid group, a phosphonic acid group, or a phenolic hydroxyl group, preferably a fluorine-containing polymer. Membranes consisting of coalescence are preferred. Such a film is
For example, those having a copolymer structure of a vinyl monomer such as tetrafluoroethylene or chlorotrifluoroethylene and a fluorovinyl monomer containing an ion exchange group such as a sulfonic acid, carboxylic acid, or phosphoric acid group are preferable. In particular, it is particularly preferable to use polymers having the following structures (a) and (b). (a) (−CF 2 −CXX′) −, (b)

【式】 ここでXはF、Cl、H又は−CF3であり、X′は
X又はCF3(CF2)−nであり、mは1〜5であり、
Yは次のものから選ばれる。 (−CF2)−xA、−O(−CF2)−xA、
[Formula] Here, X is F, Cl, H or -CF 3 , X' is X or CF 3 (CF 2 ) - n , m is 1 to 5,
Y is selected from the following: ( -CF2 ) -x A, -O( -CF2 ) -x A,

【式】 −CF2−O(−CF2)−xA、
[Formula] −CF 2 −O(−CF 2 )− x A,

【式】【formula】

X、Y、Zは、ともに0〜10であり、Z、Rf
は−F炭素数1〜10のパーフルオロアルキル基か
ら選ばれる。また、Aは−SO3M、−COOM又は
加水分解によりこれらの基に転化しうる−SO2F、
−CN、−COF又は−COORであり、Mは水素又
はアルカリ金属、Rは炭素数1〜10のアルキル基
を示す。 本発明において使用される陽イオン交換膜はイ
オン交換容量が好ましくは0.5〜4.0ミリ当量/グ
ラム乾燥樹脂、特には0.8〜2.0ミリ当量/グラム
乾燥樹脂であるのが好ましい。かかるイオン交換
容量を与えるため、上記(イ)及び(ロ)の重合単位から
なる共重合体からなるイオン交換膜の場合、好ま
しくは(ロ)の重合単位が好ましくは1〜40モル%、
特には3〜25モル%であるのが適当である。 本発明で使用される陽イオン交換膜は、必ずし
も一種の重合体から形成する必要はなく、また一
種類のイオン交換基だけを有する必要はない。例
えば、イオン交換容量として陰極側がより小さい
二種類の重合体の積層膜、陰極側がカルボン酸基
などの弱酸性交換基で、陽極側がスルホン酸基な
どの強酸性交換基をもつイオン交換膜も使用でき
る。 これらのイオン交換膜は従来既知の種々の方法
で製造され、またこれらのイオン交換膜は必要に
より好ましくはポリテトラフルオロエチレンなど
の含フツ素重合体からなる布、網などの織物、不
織布又は金属製のメツシユ、多孔体などで補強す
ることができる。また、本発明のイオン交換膜の
厚みは好ましくは20〜500μ、好ましくは50〜
400μにせしめられる。 これらイオン交換膜の陽極側又は陰極側、更に
はその両極側の膜面に上記したようにして多孔質
層を形成する場合、膜はその有するイオン交換基
の分解を招かないような適宜のイオン交換基の形
態、例えばカルボン酸基のときは、酸又はエステ
ル型で行なうのが好ましく、またスルホン酸基の
ときには−SO2F型で行なうのが好ましい。 本発明の膜には、いずれの形式の電極も使用さ
れる。例えば、多孔板、網又はエキスパンデツド
メタルなどの空隙性電極が使用される。空隙性電
極としては長径1.0〜10mm、短径0.5〜10mm、線径
0.1〜1.3mm、開孔率30〜90%のエキスパンデツド
メタルが例示される。また、複数の板状電極も使
用することができるが空隙度の違う複数板の電極
を使用して空隙度の小さいものを膜に近い側に使
用するのが好ましい。 陽極材質としては、通常白金族金属、その導電
性酸化物又はその導電性還元酸化物等が使用さ
れ、一方、陰極としては、白金族金属、その導電
性酸化物又は鉄族金属等が使用される。なお、白
金族金属としては白金、ロジウム、ルテニウム、
パラジウム、イリジウムが例示され、また、鉄族
金属としては、鉄、コバルト、ニツケル、ラネー
ニツケル、安定化ラネーニツケル、ステンレス、
アルカリエツチングステンレス(特公昭54−
19229号公報)、ラネーニツケルメツキ陰極(特開
昭54−112785号公報)、ロダンニツケルメツキ陰
極(特開昭53−115676号公報)等が例示される。 空戟性の電極を使用する場合は、該電極は上記
陽極又は陰極を形成する物質それ自体からこれを
形成することができる。しかし、白金族金属又は
その導電性酸化物等を使用するときには通常チタ
ンやタンタルなどの弁金属のエキスパンデツドメ
タルの表面にこれらの物質を被覆せしめて形成す
るのが好ましい。 本発明において電極を配置する場合、電極はイ
オン交換膜に接触して配置しても、また適宜の間
隔をおいて配置してもよい。電極はむしろ多孔質
層を介してイオン交換膜に強固に押圧するより
も、電極は多孔質層に例えば0〜2.0Kg/cm2にて
好ましくは緩かに押接される。 また、本発明でイオン交換膜の陽極側又は陰極
側の一方の表面にのみ多孔質層を設けた場合には
多孔質層を設けないイオン交換膜側に配置する電
極も、イオン交換膜面に接触し或いは接触せずに
配置することができる。 本発明において電解槽は、上記構成を有する限
りにおいて単極型でも複極型でもよい。また電解
槽を構成する材料は、例えば塩化アルカリ水溶液
の電解の場合には陽極室の場合には、塩化アルカ
リ水溶液及び塩素に耐性があるもの、例えば弁金
属、チタンが使用され、陰極室の場合には水酸化
アルカリ及び水素に耐性がある鉄、ステンレス又
