JPS5827352B2 - Manufacturing method of ion exchange membrane with electrode layer attached - Google Patents

Manufacturing method of ion exchange membrane with electrode layer attached

Info

Publication number
JPS5827352B2
JPS5827352B2 JP54110234A JP11023479A JPS5827352B2 JP S5827352 B2 JPS5827352 B2 JP S5827352B2 JP 54110234 A JP54110234 A JP 54110234A JP 11023479 A JP11023479 A JP 11023479A JP S5827352 B2 JPS5827352 B2 JP S5827352B2
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
electrode layer
paste
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110234A
Other languages
Japanese (ja)
Other versions
JPS5635785A (en
Inventor
吉男 小田
剛 森本
公二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP54110234A priority Critical patent/JPS5827352B2/en
Priority to US06/177,896 priority patent/US4319969A/en
Priority to EP80303028A priority patent/EP0026979B1/en
Priority to DE8080303028T priority patent/DE3066183D1/en
Priority to CA000359278A priority patent/CA1147291A/en
Publication of JPS5635785A publication Critical patent/JPS5635785A/en
Publication of JPS5827352B2 publication Critical patent/JPS5827352B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は、電極層付着イオン交換膜の製造法、特にはガ
ス透過性の多孔質の電極層がイオン交換膜面に密着する
ように設けられた、特に塩化アルカリ水溶液の電解に適
した電極層付着イオン交換膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an ion exchange membrane with an electrode layer attached thereto, in particular an alkali chloride aqueous solution, in which a gas-permeable porous electrode layer is provided in close contact with the ion exchange membrane surface. This invention relates to a method for producing an ion exchange membrane with an electrode layer attached, which is suitable for electrolysis.

塩化アルカリ水溶液を電解して苛性アルカリと塩素を得
る方法は近年公害防止の見地から、水銀法に代り隔膜法
が、そして更に高純度、高濃度の苛性アルカリを得る目
的でイオン交換膜を用いる方法が実用化されている。
In recent years, from the viewpoint of pollution prevention, the method for obtaining caustic alkali and chlorine by electrolyzing an aqueous alkali chloride solution has been replaced by the diaphragm method instead of the mercury method, and a method using an ion exchange membrane for the purpose of obtaining even higher purity and highly concentrated caustic alkali. has been put into practical use.

一方、省エネルギーの観点からこの種の電解においては
、電解室モを極力低くすることが至上命令ともいえるこ
とであるが、近年、含フツ素陽イオン交換膜の一方の面
にガス透過性の多孔質の陽極及び陰極をそれぞれ密接せ
しめて電解する所謂S P E (Sol id Po
1yner Electrolyte )型塩化アルカ
リ電解(例えば特開昭53−52297号公報、特開昭
52−78788号公報)が知られている。
On the other hand, in this type of electrolysis, from the perspective of energy saving, it is imperative to keep the electrolytic chamber as low as possible. The so-called SPE (Solid Po
1yner Electrolyte) type alkali chloride electrolysis (for example, JP-A-53-52297, JP-A-52-78788) is known.

これは、従来この種技術において避は難いとされていた
電解液の電気抵抗や発生する水素が塩素ガスに基づく泡
による電気抵抗を減らせる為、従来より一段と低電圧で
電解を実施しうる手段として優れた方法である。
This is a method that allows electrolysis to be carried out at a much lower voltage than before because it reduces the electrical resistance of the electrolytic solution and the bubbles caused by the generated hydrogen and chlorine gas, which were previously thought to be unavoidable in this type of technology. This is an excellent method.

ところで、かSるSPE型イオン交換膜電解装置におい
て、ガス透過性の多孔質の電極層とイオン交換膜面との
接触は該装置の性能を左右する重要な点であり、電極層
の厚みが不均一であったり、或いは、電極層とイオン交
換膜との接触が充分でない場合には、電極層の一部が離
脱し易くなることにより、摺電圧が上昇し、或いは、接
触界面にガスや余分の液が滞留することにより、摺電正
が上昇するなどして該装置の所期の利点が小さくなった
り、また得られないことになる。
By the way, in the SPE type ion exchange membrane electrolyzer, the contact between the gas-permeable porous electrode layer and the ion exchange membrane surface is an important point that affects the performance of the device, and the thickness of the electrode layer is If the contact between the electrode layer and the ion exchange membrane is non-uniform, or if the contact between the electrode layer and the ion exchange membrane is not sufficient, part of the electrode layer may easily separate, resulting in an increase in sliding voltage or the presence of gas or other gas at the contact interface. Due to the accumulation of excess liquid, the sliding current increases, and the intended advantages of the device are reduced or not obtained.

本発明は、この種イオン交換膜電解装置におけるガス透
過性の多孔質の電極層とイオン交換膜との接触において
、新規な構成手段を採用することにより、イオン交換膜
面に、均一な厚みの電極層を十分に密着するように設け
たイオン交換膜を組み込んだ電極層付着イオン交換膜の
新規な製造法を提供する。
The present invention employs a novel construction means for the contact between the gas permeable porous electrode layer and the ion exchange membrane in this type of ion exchange membrane electrolysis device, thereby creating a uniform thickness on the ion exchange membrane surface. A novel method for manufacturing an ion exchange membrane with an electrode layer attached thereto is provided, which incorporates an ion exchange membrane provided to sufficiently adhere the electrode layer.

即ち、本発明は、イオン交換膜の表面に、電極粉末及び
疎水性重合体を含むペースト状物を、スクリーン印刷法
により印刷し、熱圧着することにより、ガス及び液透過
性の多孔質の電極層がその表面に密着して設けられた電
極層付着イオン交換膜の製造法にある。
That is, the present invention prints a paste containing an electrode powder and a hydrophobic polymer on the surface of an ion exchange membrane using a screen printing method, and then thermally presses the material to form a porous electrode that is permeable to gas and liquid. A method of manufacturing an ion exchange membrane with an electrode layer attached thereto, in which a layer is provided in close contact with the surface thereof.

本発明の電極層のイオン交換膜面への密着に使用される
スクリーン印刷では電極粉末及び疎水性重合体を含むペ
ースト状物が使用される。
In the screen printing used for adhering the electrode layer to the ion exchange membrane surface of the present invention, a paste containing electrode powder and a hydrophobic polymer is used.

