JPS6340135B2 - - Google Patents

Info

Publication number
JPS6340135B2
JPS6340135B2 JP55142378A JP14237880A JPS6340135B2 JP S6340135 B2 JPS6340135 B2 JP S6340135B2 JP 55142378 A JP55142378 A JP 55142378A JP 14237880 A JP14237880 A JP 14237880A JP S6340135 B2 JPS6340135 B2 JP S6340135B2
Authority
JP
Japan
Prior art keywords
electrode catalyst
fuel cell
carbon
noble metal
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55142378A
Other languages
Japanese (ja)
Other versions
JPS5768142A (en
Inventor
Seiji Takeuchi
Kenzo Ishii
Toshiki Kahara
Jinichi Imahashi
Masahito Takeuchi
Hideo Okada
Shigeru Okabe
Shinpei Matsuda
Fumito Nakajima
Hiroshi Hida
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55142378A priority Critical patent/JPS5768142A/en
Priority to EP81108278A priority patent/EP0050300B1/en
Priority to DE8181108278T priority patent/DE3177176D1/en
Priority to CA000387906A priority patent/CA1160282A/en
Priority to US06/311,179 priority patent/US4407905A/en
Publication of JPS5768142A publication Critical patent/JPS5768142A/en
Publication of JPS6340135B2 publication Critical patent/JPS6340135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

Fuel cell with improved and stabilized electrode performance having at least one gas diffusion electrode, where the gas diffusion electrode comprises an electronconductive, gas-permeable substrate and an electrode catalyst uniformly distributed on the substrate, the electrode catalyst comprising colonies each consisting of not more than 20 primary particles of noble metal each having a size of 10-30 A and being uniformly distributed and deposited on carrier powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は貴金属元素粒子を担体上に均一に分散
沈着させ、固−液−気の三相界面を有する電極を
形成しうる燃料電池用電極触媒及びその製造方法
に関する。 燃料電池において、性能良好な電極を作製する
ためには、電極の基となる電極触媒の活性を高め
ること及び電極形成時において固−液−気の三相
界面を形成し易い状態にすることが必要である。 一般に、貴金属元素(以下単に貴金属という)
触媒の活性は、貴金属粒子を微細化して担体上に
均一に分散させることにより増大する。 貴金属触媒の調製法は、従来から多数知られて
おり、一般的には、例えば活性炭又はカーボンブ
ラツクに塩化白金酸溶液を含浸し、これを化学薬
品により湿式還元又は還元ガスにより乾式還元す
る方法がある。最近では、ヘンリー・ジ・ペトロ
ウが亜硫酸プラチナ錯塩を形成し、次いで酸化処
理することにより、微細な白金粒子を担体上に沈
着させることを提案している。(特開昭51−88478
号公報参照)又、更には、ヴイノツド・モナラ
ル・ジヤランが二チオン酸ナトリウム及び過酸化
水素を用いて塩化白金酸溶液から炭素担体上に50
Å以下の白金粒子を沈着させることが可能である
ことを開示している。(特開昭54−92588号公報参
照) 一方、ポリビニルアルコール(以下PVAと略
記する)を保護コロイドとしてコロイドと白金粒
子の分散液を調製する方法については、古くは
Nordらの報告〔J.Am.Chem.Soc.、63、2745
(1941)参照〕があり、又、最近では中道、平井
の報告〔表面、17、(4)、279〜289(1979)参照〕
がある。 又、本発明者等は、この保護コロイド法を用い
て担体の表面状態ならびに親水性重合体の種類及
びその量を変化させることにより微細な貴金属粒
子を炭素担体上に均一に分散、担持させうること
を確認した。しかし、この方法による電極触媒を
用いた電極としての性能は、電極触媒そのものの
活性が高いにもかかわらず、前述したように、電
極の三相界面制御の工程での影響を大きく受ける
ことが判明した。 本発明はこのような観点に立つてなされたもの
であり、その目的は、貴金属粒子を微細化して担
体上に均一に分散させ、固−液−気の3相界面を
有する性能の安定した電極を形成しうる燃料電池
用電極触媒及びその製造方法を提供することであ
る。 本発明につき概説すれば、本発明の燃料電池用
電極触媒(第1番目の発明)は、貴金属元素粒
子、炭素系粉体及びフツ化黒鉛粒子よりなり、か
つ貴金属元素粒子はフツ化黒鉛粒子の介在により
炭素系粉体上に実質的に非集落状態で担持された