はニツケルなど使用される。 本発明における塩化アルカリ水溶液の電解を行
なうプロセス条件としては、上記した特開昭54−
112398号公報におけるような既知の条件が採用で
きる。例えば陽極室には好ましくは2.5〜5.0規定
(N)の塩化アルカリ水溶液を供給し、陰極室に
は水又は稀釈水酸化アルカリを供給し、好ましく
は80℃〜120℃、電流密度10〜100A/dm2で電解
される。かかる場合、塩化アルカリ水溶液中のカ
ルシウム及びマグネシウムなどの重金属イオン
は、イオン交換膜の劣化を招くので、可及的に小
さくせしめるのが好ましい。また、陽極における
酸素の発生を極力防止するために塩酸などの酸を
塩化アルカリ水溶液に添加することができる。 以上は、主に塩化アルカリ水溶液の電解を例に
ついて本発明の膜の使用を説明したが、水、ハロ
ゲン酸(塩酸、臭化水素酸)、炭酸アルカリの電
解に対しても同様に適用できることはもちろんで
ある。 次に本発明を実施例により説明する。 実施例 1 平均繊維長0.13mm、平均単糸径12.5μmの黒鉛
繊維(商品名.クレカチヨツプ、呉羽化学工業(株)
製)、メチルセルロース(2%水溶液の粘度
1500CPS)0.4部、水19部、シクロヘキサノール
0.3部、シクロヘキサノン0.1部を含む混合物を混
練し、ペーストを得た。 該ペーストを、メツシユ数110、厚さ117μmの
テトロン製スクリーン、その下に厚さ30μmのス
クリーンマスクを施した印刷板およびウレタンゴ
ム製のスキージを用いて、被印刷基材である、イ
オン交換容量が1.44meq/g−乾燥樹脂、厚さ
280μmを有するポリテトラフルオロエチレンと
CF2=CFO(CF23COOCH3の共重合体からなる
イオン交換膜の陰極側の面にスクリーン印刷し
た。イオン交換膜の陰極面に得られた印刷層を空
気中で乾燥し、ペーストを固化させた。 一方、イオン交換膜の陽極側の面に、粒径2〜
10μmの酸化チタン(ルチル型)粉末10部、ポリ
テトラフルオロエチレン表面をポリテトラフルオ
ロエチレンとCF2=CFO(CF23COOCH3の共重
合体で被覆した粒径0.5μm以下の変性PTFE粒子
1部、メチルセルロース(2%水溶液の粘度
1500CPS)0.3部、水14部、シクロヘキサノール
0.2部、シクロヘキサノン0.1部を含む混合物を混
練して得たペーストを、メツシユ数200、厚さ
75μmのテトロン製スクリーン、その下に厚さ
30μmのスクリーンマスクを施した印刷板を使用
した他は前記と全く同様にして印刷し、乾燥し
た。 しかる後、温度140℃、圧力30Kg/cm2の条件で
黒鉛繊維層および酸化チタン層をイオン交換膜に
圧着した。膜面に付着した黒鉛繊維および酸化チ
タンは膜面1cm2当り、それぞれ、1.0、1.2mgであ
つた。 この後、90℃、25重量%の苛性ソーダ水溶液に
16時間浸漬して、前記イオン膜を加水分解した。 該イオン膜の陽極側にチタンのエキスパンデツ
ドメタル(短径2.5mm、長径5.0mm)に酸化ルテニ
ウム、酸化イリジウム、酸化チタンの固溶体を被
覆した低い塩素過電圧を有する陽極を、また、陰
極側にSUS304エキスパンデツドメタル(短径2.5
mm、長径5.0mm)を52重量%の苛性ソーダ水溶液
中で150℃で52時間エツチング処理して低い水素
過電圧を有するようにした陰極を加圧接触させ、
陽極室に5規定の塩化ナトリウム水溶液を、陰極
室に水を供給し、陽極室の塩化ナトリウム水溶液
濃度を4規定に、陰極室の苛性ソーダ水溶液濃度
を35重量%に保ちつつ、90℃、40A/dm2で電解
を行ない、以下の結果を得た。 槽電圧 電流効率 3.23V 92% 比較例 1 イオン交換容量が1.44meq/g−樹脂、厚さ
280μmを有するポリテトラフルオロエチレンと
CF2=CFO(CF23COOCH3の共重合体からなる
イオン交換膜を用い、膜表面に多孔質層を付着せ
ずに、実施例1と同様の方法、条件で電解を行な
い、以下の結果を得た。 槽電圧 電流効率 3.57V 94% 実施例 2 実施例1において、黒鉛繊維の代わりに平均繊
維長0.13mm、平均単糸径14.5μmの炭素質繊維を
用いイオン膜の陰極側膜面に炭素質繊維を膜面に
1cm2当り0.9mg付着させた以外は、実施例1と全
く同様にして電解を行ない、以下の結果を得た。 槽電圧 電流効率 3.24V 92% 実施例 3 実施例1において、黒鉛繊維をスクリーン印刷
してイオン交換膜に付着させる代りに、長さ
150μ、太さ10μのステンレス繊維を、膜1cm2
り、2mgの割合で陰極側膜面に圧着させた以外、
実施例1と全く同様にして電解を行ない、以下の
結果を得た。 槽電圧 電流効率 3.25V 92% 実施例 4 実施例1において、黒鉛繊維の代わりに、平均
単糸径3μmのアルミナ繊維を長さ100μm以下に
粉砕したものを用い、イオン膜の陰極側膜面に該
アルミナ繊維を膜面1cm2当り0.8mg付着させた以
外は、実施例1と全く同様にして電解を行ない、
以下の結果を得た。 槽電圧 電流効率 3.24V 92% 実施例 5 実施例1において、黒鉛繊維の代わりに、平均
単糸径6μmのジルコニア繊維を長さ100μm以下
に粉砕したものを用い、イオン膜の陰極側膜面に
該ジルコニア繊維を膜面1cm2当り1.1mg付着させ
た以外は、実施例1と全く同様にして電解を行
い、以下の結果を得た。 槽電圧 電流効率 3.24V 92% 実施例 6〜8 実施例1において酸化チタンの代りに酸化鉄を
陽極側多孔質層として0.3mg/cm2の割合で膜面に
付着させ、陰極側多孔質層として表−1に示す材
質、形状の繊維を1.0mg/cm2の割合で付着させた
膜を使用した以外は、実施例1と全く同様にして
電解した結果を表−1に示す。
X, Y, and Z are all 0 to 10, and Z, R f
is selected from -F perfluoroalkyl groups having 1 to 10 carbon atoms. In addition, A is -SO3M , -COOM or -SO2F , which can be converted into these groups by hydrolysis,