電極としては、陽極又は陰極として使用するものならば
いずれの物質も使用されるが、陽極としては例えば白金
、ルテニウム、ロジウム、イリジウム等の白金族金属お
よびそれらの酸化物の一種又は二種以上である。
As the electrode, any material can be used as long as it is used as an anode or a cathode. For example, as an anode, one or more of platinum group metals such as platinum, ruthenium, rhodium, and iridium and their oxides can be used. be.

陰極としては、例えば鉄、ニッケル、ステンレス更には
、脂肪酸ニッケルの熱分解物、ラネーニッケル、安定化
ラネーニッケル、カルボニルニッケル及び白金族金属を
担持させた炭素粉末などが使用される。
As the cathode, for example, iron, nickel, stainless steel, thermal decomposition products of fatty acid nickel, Raney nickel, stabilized Raney nickel, carbonyl nickel, and carbon powder supporting a platinum group metal are used.

該電極は好ましくは、粒径0.01〜300μ、特には
0.0〜100μの粉末としてペーストに添加される。
The electrode is preferably added to the paste as a powder with a particle size of 0.01-300μ, especially 0.0-100μ.

疎水性重合体は、電極相互、電極とイオン交換膜との結
合剤の役割をするもので好ましくは含フツ素重合体、特
にはポリテトラフルオロエチレン、ポリへキフルオロエ
チレンなど過フッ素化炭化水素重合体が使用される。
The hydrophobic polymer acts as a binder between the electrodes and between the electrodes and the ion exchange membrane, and is preferably a fluorinated polymer, particularly a perfluorinated hydrocarbon such as polytetrafluoroethylene or polyhekifluoroethylene. Polymers are used.

疎水性重合体は、好ましくは粒径0.1〜500μ特に
は0.1〜100μのものが使用され、ペースト状物に
十分分散させるようにするのが好ましい。
The hydrophobic polymer preferably has a particle size of 0.1 to 500 microns, particularly 0.1 to 100 microns, and is preferably sufficiently dispersed in the paste.

分散を良好にするため好ましくは長鎖炭化水素、フッ素
化炭化水素系の界面活性剤を必要量添加できる。
In order to improve dispersion, a required amount of surfactant, preferably a long-chain hydrocarbon or fluorinated hydrocarbon, can be added.

ペースト状物中の電極粉末及び疎水性重合体の含有量は
、電極性能とも関係するが、前者は好ましくは20〜9
5φ、特には40〜90%であり、後者は好ましくは0
.1〜80饅、特には1〜60俤である。
The content of the electrode powder and hydrophobic polymer in the paste is also related to the electrode performance, but the former is preferably 20 to 9
5φ, especially 40-90%, the latter preferably 0
.. The price ranges from 1 to 80 yen, especially from 1 to 60 yen.

電極粉末及び疎水性重合体を含むペースト状物の粘度は
、スクリーン印刷にあたり、好ましくは1〜105ポイ
ズ、特には10〜10’ポイズに制御するのが適切であ
る。
The viscosity of the paste containing the electrode powder and the hydrophobic polymer is suitably controlled to preferably 1 to 105 poise, particularly 10 to 10' poise for screen printing.

このため、電極粉末及び疎水性重合体の粒度及び量、更
には媒体である水の量を制御することができるが、好ま
しくは、上記粘度範囲に制御するための粘度調節物質を
添加することができる。
For this reason, it is possible to control the particle size and amount of the electrode powder and hydrophobic polymer, as well as the amount of water as a medium, but preferably a viscosity adjusting substance is added to control the viscosity within the above range. can.

粘度調節物質としては、経時的に水に溶解しうる水可溶
性の粘稠物であるカルボキシメチルセルロース、メチル
セルロース、ヒドロキシエチルセルロース、セルロース
などのセルロース類、ポリエチレングリコール、ポリビ
ニルアルコール、ポリビニルピロリドン、ポリアクリル
酸ソーダ、ポリメチルビニルエーテルなどが使用される
Examples of viscosity adjusting substances include celluloses such as carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, and cellulose, which are water-soluble viscous substances that can dissolve in water over time, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, Polymethyl vinyl ether and the like are used.

これらは、水可溶性物質なので、電極としての性能を阻
害することはない。
Since these are water-soluble substances, they do not impede the performance as an electrode.

粘度調節物質としては、この他、電極層の形成過程及び
電極層としての使用中に変質乃至腐食を受は電解性能を
阻害しない物質である限り、例えばカゼイン、ポリアク
リルアミドなどを使用することができる。
In addition, casein, polyacrylamide, etc. can be used as the viscosity adjusting substance, as long as it is a substance that does not deteriorate or corrode during the electrode layer formation process or during use as an electrode layer and does not impair electrolytic performance. .

ペースト状物は、イオン交換膜面にスクリーン印刷によ
り印刷、正着される。
The paste-like material is printed and adhered directly to the surface of the ion exchange membrane by screen printing.

スクリーン印刷は、既知の方式が採用されるが、本発明
で使用されるスクリーンは、好ましくは10〜2400
メツシユ、特には150〜1oooメツシユのものが適
切で、厚みが好ましくは2朋〜4μ、特には300μ〜
8μが適切である。
For screen printing, a known method is adopted, but the screen used in the present invention preferably has a printing density of 10 to 2400.
A mesh, especially a 150-100 mesh, is suitable, and the thickness is preferably 2 to 4μ, especially 300μ to
8μ is appropriate.

メツシュ数が過度に太きいと、スクリーンに目づまりが
生じ、印刷が不均一になり、過度に小さいときは、ペー
ストが過度に付着されることになる。
If the mesh number is too large, the screen will become clogged, resulting in uneven printing; if the mesh number is too small, too much paste will be deposited.

一方厚みが過度に太きいと、印刷が不均一になり、過度
に小さいと所定量の印刷ができなくなる。
On the other hand, if the thickness is too large, printing will be uneven, and if it is too small, it will not be possible to print a predetermined amount.