ことを特徴とし、又、本発明の燃料電池用電極触
媒の製造方法(第2番目の発明)は、貴金属イオ
ン又は貴金属の錯イオンを含む水−アルコール系
溶媒、親水性重合体、炭素系粉体及びフツ化黒鉛
よりなる混合系を加熱還元することを特徴とする
ものである。 本発明者等は、フツ化黒鉛の疎水的性質に着目
して種々検討を重ねた結果、燃料電池用電極触媒
調製時に貴金属粒子例えば白金粒子及び炭素粉体
に更にフツ化黒鉛を添加することにより共存する
炭素系粉体(担体)との相互作用によつて白金粒
子の分散度を向上させることができ、又、電極板
形成時には、添加したフツ化黒鉛自身の溌水性に
より理想的な三相界面を有する電極を製造するこ
とができることを見出して本発明に到達したもの
である。 本発明の触媒は、貴金属イオン又は貴金属の錯
イオンを含む水−アルコール系溶媒、親水性重合
体、炭素系粉体及びフツ化黒鉛よりなる混合系を
約70℃程度で数時間(2〜6時間)加熱処理する
ことにより調製される。この際、上記各成分の配
合量を調整することにより、貴金属粒子はフツ化
黒鉛の介在により炭素系粉体上に実質的に非集落
状態で担持される。なお、例えば白金原子の直径
は約5Åであるが、本発明においては、直径10〜
30Åの白金粒子を一次粒子として考慮し、この一
次粒子の集落が約10個以下である場合を非集落と
する。 本発明における貴金属としては、Pt、Pd、
Rh、Ru又はIrあるいはそれらの混合物を適用す
ることができる。 又、触媒担体となる炭素系粉体としては、黒
鉛、カーボンブラツク(例えばアセチレンブラツ
ク)又は活性炭等あるいはそれらの混合物を適用
することができる。 燃料電池用電極触媒として、貴金属の担持量
は、通常0.1〜20重量%程度とするが、電極の単
位面積当りの貴金属量と電池性能の関係から1〜
10重量%とすることが望ましい。 又、本発明における親水性重合体は保護コロイ
ドとして使用され、PVA、ポリビニルメチルエ
ーテル、ポリビニルピロリドン、ポリメチルメタ
アクリレート、ゼラチン及びアラビアゴム等を適
用することができる。又、その添加量は貴金属に
対し重量比で0.1〜50とすることが適当である。 又、本発明におけるフツ化黒鉛の添加量は、触
媒(貴金属粒子+炭素系粉体)の重量に対し10〜
80重量%とすることが適当である。 更に又、本発明における水−アルコール系溶媒
(かつ還元剤)のアルコールとしては、メタノー
ル、エタノール、イソプロパノール、2−メトキ
シエタノール及び1,2−ジメトキシエタン等を
適宜使用することができ、そのアルコール濃度は
10〜90容量%とすることが適当である。 水−メタノール(1:1)500mlを還元剤とし
てアセチレンブラツク担体に1重量%の白金を担
持させる際、PVAのような親水性重合体を用い
ない場合には、担体上の白金粒子は数百〜数千Å
の粗大粒子を形成する。PVAを用いると白金の
一次粒子は10〜30Åと微細化されるようになる。
しかし、(PVA/白金)の重量比が1/10未満で
あると白金が数十個づつ集落して担体上に分散沈
着するようになる。その重量比が20/1以上にな
ると、白金粒子は担体上に定量的に沈着しなくな
る傾向にあり、50/1以上になると触媒調製後の
固液分離が非常に困難になる。 又、白金の担持量を10重量%にする場合、反応
液全量に対する塩化白金酸の使用量が多くなり、
反応液のPHが低くなる結果、保護コロイドの作用
が低下し、上記1重量%担持と同じ重量比
(PVA/白金)では、白金粒子の分散度が悪くな
る。したがつて、反応液を苛性アルカリ又は炭酸
アルカリで中和して初期PH値を一定(通常1.5〜
3.5)に保つことにより、塩化白金酸の使用量に
関係なく、所定量の白金粒子を担体上に沈着させ
ることができる。 本発明においては、上記の触媒調製時に、フツ
化黒鉛粒子を添加することにより、貴金属の一次
粒子の集落を実質的に非集落状態にすることがで
きる。すなわち、フツ化黒鉛の添加は、担体−コ
ロイド貴金属の相互作用間に特異な挙動を与え、
担体に沈着する貴金属の一次粒子の大きさは変ら
ないが、この一次粒子の集落の個数は、添加しな
い場合の数十個に対し数個程度に低下し、分散の
度合は著しく改善される。 本発明の燃料電池用電極触媒から同電極を製造
するに当つては、この電極触媒の熱処理が必要で
ある。この熱処理により、貴金属粒子表面に存在
する保護コロイドの親水性重合体を熱分解し、触
媒性能を向上させることができる。熱処理は、酸
化性ガス雰囲気下においては100〜400℃で、還元
性ガス又は不活性ガス雰囲気下では100〜500℃
で、2時間程度行なうことが適当であるが、酸化
性ガス及び還元性ガスを不活性ガスを介して交互
に繰り返すことにより適度に調整することができ
る。その他の工程は通常用いられる方法にしたが
つて電極を作製することができる。 次に、本発明を実施例により説明するが、本発
明はこれらによりなんら限定されるものではな
い。 実施例 1 メタノール250ml及び水225mlの混合溶液に、
PVA1.0gを溶解した。これに、1ml当り20mgの
白金を含有する塩化白金酸25mlを加え、次いでア
セチレンブラツク5g及びフツ化黒鉛1.5gを加え
た。これを、還流冷却器を備えた円底フラスコに
移し、強く撹拌しながら約70℃で還流加熱した。
反応開始後4〜6時間で初期Pt量の99%以上が
担体であるアセチレンブラツク上に沈着した。こ
の電極触媒を過、水洗、乾燥後、電子顕微鏡写
真で観察したところ、白金の一次粒子は径10〜30
Åで、その集落は数個程度で、担体上に均一に分
散していた。 比較例 1 フツ化黒鉛を添加しなかつた以外は実施例1と
同様の操作により電極触媒を調製した。この触媒
のPtの一次粒子は径10〜30Åとあまり変らなか
つたが、その集落は数十個であつた。 実施例 2 イソプロピルアルコール250ml及び水100mlの混
合溶液に、PVA2.0gを溶解した。これに1ml当
り20mgの白金を含有する塩化白金酸溶液100mlを
加えた。この混合溶液のPHをアンモニア水で2.2
に調節し、蒸留水で全量500mlとした。次いで、
この溶液に黒鉛20g及びフツ化黒鉛2.0gを加えた。
これを還流冷却器を備えた円底フラスコに移し、
強く撹拌しながら約70℃で還流加熱した。反応開
始後4〜6時間で初期白金量の95%以上が黒鉛担
体上に沈着し、電極触媒が形成された。この電極