-CN, -COF or -COOR, M represents hydrogen or an alkali metal, and R represents an alkyl group having 1 to 10 carbon atoms. The cation exchange membrane used in the present invention preferably has an ion exchange capacity of 0.5 to 4.0 meq/g dry resin, particularly 0.8 to 2.0 meq/g dry resin. In order to provide such an ion exchange capacity, in the case of an ion exchange membrane made of a copolymer consisting of the polymerized units of (a) and (b) above, the polymerized units of (b) preferably contain 1 to 40 mol%,
In particular, 3 to 25 mol% is suitable. The cation exchange membrane used in the present invention does not necessarily need to be formed from one type of polymer, nor does it need to have only one type of ion exchange group. For example, a laminated membrane of two types of polymers with smaller ion exchange capacity on the cathode side, or an ion exchange membrane with a weakly acidic exchange group such as a carboxylic acid group on the cathode side and a strong acidic exchange group such as a sulfonic acid group on the anode side are also used. can. These ion-exchange membranes are manufactured by various conventionally known methods, and if necessary, these ion-exchange membranes are preferably made of cloth, net, or other woven fabric, non-woven fabric, or metal made of a fluorine-containing polymer such as polytetrafluoroethylene. It can be reinforced with mesh, porous material, etc. Further, the thickness of the ion exchange membrane of the present invention is preferably 20 to 500μ, preferably 50 to 500μ.
Forced to 400μ. When forming a porous layer as described above on the anode side or cathode side of these ion exchange membranes, or even on the membrane surfaces on both electrode sides, the membrane is coated with appropriate ions that do not cause decomposition of the ion exchange groups it has. When the exchange group is a carboxylic acid group, for example, it is preferably an acid or ester type, and when it is a sulfonic acid group, it is preferably an -SO 2 F type. Either type of electrode can be used in the membranes of the invention. For example, porous electrodes such as perforated plates, mesh or expanded metal are used. As a porous electrode, the major axis is 1.0 to 10 mm, the minor axis is 0.5 to 10 mm, and the wire diameter is
Expanded metal with a pore size of 0.1 to 1.3 mm and a porosity of 30 to 90% is exemplified. Although a plurality of plate electrodes can be used, it is preferable to use a plurality of plate electrodes with different porosity, with the one with the smaller porosity being used on the side closer to the membrane. As the anode material, platinum group metals, their conductive oxides, or their conductive reduced oxides, etc. are usually used, while as the cathode, platinum group metals, their conductive oxides, iron group metals, etc. are used. Ru. In addition, platinum group metals include platinum, rhodium, ruthenium,