イオン交換膜の面に適宜宜の大きさと形状の電極層を設
けるためにスクリーンマスクが使用されるが、その形状
は、膜面に形成される電極層の形状を切り欠いた形状に
形成され、通常その厚みは好ましくは3〜500μから
使用される。
A screen mask is used to provide an electrode layer of an appropriate size and shape on the surface of an ion exchange membrane, and its shape is formed by cutting out the shape of the electrode layer to be formed on the membrane surface. Usually, the thickness is preferably 3 to 500 μm.

スクリーン及びスクリーンマスクの材質は、十分な強度
を有すればよく、例えばそれぞれ、ステンレス、テトロ
ン、ナイロン又はエポキシ樹脂が使用される。
The materials for the screen and screen mask need only have sufficient strength, and for example, stainless steel, Tetron, nylon, or epoxy resin are used, respectively.

電極層が形成されるイオン交換膜上に、スクリーンマス
クを付着したスクリーンが設置され、スクリーン上に上
記ペースト状物を供給し、これをスキージにて、圧力を
かけながら印刷することにより、スクリーンマスクを除
いた形状を有する電極層がイオン交換膜面に形成される
A screen with a screen mask attached is placed on the ion exchange membrane on which the electrode layer is formed, and the paste is supplied onto the screen and printed while applying pressure with a squeegee to form the screen mask. An electrode layer having a shape excluding the above is formed on the ion exchange membrane surface.

イオン交換膜面上の電極層の厚みは、スクリーンの厚さ
、ペースト粘度、およびスクリーンのメツシュ数等によ
って左右されるので、電極層の厚みが好ましくは1〜5
00μ、特には1〜300μになるようにスクリーンの
厚さ、ペースト粘度およびスクリーンのメツシュ数等を
調節するのが好ましい。
The thickness of the electrode layer on the ion exchange membrane surface depends on the screen thickness, paste viscosity, number of screen meshes, etc., so the thickness of the electrode layer is preferably 1 to 5.
It is preferable to adjust the thickness of the screen, the viscosity of the paste, the number of meshes of the screen, etc. so that the thickness becomes 00μ, particularly 1 to 300μ.

更に、スクリーン印刷の際のスクリーン版とイオン交換
膜との間隔及びスキージの材質及びスキージ○印加圧も
、イオン交換膜面に形成される電極層の物性、厚みおよ
び均一性と関係するので、それぞれ所定の数値が得られ
るように、例えばスクリーン版とイオン交換膜との間隔
は、ペーストの種類および粘度によって所定の間隔に設
定し、スキージは、かどが直線的で、ペースト粘度に合
致した硬度と材質を選択し、またスキージの印加圧を一
定にすることが好ましい。
Furthermore, the distance between the screen plate and the ion exchange membrane during screen printing, the material of the squeegee, and the pressure applied to the squeegee are also related to the physical properties, thickness, and uniformity of the electrode layer formed on the ion exchange membrane surface. In order to obtain a predetermined value, for example, the distance between the screen plate and the ion exchange membrane should be set to a predetermined distance depending on the type and viscosity of the paste, and the squeegee should have straight edges and a hardness that matches the viscosity of the paste. It is preferable to select the material and keep the applied pressure of the squeegee constant.

かくしてイオン交換膜一方又は双方の面には均一な厚み
で且つ密着性の大きい電極層が形成されるが好ましくは
、必要に応じて電極層を膜面に圧力下に押しつけるのが
好ましい。
In this way, an electrode layer having a uniform thickness and high adhesion is formed on one or both surfaces of the ion exchange membrane, but it is preferable to press the electrode layer against the membrane surface under pressure if necessary.

該抑圧は、好ましくは100〜300℃、特には110
〜250℃の加熱下に好ましくは5〜1000 kg/
cyyt、特には20〜500 kg/iのもとにプレ
スするものが好ましい。
The suppression is preferably between 100 and 300°C, especially at 110°C.
Preferably 5-1000 kg/under heating at ~250°C
cyyt, particularly those pressed under 20 to 500 kg/i are preferred.

かくすることによりイオン交換膜と電極層とは一層密着
した構造を有することができる。
By doing so, the ion exchange membrane and the electrode layer can have a structure in which they are in even closer contact.

このようにして、ゞイオン交換膜面に形成される電極層
は、ガス透過性の多孔質のあることが必要であるが、好
ましくは平均細孔径0.01〜50μ、特には0.1〜
30μ、多孔率30〜99φ、特には40〜98係、空
気透過係数lXl0−’〜1モル/cyrY 、 mi
n、c+ytH,9,特には1×10−4〜1×10−
1モル/cyyt 、 mi n 、 CrfLH,@
であるのが好まし0)。
The electrode layer thus formed on the ion exchange membrane surface needs to be porous and gas permeable, preferably with an average pore diameter of 0.01 to 50μ, particularly 0.1 to 50μ.
30 μ, porosity 30 to 99φ, especially 40 to 98 coefficient, air permeability coefficient lXl0-' to 1 mol/cyrY, mi
n, c+ytH, 9, especially 1 x 10-4 to 1 x 10-
1 mol/cyyt, min, CrfLH, @
It is preferable that 0).

これらの電極層の物性である平均細孔径、多孔率及び空
気透過係数は、上記ペーストの形成に使用される電極粉
末の形状、大きさ及び量、更には疎水性重合体の量によ
って主に左右され、逆にこれを選ぶことによって、上記
電極層の物性を制御することができる。
The physical properties of these electrode layers, such as average pore diameter, porosity, and air permeability coefficient, are mainly influenced by the shape, size, and amount of the electrode powder used to form the paste, as well as the amount of the hydrophobic polymer. By selecting this, the physical properties of the electrode layer can be controlled.

本発明の上記電極層が形成されるイオン交換膜としては
、例えばカルボキシル基、スルホン酸基、燐酸基、フェ
ノール性水酸基等の陽イオン交換基を含有する重合体か
ら成り、かかる重合体としては、例えばテトラフルオロ
エチレン、クロロトリフルオロエチレン等のビニルモノ
マーとスルホン酸、カルボン酸、燐酸基等の陽イオン交
換基、或は陽イオン交換基に転換し得る反応性基を有す
るパーフルオロのビニルモノマーとの共重合体カ好まし
い。
The ion exchange membrane on which the electrode layer of the present invention is formed is made of a polymer containing a cation exchange group such as a carboxyl group, a sulfonic acid group, a phosphoric acid group, or a phenolic hydroxyl group. For example, a vinyl monomer such as tetrafluoroethylene or chlorotrifluoroethylene and a perfluorinated vinyl monomer having a cation exchange group such as a sulfonic acid, carboxylic acid, or phosphoric acid group, or a reactive group that can be converted into a cation exchange group. A copolymer of is preferred.