触媒を過、水洗、乾燥後、電子顕微鏡写真で観
察したところ、白金の粒子は径30〜50Åで、担体
上に均一に分散していた。 実施例 3 メタノール100ml及び水375mlの混合溶液に、
PVA1.0gを溶解した。これに1ml当り20mgの白
金を含有する塩化白金酸溶液25mlを加え、次いで
アセチレンブラツク5g及びフツ化黒鉛2.0gを加え
た。これを還流冷却器を備えた円底フラスコに移
し、強く撹拌しながら約70℃で還流加熱した。反
応開始後4〜6時間で初期白金量の99%以上がア
セチレンブラツク担体上に沈着し、電極触媒が形
成された。この電極触媒を過、水洗、乾燥後、
電子顕微鏡写真で観察したところ、白金の一次粒
子は径10〜30Åで、その集落は数個程度で担体上
に均一に分散していた。 比較例 2 フツ化黒鉛を添加しなかつた以外は実施例3と
同様の操作により電極触媒を調製した。この触媒
の白金の一次粒子は径10〜30Åとあまり変らなか
つたが、その集落は数十個と多かつた。 実施例 4 実施例1及び3で得られた電極触媒を、窒素ガ
ス気流中、400℃で2時間熱処理した後、結着性
及び溌水性付与のため、フツ素樹脂(ダイキン工
業社製)の懸濁液をフツ素樹脂が10重量%となる
割合で加えた。これを混練後、カーボン繊維シー
トに塗布し、次いで窒素気流中、400℃で2時間
焼成することにより電極を形成した。各電極の白
金付着量は0.45mg/cm2であり、これらの電極の空
気極としての性能を評価した。得られた結果を下
記第1表に示す。なお、電解質としては96%
H3PO4を用い、測定温度は170℃とした。
The present invention relates to a fuel cell electrode catalyst capable of uniformly dispersing and depositing noble metal element particles on a carrier to form an electrode having a solid-liquid-gas three-phase interface, and a method for producing the same. In order to produce electrodes with good performance in fuel cells, it is necessary to increase the activity of the electrode catalyst that forms the basis of the electrode, and to create a state that facilitates the formation of a solid-liquid-gas three-phase interface during electrode formation. is necessary. Generally, noble metal elements (hereinafter simply referred to as noble metals)
The activity of the catalyst is increased by micronizing the noble metal particles and uniformly dispersing them on the support. Many methods for preparing noble metal catalysts have been known. Generally, for example, activated carbon or carbon black is impregnated with a chloroplatinic acid solution, and this is wet-reduced using chemicals or dry-reduced using reducing gas. be. More recently, Henry J. Petrou has proposed depositing fine platinum particles on a support by forming a platinum sulfite complex followed by oxidation treatment. (Unexamined Japanese Patent Publication No. 51-88478
In addition, Vinoud Monaral Dialan also reported that 50% of the chloroplatinic acid solution was deposited on a carbon support using sodium dithionate and hydrogen peroxide.
It is disclosed that it is possible to deposit platinum particles of Å or less. (Refer to Japanese Unexamined Patent Publication No. 54-92588.) On the other hand, there is a method for preparing a dispersion of colloid and platinum particles using polyvinyl alcohol (hereinafter abbreviated as PVA) as a protective colloid.
Report by Nord et al. [J.Am.Chem.Soc., 63 , 2745
(1941)], and more recently, a report by Nakamichi and Hirai [see obverse, 17 , (4), 279-289 (1979)].