Examples include palladium and iridium, and iron group metals include iron, cobalt, nickel, Raney nickel, stabilized Raney nickel, stainless steel,
Alkali-etched stainless steel (Special Publication Showa 54-)
19229), Raney-Nitzkelmecki cathode (Japanese Patent Application Laid-Open No. 1982-112785), and Rodan-Nitzkelmecki cathode (Japanese Patent Application Laid-open No. 115676-1982). If a hollow electrode is used, it can be formed from the material itself forming the anode or cathode. However, when platinum group metals or conductive oxides thereof are used, it is preferable to coat the surface of an expanded valve metal such as titanium or tantalum with these substances. When arranging electrodes in the present invention, the electrodes may be arranged in contact with the ion exchange membrane or may be arranged at appropriate intervals. Rather than firmly pressing the electrode against the ion exchange membrane through the porous layer, the electrode is preferably gently pressed against the porous layer at, for example, 0 to 2.0 kg/cm 2 . In addition, in the case where a porous layer is provided only on one surface of the anode side or the cathode side of the ion exchange membrane in the present invention, the electrode placed on the ion exchange membrane side where no porous layer is provided is also placed on the ion exchange membrane surface. They can be placed in contact or without contact. In the present invention, the electrolytic cell may be of a monopolar type or a bipolar type as long as it has the above configuration. In addition, the materials constituting the electrolytic cell are, for example, in the case of electrolysis of an aqueous alkali chloride solution, materials resistant to aqueous alkali chloride solutions and chlorine are used in the anode chamber, such as valve metal and titanium, and in the case of the cathode chamber. Iron, stainless steel, or nickel, which are resistant to alkali hydroxide and hydrogen, are used. The process conditions for electrolyzing an aqueous alkali chloride solution in the present invention include the above-mentioned JP-A-54-
Known conditions such as those in Publication No. 112398 can be employed. For example, an aqueous alkali chloride solution of 2.5 to 5.0 normal (N) is preferably supplied to the anode chamber, and water or diluted alkali hydroxide is supplied to the cathode chamber, preferably at a temperature of 80°C to 120°C and a current density of 10 to 100A/ Electrolyzed at dm 2 . In such a case, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, so it is preferable