又、トリフルオロエチレンの膜状重合体にスルホン酸基
等のイオン交換基を導入したものや、スチレンジビニル
ベンゼンにスルホン酸基を導入したもの等も使用出来る
Also usable are trifluoroethylene membrane polymers into which ion exchange groups such as sulfonic acid groups have been introduced, and styrene divinylbenzene into which sulfonic acid groups have been introduced.

そしてこれらのうち、夫々以下の(イ)、(D)の重合
単位を形成し得る単量体の使用が好ましい。
Among these, it is preferable to use monomers that can form the following polymerized units (A) and (D), respectively.

ここでXはF、CA、H又は−CF3であり X/はX
又はCF3(CF2)mであり、mは1〜5であり、Y
は次のものから選ばれる。
where X is F, CA, H or -CF3 and X/ is X
or CF3(CF2)m, m is 1 to 5, and Y
is selected from the following:

x、y、zは共に1〜10であり、Z、Rfは−F又は
C1〜、。
x, y, and z are all 1 to 10, and Z and Rf are -F or C1.

のパーフルオロアルキル基から選ばれる。perfluoroalkyl group.

Aは−COOH又は−CN、−COF。COOR1,−
COOM、−CONR2R3等の加水分解若しくは中和
により、−COOHに転換し得る官能基を示す。
A is -COOH, -CN, -COF. COOR1,-
Indicates a functional group that can be converted to -COOH by hydrolysis or neutralization, such as COOM and -CONR2R3.

R1は01〜1oのアルキル基、Mはアルカリ金属又は
第4級アンモニウム基であり、R2,R3はH又はC1
〜1oのアルキル基を示す。
R1 is an alkyl group of 01 to 1o, M is an alkali metal or a quaternary ammonium group, and R2 and R3 are H or C1
~1o alkyl group.

そして、本発明において、これら共重合体から成る乾燥
樹脂1g当りの膜内カルボン酸基濃度が0.5〜2.5
ミリ当量、特には1.0〜2.0ミリ当量である含弗素
陽イオン交換膜を用いる場合には、本発明の目的を十分
且安定して、特に持続性、耐久性が犬となし得るので好
ましい。
In the present invention, the concentration of carboxylic acid groups in the film per gram of dry resin made of these copolymers is 0.5 to 2.5.
When using a fluorine-containing cation exchange membrane having a milliequivalent weight, particularly 1.0 to 2.0 milliequivalents, the objects of the present invention can be achieved sufficiently and stably, and particularly in terms of sustainability and durability. Therefore, it is preferable.

上記含フッ素の共重合体を製造するには、前記各単量体
の一種以上を用い、更に第三の単量体をも共重合するこ
とにより、得られる膜を改質することも出来る。
In order to produce the above-mentioned fluorine-containing copolymer, it is possible to use one or more of the above-mentioned monomers and further copolymerize a third monomer, thereby modifying the resulting membrane.

使用される陽イオン交換膜は、厚さが20〜500μ、
好ましくは50〜400μにせしめることが適当である
The cation exchange membrane used has a thickness of 20 to 500μ,
Preferably, it is appropriate to make it 50 to 400μ.

陽イオン交換膜の有するイオン交換基がカルボン酸基そ
のものではなく、該基に転換しうる官能基の場合には、
使用にあたり、それに応じた適宜な処理により、これら
の官能基がカルボン酸基に転換される。
When the ion exchange group possessed by the cation exchange membrane is not a carboxylic acid group itself but a functional group that can be converted into the group,
Upon use, these functional groups are converted into carboxylic acid groups by appropriate treatment.

例えば−CN 、 −COF、−COOR,。−COO
M、−CONR2R3(M、R,〜R3は上記と同じ)
の場合には、酸又はアルカリのアルコール溶液により、
加水分解又は中和せしめてカルボン酸基に転換し、又官
能基が二重結合の場合には、COF2と反応せしめてカ
ルボン酸基に転換される。
For example, -CN, -COF, -COOR,. -COO
M, -CONR2R3 (M, R, ~R3 are the same as above)
In this case, with an alcoholic acid or alkali solution,
It is converted into a carboxylic acid group by hydrolysis or neutralization, and when the functional group is a double bond, it is converted into a carboxylic acid group by reacting with COF2.

なお、か\るカルボン酸基を有する陽イオン交換膜を用
いる場合、上記したスクリーン印刷によるイオン交換膜
面への電極層の印刷、圧着は、交換基が式−COOL(
Lは水素又は低級アルキル基である)の状態にて行ない
且つ上記した加熱、圧着する場合は、電極層とイオン交
換膜との密着は一層良好に行なわれ、優れた性能の電極
層付着イオン交換膜が得られる。
In addition, when using a cation exchange membrane having such a carboxylic acid group, the printing and pressure bonding of the electrode layer on the ion exchange membrane surface by screen printing described above should be performed when the exchange group is of the formula -COOL (
L is hydrogen or a lower alkyl group), and when the above-mentioned heating and pressure bonding is performed, the adhesion between the electrode layer and the ion exchange membrane is even better, and the electrode layer adheres to the ion exchange membrane with excellent performance. A membrane is obtained.

更に、上記陽イオン交換樹脂膜は、必要に応じ、製膜時
にポリエチレン、ポリプロピレン等のオレフィンの重合
体、好ましくはポリテトラフルオロエチレン、エチレン
とテトラフルオロエチレンとの共重合体等の含弗素重合
体を混合して成形することも出来、或はこれらの重合体
から威る布、網等の織物、不繊布又は多孔性フィルム或
は金属性の線や網、多孔板等を支持体として用い、膜を
補強することも可能である。
Furthermore, the above-mentioned cation exchange resin membrane may be formed using an olefin polymer such as polyethylene or polypropylene, preferably a fluorine-containing polymer such as polytetrafluoroethylene or a copolymer of ethylene and tetrafluoroethylene, during membrane formation, if necessary. Alternatively, fabrics made from these polymers such as cloth, net, nonwoven fabric, porous film, metal wire, net, perforated plate, etc. can be used as a support. It is also possible to reinforce the membrane.