There is. In addition, the present inventors have found that by using this protective colloid method, fine precious metal particles can be uniformly dispersed and supported on a carbon carrier by changing the surface condition of the carrier and the type and amount of the hydrophilic polymer. It was confirmed. However, despite the high activity of the electrocatalyst itself, the performance of the electrode using this method was found to be greatly affected by the process of controlling the three-phase interface of the electrode, as described above. did. The present invention has been made from this perspective, and its purpose is to create an electrode with stable performance that has a solid-liquid-gas three-phase interface by making noble metal particles fine and uniformly dispersing them on a carrier. An object of the present invention is to provide a fuel cell electrode catalyst capable of forming a fuel cell electrode catalyst and a method for producing the same. To summarize the present invention, the fuel cell electrode catalyst of the present invention (first invention) consists of noble metal element particles, carbon-based powder, and fluorinated graphite particles, and the noble metal element particles are made of fluorinated graphite particles. The method for producing a fuel cell electrode catalyst of the present invention (second invention) is characterized in that it is supported on a carbon-based powder in a substantially non-agglomerated state by interposition. The method is characterized in that a mixed system consisting of a water-alcohol solvent containing complex ions, a hydrophilic polymer, a carbon powder, and fluorinated graphite is reduced by heating. As a result of various studies focusing on the hydrophobic properties of graphite fluoride, the present inventors discovered that graphite fluoride was further added to noble metal particles such as platinum particles and carbon powder when preparing an electrode catalyst for fuel cells. The degree of dispersion of platinum particles can be improved through interaction with coexisting carbon-based powder (carrier), and when forming an electrode plate, ideal three-phase The present invention was achieved by discovering that an electrode having an interface can be manufactured. The catalyst of the present invention is prepared by heating a mixed system consisting of a water-alcoholic solvent containing noble metal ions or noble metal complex ions, a hydrophilic polymer, carbon powder, and graphite fluoride at about 70°C for several hours (2 to 6 hours). time) prepared by heat treatment. At this time, by adjusting the blending amounts of each of the above-mentioned components, the noble metal particles are supported on the carbon-based powder in a substantially non-agglomerated state through the intervention of graphite fluoride. Note that, for example, the diameter of a platinum atom is about 5 Å, but in the present invention, the diameter of a platinum atom is about 10 to 5 Å.