to keep them as small as possible. Furthermore, an acid such as hydrochloric acid can be added to the aqueous alkali chloride solution in order to prevent the generation of oxygen at the anode as much as possible. The above description has mainly explained the use of the membrane of the present invention using the electrolysis of aqueous alkali chloride solutions as an example, but it can be similarly applied to the electrolysis of water, halogen acids (hydrochloric acid, hydrobromic acid), and alkali carbonate. Of course. Next, the present invention will be explained by examples. Example 1 Graphite fiber with an average fiber length of 0.13 mm and an average single fiber diameter of 12.5 μm (trade name: Kurekachi Yotsupu, Kureha Chemical Industry Co., Ltd.)
), methyl cellulose (viscosity of 2% aqueous solution
1500CPS) 0.4 parts, water 19 parts, cyclohexanol
A mixture containing 0.3 part of cyclohexanone and 0.1 part of cyclohexanone was kneaded to obtain a paste. The paste was applied to the ion exchange capacity of the printing substrate using a Tetron screen with a mesh number of 110 and a thickness of 117 μm, a printing plate with a screen mask of 30 μm thick underneath, and a urethane rubber squeegee. is 1.44meq/g - dry resin, thickness
Polytetrafluoroethylene with 280μm
Screen printing was performed on the cathode side surface of an ion exchange membrane made of a copolymer of CF 2 =CFO(CF 2 ) 3 COOCH 3 . The resulting printed layer on the cathode side of the ion exchange membrane was dried in air to solidify the paste. On the other hand, on the anode side surface of the ion exchange membrane, a particle size of 2~
10 parts of 10 μm titanium oxide (rutile type) powder, modified PTFE particles with a particle size of 0.5 μm or less whose polytetrafluoroethylene surface is coated with a copolymer of polytetrafluoroethylene and CF 2 = CFO (CF 2 ) 3 COOCH 3 1 part, methylcellulose (viscosity of 2% aqueous solution
1500CPS) 0.3 parts, water 14 parts, cyclohexanol
The paste obtained by kneading a mixture containing 0.2 part of cyclohexanone and 0.1 part of cyclohexanone was
75μm Tetron screen with thickness below
Printing was carried out in exactly the same manner as described above, except that a printing plate with a 30 μm screen mask was used, and then dried. Thereafter, the graphite fiber layer and the titanium oxide layer were pressed onto the ion exchange membrane under conditions of a temperature of 140° C. and a pressure of 30 Kg/cm 2 . The amount of graphite fibers and titanium oxide attached to the membrane surface was 1.0 mg and 1.2 mg per 1 cm 2 of the membrane surface, respectively. After this, it was heated to 90°C and immersed in a 25% by weight aqueous solution of caustic soda.