尚、かかる混合或は支持体を用いた場合には、これら混
合物や支持体を構成する樹脂の重量は、前記乾燥樹脂当
りの交換基濃度を算出するに当っての樹脂重量には算入
されない。
In addition, when such a mixture or support is used, the weight of the resin constituting the mixture or support is not included in the resin weight when calculating the exchange group concentration per dry resin.

本発明により得られる電極層付着イオン交換膜を使用し
た電解層で塩化アルカリ水溶液を電解して苛性アルカリ
を製造するには電極層付着イオン交換膜で仕切られた陽
極室側に塩化アルカリ水溶液を、陰極室側に通常水を夫
々供給して電解を行なう。
To produce caustic alkali by electrolyzing an aqueous alkali chloride solution using an electrolytic layer using an ion exchange membrane with an electrode layer attached thereto obtained according to the present invention, an aqueous alkali chloride solution is placed in the anode chamber side partitioned by an ion exchange membrane with an electrode layer attached, Normal water is supplied to the cathode chamber side to perform electrolysis.

使用される塩化アルカリとしては、通常食塩であるが、
その他項化カリウム、塩化リチウム等のアルカリ金属の
塩化物であり、これらの水溶液から対応する苛性アルカ
リを長期にわたり、安定して有利に製造することが可能
となる。
The alkali chloride used is usually table salt, but
Other chlorides of alkali metals such as potassium chloride and lithium chloride make it possible to stably and advantageously produce the corresponding caustic alkalis from their aqueous solutions over a long period of time.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例−1 カルボキシメチルセルローズ(以下CMCと略す)1部
とポリビニルアルコール(以下PVAと略す)5部とを
水95部中に、温度80°Cで溶解し、このようにして
作成した線材に対して、粒径1μ以下のポリテトラフル
オロエチレン(以下PTFEと略す)を60重量饅含む
水分散液および粒径25μ以下の白金黒粉末200部を
投入し、混練してペースト1を得た。
Example-1 1 part of carboxymethyl cellulose (hereinafter abbreviated as CMC) and 5 parts of polyvinyl alcohol (hereinafter abbreviated as PVA) were dissolved in 95 parts of water at a temperature of 80°C, and the wire material thus prepared was To the mixture, an aqueous dispersion containing 60 parts by weight of polytetrafluoroethylene (hereinafter abbreviated as PTFE) with a particle size of 1 μm or less and 200 parts of platinum black powder with a particle size of 25 μm or less were added and kneaded to obtain Paste 1.

該ペースト1を、メツシュ数200. 厚さ60μのス
テンレス製スクリーンで、その下に厚さ8μのスクリー
ンマスクを施した印刷板およびポリウレタンゴム製のス
キージを用いて、被印刷基材であるイオン交換容量が1
.45meq/g乾燥樹脂、厚さ250μを有するポリ
テトラフルオロエチレンとCF2=CFO(CF2)3
C00CH3の共重合体から戒るイオン交換膜の一面に
、20cIrL×25のの大きさにスクリーン印刷した
The paste 1 was mixed with a mesh number of 200. Using a printing plate with a 60μ thick stainless steel screen and an 8μ thick screen mask underneath, and a polyurethane rubber squeegee, the ion exchange capacity of the printing substrate was 1.
.. 45meq/g dry resin, polytetrafluoroethylene with thickness 250μ and CF2=CFO(CF2)3
Screen printing was performed on one side of an ion exchange membrane made of a copolymer of C00CH3 to a size of 20 cIrL x 25.

イオン交換膜の一面に得られた印刷層を、空気中で乾燥
し、ペーストを固化させて陽極とした。
The printed layer obtained on one side of the ion exchange membrane was dried in air to solidify the paste and serve as an anode.

得られた陽極は、厚さが約14μで、白金が3■/cv
i含まれていた。
The resulting anode had a thickness of about 14μ and a platinum content of 3μ/cv.
i was included.

他方、上記線材に対して、粒径1μ以下のPTFEを6
0重量φ含む水分散液35部およびラネー合金のアルミ
ニウムをアルカリで溶解除去してのち、水洗してから乾
燥状態にして、一部酸化させた粒径25μ以下の安定化
ラネーニッケル粉末200部を投入し、混練してペース
ト2を得た。
On the other hand, PTFE with a particle size of 1μ or less was added to the above wire rod.
After dissolving and removing 35 parts of an aqueous dispersion containing 0 weight φ and the aluminum of the Raney alloy with an alkali, washing with water and drying, 200 parts of partially oxidized stabilized Raney nickel powder with a particle size of 25μ or less was added. Then, paste 2 was obtained by kneading.

該ペースト2を、メツシュ数200、厚さ80μのステ
ンレス製スクリーンで、その下に厚さ30μのスクリー
ンマスクを施こした印刷板およびスキージを用いて、イ
オン交換膜の他面に印刷し、空気中で印刷層を乾燥し、
ペーストを固化させて、陰極とした。
The paste 2 was printed on the other side of the ion exchange membrane using a squeegee and a printing plate with a stainless steel screen with a mesh count of 200 and a thickness of 80μ under which a screen mask with a thickness of 30μ was applied. The printing layer is dried inside the
The paste was solidified to form a cathode.

得られた陰極は厚さが35μで、ニッケルが7my/−
含まれていた。
The resulting cathode has a thickness of 35μ and a nickel content of 7my/-
It was included.

しかる後、温度150℃、成型圧力25kg/cril
の条件で印刷層をイオン膜に圧着後、90℃、25重量
φの苛性ソーダ水溶液に16時間浸漬して、前記イオン
膜を加水分解するとともに、CMCおよびPVAを溶出
せしめた。
After that, the temperature was 150℃ and the molding pressure was 25kg/cril.
After the printed layer was pressure-bonded to the ion membrane under the following conditions, it was immersed in a caustic soda aqueous solution of 25 weight φ at 90° C. for 16 hours to hydrolyze the ion membrane and elute CMC and PVA.