Platinum particles with a diameter of 30 Å are considered as primary particles, and cases where there are approximately 10 or less of these primary particles are considered non-coagulated. The noble metals in the present invention include Pt, Pd,
Rh, Ru or Ir or mixtures thereof can be applied. Further, as the carbon-based powder serving as the catalyst carrier, graphite, carbon black (for example, acetylene black), activated carbon, or a mixture thereof can be used. As an electrode catalyst for fuel cells, the amount of noble metal supported is usually about 0.1 to 20% by weight, but from the relationship between the amount of precious metal per unit area of the electrode and cell performance, it is about 1 to 20% by weight.
The content is preferably 10% by weight. Further, the hydrophilic polymer in the present invention is used as a protective colloid, and PVA, polyvinyl methyl ether, polyvinyl pyrrolidone, polymethyl methacrylate, gelatin, gum arabic, etc. can be applied. Moreover, it is appropriate that the amount added is 0.1 to 50 in weight ratio to the noble metal. In addition, the amount of graphite fluoride added in the present invention is 10 to 10% based on the weight of the catalyst (noble metal particles + carbon powder).
A suitable content is 80% by weight. Furthermore, as the alcohol of the water-alcoholic solvent (and reducing agent) in the present invention, methanol, ethanol, isopropanol, 2-methoxyethanol, 1,2-dimethoxyethane, etc. can be used as appropriate, and the alcohol concentration teeth
A suitable range is 10 to 90% by volume. When supporting 1% by weight of platinum on an acetylene black carrier using 500ml of water-methanol (1:1) as a reducing agent, if a hydrophilic polymer such as PVA is not used, the number of platinum particles on the carrier may be several hundreds. ~several thousand Å
form coarse particles. When PVA is used, the primary particles of platinum become finer to 10 to 30 Å.
However, if the weight ratio (PVA/platinum) is less than 1/10, platinum particles will aggregate in groups of several dozen pieces and be dispersed and deposited on the carrier. When the weight ratio exceeds 20/1, platinum particles tend not to be deposited quantitatively on the carrier, and when the weight ratio exceeds 50/1, solid-liquid separation after catalyst preparation becomes extremely difficult. In addition, when the amount of platinum supported is 10% by weight, the amount of chloroplatinic acid used relative to the total amount of the reaction solution increases,
As a result of the lowering of the pH of the reaction solution, the action of the protective colloid is lowered, and at the same weight ratio (PVA/platinum) as the above-mentioned 1% by weight loading, the degree of dispersion of platinum particles becomes poor. Therefore, the reaction solution is neutralized with caustic alkali or carbonate alkali to keep the initial pH value constant (usually 1.5 to 1.5).
3.5), a predetermined amount of platinum particles can be deposited on the carrier regardless of the amount of chloroplatinic acid used. In the present invention, by adding fluorinated graphite particles during the preparation of the catalyst, it is possible to make the primary particles of the noble metal substantially non-aggregated. In other words, the addition of graphite fluoride gives a unique behavior between the carrier-colloid noble metal interaction,
Although the size of the primary particles of the precious metal deposited on the carrier does not change, the number of clusters of primary particles decreases from several tens when not added, and the degree of dispersion is significantly improved. In order to produce an electrode from the fuel cell electrode catalyst of the present invention, it is necessary to heat-treat the electrode catalyst. This heat treatment can thermally decompose the hydrophilic polymer of the protective colloid present on the surface of the noble metal particles and improve the catalyst performance. Heat treatment is performed at 100-400℃ under an oxidizing gas atmosphere, and at 100-500℃ under a reducing gas or inert gas atmosphere.