The ionic membrane was hydrolyzed by soaking for 16 hours. On the anode side of the ion membrane, an anode with a low chlorine overvoltage made of expanded titanium metal (minor axis 2.5 mm, major axis 5.0 mm) coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide, and on the cathode side. SUS304 expanded metal (minor diameter 2.5
mm, major axis 5.0 mm) was etched in a 52% by weight aqueous solution of caustic soda at 150°C for 52 hours to have a low hydrogen overvoltage, and the cathode was brought into pressure contact with the cathode.
Supply a 5N aqueous sodium chloride solution to the anode chamber and water to the cathode chamber, and maintain the concentration of the sodium chloride aqueous solution in the anode chamber at 4N and the concentration of the caustic soda aqueous solution in the cathode chamber at 35% by weight at 90℃, 40A/ Electrolysis was carried out at dm 2 and the following results were obtained. Cell voltage Current efficiency 3.23V 92% Comparative example 1 Ion exchange capacity 1.44meq/g - resin, thickness
Polytetrafluoroethylene with 280 μm
Using an ion exchange membrane made of a copolymer of CF 2 = CFO (CF 2 ) 3 COOCH 3 and without attaching a porous layer to the membrane surface, electrolysis was carried out in the same manner and under the same conditions as in Example 1. The results were obtained. Cell voltage Current efficiency 3.57V 94% Example 2 In Example 1, carbonaceous fibers with an average fiber length of 0.13mm and an average single fiber diameter of 14.5μm were used instead of graphite fibers, and the carbonaceous fibers were placed on the cathode side membrane surface of the ion membrane. Electrolysis was carried out in exactly the same manner as in Example 1, except that 0.9 mg/cm 2 of was deposited on the membrane surface, and the following results were obtained. Cell voltage Current efficiency 3.24V 92% Example 3 In Example 1, instead of screen printing graphite fibers and attaching them to the ion exchange membrane,
Except for the fact that stainless steel fibers of 150 μm and 10 μm in thickness were crimped onto the cathode side membrane surface at a rate of 2 mg per 1 cm 2 of membrane.
Electrolysis was carried out in exactly the same manner as in Example 1, and the following results were obtained. Cell voltage Current efficiency 3.25V 92% Example 4 In Example 1, instead of graphite fibers, alumina fibers with an average single fiber diameter of 3 μm were crushed to a length of 100 μm or less, and were applied to the cathode side membrane surface of the ion membrane. Electrolysis was carried out in exactly the same manner as in Example 1, except that 0.8 mg of the alumina fiber was attached per 1 cm 2 of the membrane surface,
The following results were obtained. Cell voltage Current efficiency 3.24V 92% Example 5 In Example 1, instead of graphite fibers, zirconia fibers with an average single fiber diameter of 6 μm were crushed to a length of 100 μm or less, and were applied to the cathode side membrane surface of the ion membrane. Electrolysis was carried out in exactly the same manner as in Example 1, except that 1.1 mg of the zirconia fiber was attached per 1 cm 2 of the membrane surface, and the following results were obtained. Cell voltage Current efficiency 3.24V 92% Examples 6 to 8 In Example 1, instead of titanium oxide, iron oxide was deposited on the membrane surface as a porous layer on the anode side at a rate of 0.3 mg/ cm2 , and the porous layer on the cathode side was Table 1 shows the results of electrolysis carried out in exactly the same manner as in Example 1, except that a membrane having fibers of the materials and shapes shown in Table 1 attached at a rate of 1.0 mg/cm 2 was used.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 膜の少なくとも一方の面に電極として作用し
ないガス及び液透過性の多孔質層を有する陽イオ