また、前記陰極、陽極にはそれぞれ集電体として白金金
網を加圧接触させ、陽極室に5NNaCl水溶液を、陰
極室に水を供給しつつ、陽極室の塩化ナトリウム濃度を
4規定に、また陰極液中の苛性ソーダ濃度を35重量φ
に保ちつつ電解を行ない以下の結果を得た。
In addition, a platinum wire mesh was brought into pressure contact with the cathode and anode as current collectors, and while supplying a 5N NaCl aqueous solution to the anode chamber and water to the cathode chamber, the sodium chloride concentration in the anode chamber was adjusted to 4N, and the cathode The concentration of caustic soda in the liquid is 35 weight φ
Electrolysis was carried out while maintaining the temperature, and the following results were obtained.

また、電流密度20人/dm2における苛性ソーダ生成
の電流効率は95咎であった。
Further, the current efficiency for producing caustic soda at a current density of 20 people/dm2 was 95 μm.

さらに、電流密度20A/dm2で1ケ月電解させたと
ころ摺電圧は、はぼ一定で、イオン膜表面からの電極の
剥離脱落等は観察されなかった。
Further, when electrolysis was carried out for one month at a current density of 20 A/dm2, the sliding voltage was almost constant, and no peeling or falling of the electrode from the ion membrane surface was observed.

実施例−2 CMC1部をエチレングリコール50部中に温度100
’Cで溶解した線材を用いた以外は、実施例−1と同様
にして、電極をイオン交換膜に密着させ、さらに、実施
例−1におけると同様な条件で電解を実施した。
Example-2 1 part of CMC was placed in 50 parts of ethylene glycol at a temperature of 100%.
The electrode was brought into close contact with the ion exchange membrane in the same manner as in Example-1, except that the wire rod dissolved in 'C was used, and further, electrolysis was carried out under the same conditions as in Example-1.

結果を以下に示す。また、電流密度20A/dm2にお
ける苛性ソーダ虫取の電流効率は94φであった。
The results are shown below. Further, the current efficiency of the caustic soda insect repellent at a current density of 20 A/dm2 was 94φ.

実施例−3 PVA10部とポリビニルピロリドン20部とを、水1
00部中に、温度80℃で、溶解した線材を用いた以外
は、実施例−1と同様にして電極をイオン交換膜に密着
させ、さらに、実施例−1におけると同様な条件で電解
を実施した結果を以下に示す。
Example-3 10 parts of PVA and 20 parts of polyvinylpyrrolidone were added to 1 part of water.
The electrode was brought into close contact with the ion exchange membrane in the same manner as in Example-1 except that the melted wire was used in 00 parts at a temperature of 80°C, and further electrolysis was carried out under the same conditions as in Example-1. The results are shown below.

また、電流密度20A/dm2における苛性ソーダ生成
の電流効率は94φであった。
Further, the current efficiency for producing caustic soda at a current density of 20 A/dm2 was 94φ.

実施例−4 実施例−1において、陽極に白金黒の代りに、粒径25
μ以下の白金黒70−イリジウム黒30(原子比)粉末
を用いた以外は、実施例−1と同様にして、電極をイオ
ン交換膜に密着させ、さらに、実施例1におけると同様
な条件で電解を実施した結果を以下に示す。
Example-4 In Example-1, instead of platinum black on the anode, a particle size of 25
The electrode was brought into close contact with the ion exchange membrane in the same manner as in Example 1, except that a powder of platinum black 70 - iridium black 30 (atomic ratio) of less than μ was used, and further under the same conditions as in Example 1. The results of electrolysis are shown below.

また、電流密度20A/dm2における苛性ソーダ生成
の電流効率は94条であった。
Further, the current efficiency for producing caustic soda at a current density of 20 A/dm2 was 94 lines.

実施例−5 実施例−1において、陽極をメツシュ数400゜厚さ5
2μのステンレス製スクリーン印刷板を使用して、イオ
ン交換膜にスクリーン印刷した以外は、実施例−1と同
様にして、電極密着膜を得た。
Example-5 In Example-1, the anode has a mesh number of 400° and a thickness of 5.
An electrode adhesion membrane was obtained in the same manner as in Example 1, except that the ion exchange membrane was screen printed using a 2μ stainless steel screen printing plate.

陽極は厚さが約9μで、白金が2■/−含まれていた。The anode was approximately 9μ thick and contained 2μ/− of platinum.

さらに、実施例1におけると同様な条件で電解を実施し
た結果を以下に示す。
Furthermore, the results of electrolysis performed under the same conditions as in Example 1 are shown below.

また、電流密度20A/dm2における苛性ソーダ生成
の電流効率は94係であった。
Further, the current efficiency for producing caustic soda at a current density of 20 A/dm2 was 94 factors.

実施例−6 実施例−1において、陽極用ペーストおよび陰極用ペー
ストを下記のペーストにして用いた以外は、実施例−1
と同様にして電極をイオン交換膜に密着させた。
Example-6 Example-1 except that the anode paste and cathode paste in Example-1 were changed into the following pastes.
The electrode was brought into close contact with the ion exchange membrane in the same manner as above.

陽極用ペーストは、粒径25μ以下の白金黒粉末70部
に対して、粒径1μ以下のPTFEを20重量φ含む水
分散液30部を投入し、混練して作成した。
The anode paste was prepared by adding 30 parts of an aqueous dispersion containing 20 weight φ of PTFE with a particle size of 1 μm or less to 70 parts of platinum black powder with a particle size of 25 μm or less, and kneading the mixture.

陰極用ペーストは、粒径25μ以下の安定化ラネーニッ
ケル粉末75部に対して、粒径1μ以下のPTFEを3
0重量φ含む水分散液25部を投入し、混練して作成上
た。
The paste for the cathode consists of 75 parts of stabilized Raney nickel powder with a particle size of 25 μm or less and 3 parts of PTFE with a particle size of 1 μm or less.
25 parts of an aqueous dispersion containing 0 weight φ was added and kneaded.