It is appropriate to carry out the reaction for about 2 hours, but it can be adjusted appropriately by repeating the oxidizing gas and the reducing gas alternately via an inert gas. For other steps, the electrode can be manufactured according to commonly used methods. Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way. Example 1 In a mixed solution of 250 ml of methanol and 225 ml of water,
1.0g of PVA was dissolved. To this was added 25 ml of chloroplatinic acid containing 20 mg of platinum per ml, followed by 5 g of acetylene black and 1.5 g of graphite fluoride. This was transferred to a round bottom flask equipped with a reflux condenser and heated to reflux at about 70° C. with vigorous stirring.
Within 4 to 6 hours after the start of the reaction, more than 99% of the initial amount of Pt was deposited on the acetylene black carrier. After filtering, washing with water, and drying, this electrode catalyst was observed using an electron microscope, and it was found that the primary particles of platinum were 10 to 30 mm in diameter.
Å, there were only a few colonies and they were uniformly dispersed on the carrier. Comparative Example 1 An electrode catalyst was prepared in the same manner as in Example 1 except that graphite fluoride was not added. The primary particles of Pt in this catalyst did not vary much in diameter, ranging from 10 to 30 Å, but the number of such particles was several dozen. Example 2 2.0 g of PVA was dissolved in a mixed solution of 250 ml of isopropyl alcohol and 100 ml of water. To this was added 100 ml of a chloroplatinic acid solution containing 20 mg of platinum per ml. Adjust the pH of this mixed solution to 2.2 with ammonia water.
The total volume was adjusted to 500 ml with distilled water. Then,
20 g of graphite and 2.0 g of fluorinated graphite were added to this solution.
Transfer this to a round bottom flask equipped with a reflux condenser,
The mixture was heated to reflux at approximately 70° C. with vigorous stirring. Within 4 to 6 hours after the start of the reaction, more than 95% of the initial amount of platinum was deposited on the graphite support, forming an electrode catalyst. After filtering, washing with water, and drying, this electrode catalyst was observed using an electron microscope, and it was found that the platinum particles had a diameter of 30 to 50 Å and were uniformly dispersed on the carrier. Example 3 In a mixed solution of 100 ml of methanol and 375 ml of water,
1.0g of PVA was dissolved. To this was added 25 ml of a chloroplatinic acid solution containing 20 mg of platinum per ml, followed by 5 g of acetylene black and 2.0 g of graphite fluoride. This was transferred to a round bottom flask equipped with a reflux condenser and heated to reflux at about 70° C. while stirring vigorously. Within 4 to 6 hours after the start of the reaction, more than 99% of the initial amount of platinum was deposited on the acetylene black carrier, forming an electrocatalyst. After filtering, washing with water, and drying this electrode catalyst,
When observed using an electron micrograph, the primary platinum particles had a diameter of 10 to 30 Å, and there were only a few clusters of them, which were uniformly dispersed on the carrier. Comparative Example 2 An electrode catalyst was prepared in the same manner as in Example 3 except that graphite fluoride was not added. The primary platinum particles of this catalyst did not vary much in diameter, ranging from 10 to 30 Å, but the number of colonies was as large as several dozen. Example 4 The electrode catalysts obtained in Examples 1 and 3 were heat-treated at 400°C for 2 hours in a nitrogen gas stream, and then treated with fluororesin (manufactured by Daikin Industries, Ltd.) to impart binding and water repellency properties. The suspension was added at a proportion of 10% by weight of fluororesin. After kneading this, it was applied to a carbon fiber sheet and then baked at 400° C. for 2 hours in a nitrogen stream to form an electrode. The amount of platinum deposited on each electrode was 0.45 mg/cm 2 , and the performance of these electrodes as air electrodes was evaluated. The results obtained are shown in Table 1 below. In addition, as an electrolyte, 96%
H 3 PO 4 was used and the measurement temperature was 170°C.

【表】 第1表から明らかなように、何れも各電流密度
において0.7〜0.8Vの電位と良好であつた。 実施例 5 実施例1及び3で得られた触媒を、空気中、
300℃で2時間加熱処理した後、実施例4と同様
に電極板として形成し、空気極としての性能を評
価した。得られた結果を下記第2表に示す。
[Table] As is clear from Table 1, the potential was 0.7 to 0.8 V at each current density, which was good. Example 5 The catalysts obtained in Examples 1 and 3 were placed in air,
After heat treatment at 300° C. for 2 hours, it was formed into an electrode plate in the same manner as in Example 4, and its performance as an air electrode was evaluated. The results obtained are shown in Table 2 below.