ン交換膜であつて、上記多孔質層が、導電性又は
非導電性の微小繊維からなることを特徴とする電
解用陽イオン交換膜。 2 導電性又は非導電性の微小繊維が、直径0.01
〜50μ、長さ0.1〜1000μである特許請求の範囲1
の膜。 3 ガス及び液透過性の多孔質層が、多孔率10〜
99%及び厚さが0.01〜1000μである特許請求の範
囲1又は2の膜。 4 導電性又は非導電性微小繊維が、炭素繊維、
フツ素ポリマー繊維、非酸化物セラミツクス繊維
からなる特許請求の範囲1、2又は3の膜。 5 導電性又は非導電性微小繊維が、膜面cm2
り、0.001〜50mg結合された特許請求の範囲1〜
4のいずれか1つの膜。 6 陽イオン交換基が、スルホン酸基、カルボン
酸基又はリン酸基である特許請求の範囲1〜5の
いずれか1つの膜。 7 電解が、水又は、酸、アルカリ、ハロゲン化
アルカリ若しくは炭酸アルカリの水溶液の電解で
ある特許請求の範囲1〜6のいずれか1つの膜。
[Scope of Claims] 1. A cation exchange membrane having a gas- and liquid-permeable porous layer that does not function as an electrode on at least one surface of the membrane, the porous layer being electrically conductive or non-conductive. A cation exchange membrane for electrolysis characterized by being composed of microfibers. 2 Conductive or non-conductive microfibers with a diameter of 0.01
~50μ, length 0.1~1000μ Claim 1
membrane. 3 The gas and liquid permeable porous layer has a porosity of 10 to
99% and a thickness of 0.01 to 1000μ. 4 The conductive or non-conductive microfibers are carbon fibers,
4. A membrane according to claim 1, comprising fluoropolymer fibers or non-oxide ceramic fibers. 5. Claims 1 to 5 in which 0.001 to 50 mg of conductive or non-conductive microfibers are bound per cm 2 of membrane surface.
Any one membrane of 4. 6. The membrane according to any one of claims 1 to 5, wherein the cation exchange group is a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group. 7. The membrane according to any one of claims 1 to 6, wherein the electrolysis is of water or an aqueous solution of an acid, alkali, alkali halide, or alkali carbonate.
JP5507581A 1981-04-14 1981-04-14 Cation exchange membrane for electrolysis Granted JPS57171679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5507581A JPS57171679A (en) 1981-04-14 1981-04-14 Cation exchange membrane for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5507581A JPS57171679A (en) 1981-04-14 1981-04-14 Cation exchange membrane for electrolysis

Publications (2)

Publication Number Publication Date
JPS57171679A JPS57171679A (en) 1982-10-22
JPS6340876B2 true JPS6340876B2 (en) 1988-08-12

Family

ID=12988573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5507581A Granted JPS57171679A (en) 1981-04-14 1981-04-14 Cation exchange membrane for electrolysis

Country Status (1)

Country Link
JP (1) JPS57171679A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505797A (en) * 1983-03-24 1985-03-19 Ionics, Incorporated Ion-exchange membranes reinforced with non-woven carbon fibers

Also Published As

Publication number Publication date
JPS57171679A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
CA1280716C (en) Ion exchange membrane with non-electrode layer for electrolytic processes
US4126534A (en) Monopolar electrolytic cell electrodes
JPH0116630B2 (en)
JPS5827352B2 (en) Manufacturing method of ion exchange membrane with electrode layer attached
US4586992A (en) Process for producing potassium hydroxide
EP0165466B1 (en) Cation exchange fluoropolymer membrane
JPH0130914B2 (en)
JP2569267B2 (en) Manufacturing method of electro-activated material
US4661218A (en) Ion exchange membrane cell and electrolysis with use thereof
JPS6259185B2 (en)
EP0139133B1 (en) Electrolytic cell for the electrolysis of an alkali metal chloride
JPS6317913B2 (en)
JPS6340876B2 (en)
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
EP0189056B1 (en) Method for restoring the current efficiency
JPH0668033B2 (en) Improved cation exchange membrane for electrolysis
JPH06279600A (en) Formation of groove on the surface of cation exchange membrane
JPS6341989B2 (en)
JPS6125787B2 (en)
JPS6214036B2 (en)
JPS6259186B2 (en)
EP0066101B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JPH0151550B2 (en)
JPS6043438B2 (en) Ion exchange membrane electrolyzer
JPS63509B2 (en)