さらに、実施例−1におけると同様な条件で電解を実施
した。
Furthermore, electrolysis was carried out under the same conditions as in Example-1.

結果を以下に示す。また、電流密度20 A/ dm2
における苛性ソーダ生成の電流効率は95多であった。
The results are shown below. In addition, the current density is 20 A/dm2
The current efficiency of caustic soda production was 95%.

Claims (1)

【特許請求の範囲】 1 イオン交換膜の表面に、電極粉末及び疎水性重合体
を含むペースト状物を、スクリーン印刷法により印刷し
、熱モ着することによりガス及び液透過性の多孔質の電
極層がその表面に密着して設けられた電極層付着イオン
交換膜の製造法。 2 ペースト状物は、疎水性重合体として含フツ素重合
体を含み、粘度が1〜105ポイズである特許請求の範
囲1の製造法。 3 スクリーンのメツシュ数及び紗厚が、それぞれ10
〜2400メツシユ及び2mm〜4μである特許請求の
範囲1の製造法。 4 電極層が、平均細孔径0.01〜50μ、多孔率3
0〜99φ、空気透過係数lXl0−5〜1モル歴・關
・α、Hgである特許請求の範囲1の製造法。 5 イオン交換膜が、カルボン酸基又はスルホン酸基を
有する含フツ素陽イオン交換膜である特許請求の範囲1
,2.3又は4の製造法。
[Claims] 1. A paste-like material containing electrode powder and a hydrophobic polymer is printed on the surface of an ion-exchange membrane using a screen printing method, and then thermally adhered to the surface of the ion-exchange membrane to form a porous material that is permeable to gas and liquid. A method for producing an ion exchange membrane with an electrode layer attached, in which an electrode layer is provided in close contact with the surface of the membrane. 2. The manufacturing method according to claim 1, wherein the paste-like material contains a fluorine-containing polymer as the hydrophobic polymer and has a viscosity of 1 to 105 poise. 3 The mesh number and gauze thickness of the screen are each 10
2400 mesh and 2 mm to 4μ. 4 The electrode layer has an average pore diameter of 0.01 to 50μ and a porosity of 3
0 to 99φ, air permeability coefficient lXl0-5 to 1 molar history α, Hg. 5. Claim 1, wherein the ion exchange membrane is a fluorine-containing cation exchange membrane having a carboxylic acid group or a sulfonic acid group.
, 2.3 or 4 manufacturing method.
JP54110234A 1979-08-31 1979-08-31 Manufacturing method of ion exchange membrane with electrode layer attached Expired JPS5827352B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP54110234A JPS5827352B2 (en) 1979-08-31 1979-08-31 Manufacturing method of ion exchange membrane with electrode layer attached
US06/177,896 US4319969A (en) 1979-08-31 1980-08-14 Aqueous alkali metal chloride electrolytic cell
EP80303028A EP0026979B1 (en) 1979-08-31 1980-08-29 Electrolytic cell and process for producing an alkali metal hydroxide and chlorine
DE8080303028T DE3066183D1 (en) 1979-08-31 1980-08-29 Electrolytic cell and process for producing an alkali metal hydroxide and chlorine
CA000359278A CA1147291A (en) 1979-08-31 1980-08-29 Ion exchange membrane type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54110234A JPS5827352B2 (en) 1979-08-31 1979-08-31 Manufacturing method of ion exchange membrane with electrode layer attached

Publications (2)

Publication Number Publication Date
JPS5635785A JPS5635785A (en) 1981-04-08
JPS5827352B2 true JPS5827352B2 (en) 1983-06-08

Family

ID=14530489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54110234A Expired JPS5827352B2 (en) 1979-08-31 1979-08-31 Manufacturing method of ion exchange membrane with electrode layer attached

Country Status (5)

Country Link
US (1) US4319969A (en)
EP (1) EP0026979B1 (en)
JP (1) JPS5827352B2 (en)
CA (1) CA1147291A (en)
DE (1) DE3066183D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133548U (en) * 1985-02-09 1986-08-20