【表】 第2表から明らかなように、何れも各電流密度
において0.7〜0.8Vを電位と良好であつた。 実施例 6 本実施例においては、実施例1及び比較例1で
得られた電極触媒ならびに比較例1で得られた電
極触媒を用い、これに電極板を形成する際にフツ
化黒鉛を添加したものの空気極としての性能をそ
れぞれ7枚につき評価し、かつそのばらつきを調
べた。得られた結果を下記第3表に示す。なお、
電流密度100mA/cm2で試験した。
[Table] As is clear from Table 2, the potential was 0.7 to 0.8 V at each current density, which was good. Example 6 In this example, the electrode catalysts obtained in Example 1 and Comparative Example 1 and the electrode catalyst obtained in Comparative Example 1 were used, and graphite fluoride was added thereto when forming an electrode plate. The performance of each of the 7 pieces as air electrodes was evaluated, and the variations were investigated. The results obtained are shown in Table 3 below. In addition,
Tested at a current density of 100 mA/cm 2 .

【表】 第2表から明らかなように、本発明の電極触媒
は良好な性能を有し、かつばらつきが少ない。又
フツ化黒鉛を電極形成時に添加しても優れた効果
が得られないことが判明した。 以上説明したように、本発明によれば、貴金属
(例えばPt)触媒の貴金属粒子を微細化して担体
(炭素系粉体)上に均一に分散沈着できるため、
燃料電池用電極を高性能にすることができると同
時に、溌水剤としてのフツ化黒鉛が均一に分散し
て介在するため、形成された電極板の性能を安定
化できるという効果を得ることができる。
[Table] As is clear from Table 2, the electrode catalyst of the present invention has good performance and little variation. Furthermore, it has been found that no excellent effect can be obtained even when fluorinated graphite is added at the time of electrode formation. As explained above, according to the present invention, the noble metal particles of the noble metal (for example, Pt) catalyst can be made fine and uniformly dispersed and deposited on the carrier (carbon-based powder).
It is possible to improve the performance of fuel cell electrodes, and at the same time, because the fluorinated graphite as a water repellent agent is uniformly dispersed, it is possible to obtain the effect of stabilizing the performance of the formed electrode plate. can.

Claims (1)

【特許請求の範囲】 1 貴金属元素粒子、炭素系粉体及びフツ化黒鉛
粒子よりなり、かつ貴金属元素粒子はフツ化黒鉛
粒子の介在により炭素系粉体上に実質的に非集落
状態で担持されたことを特徴とする燃料電池用電
極触媒。 2 貴金属元素がPt、Pd、Rh、Ru、Irもしくは
それらの2種以上の混合物である特許請求の範囲
第1項記載の燃料電池用電極触媒。 3 炭素系粉体が黒鉛、カーボンブラツク、活性
炭もしくはそれらの2種以上の混合物である特許
請求の範囲第1項又は第2項記載の燃料電池用電
極触媒。 4 貴金属元素の配合量が炭素系粉体の重量に対
し0.1〜20重量%である特許請求の範囲第1項な
いし第3項のいずれかに記載の燃料電池用電極触
媒。 5 貴金属元素の配合量が炭素系粉体の重量に対
し1〜10重量%である特許請求の範囲第4項記載
の燃料電池用電極触媒。 6 フツ化黒鉛の配合量が貴金属元素と炭素系粉
体の合計重量に対し10〜80重量%である特許請求
の範囲第1項ないし第5項のいずれかに記載の燃
料電池用電極触媒。 7 貴金属イオン又は貴金属の錯イオンを含む水
−アルコール系溶媒、親水性重合体、炭素系粉体
及びフツ化黒鉛よりなる混合系を加熱還元するこ
とを特徴とする燃料電池用電極触媒の製造方法。 8 炭素系粉体を添加する前に貴金属−水−溶媒
系のPHを約1.5〜3.5に調整する特許請求の範囲第
7項記載の燃料電池用電極触媒の製造方法。 9 貴金属元素がPt、Pd、Rh、Ru、Irもしくは
それらの2種以上の混合物である特許請求の範囲
第7項又は第8項記載の燃料電池用電極触媒の製
造方法。 10 炭素系粉体が黒鉛、カーボンブラツク、活
性炭もしくはそれらの2種以上の混合物である特
許請求の範囲第7項ないし第9項のいずれかに記
載の燃料電池用電極触媒の製造方法。 11 貴金属元素の配合量が炭素系粉体の重量に
対し0.1〜20重量%である特許請求の範囲第7項
ないし第10項のいずれかに記載の燃料電池用電
極触媒の製造方法。 12 貴金属元素の配合量が炭素系粉体の重量に
対し1〜10重量%である特許請求の範囲第11項
記載の燃料電池用電極触媒の製造方法。 13 フツ化黒鉛の配合量が貴金属元素と炭素系
粉体の合計重量に対し10〜80重量%である特許請
求の範囲第7項ないし12項のいずれかに記載の