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU535261B2 (en) * 1979-11-27 1984-03-08 Asahi Glass Company Limited Ion exchange membrane cell
FI72150C (en) * 1980-11-15 1987-04-13 Asahi Glass Co Ltd Alkalimetallkloridelektrolyscell.
DE3279507D1 (en) * 1981-05-22 1989-04-13 Asahi Glass Co Ltd Ion exchange membrane electrolytic cell
US4421579A (en) * 1981-06-26 1983-12-20 Diamond Shamrock Corporation Method of making solid polymer electrolytes and electrode bonded with hydrophyllic fluorocopolymers
EP0120212B1 (en) * 1983-02-25 1986-10-01 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for producing an electrically conductive layer on a solid electrolyte surface, and electrically conductive layer
US4871703A (en) * 1983-05-31 1989-10-03 The Dow Chemical Company Process for preparation of an electrocatalyst
US4510026A (en) * 1983-11-16 1985-04-09 Panclor S.A. Process for electrolysis of sea water
US4654104A (en) * 1985-12-09 1987-03-31 The Dow Chemical Company Method for making an improved solid polymer electrolyte electrode using a fluorocarbon membrane in a thermoplastic state
US4826554A (en) * 1985-12-09 1989-05-02 The Dow Chemical Company Method for making an improved solid polymer electrolyte electrode using a binder
AU582059B2 (en) * 1986-12-19 1989-03-09 Dow Chemical Company, The A composite membrane/electrode structure having islands of catalytically active particles
US4738741A (en) * 1986-12-19 1988-04-19 The Dow Chemical Company Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles
US4889577A (en) * 1986-12-19 1989-12-26 The Dow Chemical Company Method for making an improved supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
US4752370A (en) * 1986-12-19 1988-06-21 The Dow Chemical Company Supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
US5039389A (en) * 1986-12-19 1991-08-13 The Dow Chemical Company Membrane/electrode combination having interconnected roadways of catalytically active particles
US5415888A (en) * 1993-04-26 1995-05-16 E. I. Du Pont De Nemours And Company Method of imprinting catalytically active particles on membrane
US5330860A (en) * 1993-04-26 1994-07-19 E. I. Du Pont De Nemours And Company Membrane and electrode structure
DE4327254A1 (en) * 1993-08-13 1995-02-16 Mannesmann Ag Process for the production of catalytically active gas diffusion electrodes
GB9324101D0 (en) * 1993-11-23 1994-01-12 Johnson Matthey Plc Improved manufacture of electrodes
US5470448A (en) * 1994-01-28 1995-11-28 United Technologies Corporation High performance electrolytic cell electrode/membrane structures and a process for preparing such electrode structures
AUPM506894A0 (en) * 1994-04-14 1994-05-05 Memtec Limited Novel electrochemical cells
GB9504713D0 (en) * 1995-03-09 1995-04-26 Johnson Matthey Plc Improved electrocatalytic material
US6413410B1 (en) * 1996-06-19 2002-07-02 Lifescan, Inc. Electrochemical cell
AUPN661995A0 (en) 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US6863801B2 (en) * 1995-11-16 2005-03-08 Lifescan, Inc. Electrochemical cell
US6638415B1 (en) 1995-11-16 2003-10-28 Lifescan, Inc. Antioxidant sensor
US6632349B1 (en) * 1996-11-15 2003-10-14 Lifescan, Inc. Hemoglobin sensor
AUPO855897A0 (en) * 1997-08-13 1997-09-04 Usf Filtration And Separations Group Inc. Automatic analysing apparatus II
US6475360B1 (en) 1998-03-12 2002-11-05 Lifescan, Inc. Heated electrochemical cell
US6878251B2 (en) * 1998-03-12 2005-04-12 Lifescan, Inc. Heated electrochemical cell
RU2278612C2 (en) * 2000-07-14 2006-06-27 Лайфскен, Инк. Immune sensor
US6444115B1 (en) 2000-07-14 2002-09-03 Lifescan, Inc. Electrochemical method for measuring chemical reaction rates
DE10037074A1 (en) 2000-07-29 2002-02-14 Omg Ag & Co Kg Ink for the production of membrane electrode assemblies for PEM fuel cells
AU2002340079A1 (en) * 2001-10-10 2003-04-22 Lifescan Inc. Electrochemical cell
US20060134713A1 (en) * 2002-03-21 2006-06-22 Lifescan, Inc. Biosensor apparatus and methods of use
US20030180814A1 (en) * 2002-03-21 2003-09-25 Alastair Hodges Direct immunosensor assay
CN114335639A (en) * 2021-12-31 2022-04-12 苏州华清京昆新能源科技有限公司 Method for preparing electrolyte film of solid oxide fuel cell with uniform compactness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278788A (en) * 1975-12-04 1977-07-02 Gen Electric Gas generation electrolysis catalysts
JPS5352297A (en) * 1976-09-20 1978-05-12 Gen Electric Electrolytic method and apparatus therefore

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049844A (en) * 1974-09-27 1977-09-20 General Electric Company Method for making a circuit board and article made thereby
US4001042A (en) * 1975-09-02 1977-01-04 United Technologies Corporation Screen printing fuel cell electrolyte matrices using polyethylene oxide as the inking vehicle
US4126588A (en) * 1975-12-30 1978-11-21 Asahi Glass Company Ltd. Fluorinated cation exchange membrane and use thereof in electrolysis of alkali metal halide
US4101395A (en) * 1976-08-30 1978-07-18 Tokuyama Soda Kabushiki Kaisha Cathode-structure for electrolysis
JPS53144481A (en) * 1977-05-24 1978-12-15 Asahi Glass Co Ltd Method of joining fluorine contained cation exchange resin membrane
DE2844496C2 (en) * 1977-12-09 1982-12-30 General Electric Co., Schenectady, N.Y. Process for producing halogen and alkali metal hydroxides
US4224121A (en) * 1978-07-06 1980-09-23 General Electric Company Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4185131A (en) * 1978-06-28 1980-01-22 United Technologies Corporation Screen printing method for making an electrochemical cell electrode
US4229490A (en) * 1978-09-01 1980-10-21 Texas Instruments Incorporated Novel method for catalyst application to a substrate for fuel cell electrodes
JPS5620178A (en) * 1979-07-30 1981-02-25 Asahi Glass Co Ltd Closely sticking method for ion exchange membrane and electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278788A (en) * 1975-12-04 1977-07-02 Gen Electric Gas generation electrolysis catalysts
JPS5352297A (en) * 1976-09-20 1978-05-12 Gen Electric Electrolytic method and apparatus therefore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133548U (en) * 1985-02-09 1986-08-20

Also Published As

Publication number Publication date
EP0026979A2 (en) 1981-04-15
US4319969A (en) 1982-03-16
EP0026979B1 (en) 1984-01-18
CA1147291A (en) 1983-05-31
DE3066183D1 (en) 1984-02-23
EP0026979A3 (en) 1981-09-02
JPS5635785A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JPS5827352B2 (en) Manufacturing method of ion exchange membrane with electrode layer attached
US4909912A (en) Ion exchange membrane cell and electrolytic process using thereof
JPH0116630B2 (en)
US5039389A (en) Membrane/electrode combination having interconnected roadways of catalytically active particles
EP0045603B2 (en) Ion exchange membrane cell and electrolytic process using the same
US4586992A (en) Process for producing potassium hydroxide
US4752370A (en) Supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
EP0061080B1 (en) Ion exchange membrane electrolytic cell
EP0066127B1 (en) Ion exchange membrane electrolytic cell
JPH0248632B2 (en)
US4738741A (en) Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles
JPS6317913B2 (en)
US4561946A (en) Electrolytic cell for the electrolysis of an alkali metal chloride and process of using said cell
US4871703A (en) Process for preparation of an electrocatalyst
EP0045147B1 (en) Process for producing a membrane for electrolysis
US4889577A (en) Method for making an improved supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
JPS6043438B2 (en) Ion exchange membrane electrolyzer
JPS5940231B2 (en) Method for producing alkali hydroxide
JPS6214036B2 (en)
JPS5867878A (en) Preparation of alkali hydroxide
JPS6223076B2 (en)
JPS6053756B2 (en) Ion exchange membrane electrolyzer
PL117739B1 (en) Method of non-porous membrane manufacture
JPS6125787B2 (en)
JPS6040515B2 (en) Ion exchange membrane electrolyzer