燃料電池用電極触媒の製造方法。 14 アルコールがメタノール、エタノール、イ
ソプロパノール、2−メトキシエタノール又は
1.2−ジメトキシエタンである特許請求の範囲第
7項ないし第13項のいずれかに記載の燃料電池
用電極触媒の製造方法。 15 水−アルコール系溶媒のアルコール濃度が
10〜90容量%である特許請求の範囲第7項ないし
第14項のいずれかに記載の燃料電池用電極触媒
の製造方法。 16 親水性重合体がポリビニルアルコール、ポ
リビニルメチルエーテル、ポリビニルピロリド
ン、ポリメチルメタクリレート、ゼラチン又はア
ラビアゴムである特許請求の範囲第7項ないし第
15項のいずれかに記載の燃料電池用電極触媒の
製造方法。 17 親水性重合体の配合量が貴金属元素に対し
重量比で0.1〜50である特許請求の範囲第7項な
いし第16項のいずれかに記載の燃料電池用電極
触媒の製造方法。
[Scope of Claims] 1. Consists of noble metal element particles, carbon-based powder, and fluorinated graphite particles, and the noble metal element particles are supported on the carbon-based powder in a substantially non-agglomerated state through the presence of the fluorinated graphite particles. An electrode catalyst for fuel cells characterized by: 2. The fuel cell electrode catalyst according to claim 1, wherein the noble metal element is Pt, Pd, Rh, Ru, Ir, or a mixture of two or more thereof. 3. The fuel cell electrode catalyst according to claim 1 or 2, wherein the carbon-based powder is graphite, carbon black, activated carbon, or a mixture of two or more thereof. 4. The fuel cell electrode catalyst according to any one of claims 1 to 3, wherein the amount of the noble metal element is 0.1 to 20% by weight based on the weight of the carbon-based powder. 5. The fuel cell electrode catalyst according to claim 4, wherein the amount of the noble metal element is 1 to 10% by weight based on the weight of the carbon-based powder. 6. The fuel cell electrode catalyst according to any one of claims 1 to 5, wherein the amount of graphite fluoride is 10 to 80% by weight based on the total weight of the noble metal element and carbon-based powder. 7. A method for producing an electrode catalyst for a fuel cell, which comprises thermally reducing a mixed system consisting of a water-alcoholic solvent containing noble metal ions or complex ions of noble metals, a hydrophilic polymer, carbon-based powder, and graphite fluoride. . 8. The method for producing an electrode catalyst for a fuel cell according to claim 7, wherein the pH of the noble metal-water-solvent system is adjusted to about 1.5 to 3.5 before adding the carbon-based powder. 9. The method for producing an electrode catalyst for a fuel cell according to claim 7 or 8, wherein the noble metal element is Pt, Pd, Rh, Ru, Ir, or a mixture of two or more thereof. 10. The method for producing an electrode catalyst for a fuel cell according to any one of claims 7 to 9, wherein the carbon-based powder is graphite, carbon black, activated carbon, or a mixture of two or more thereof. 11. The method for producing an electrode catalyst for a fuel cell according to any one of claims 7 to 10, wherein the amount of the noble metal element is 0.1 to 20% by weight based on the weight of the carbon-based powder. 12. The method for producing a fuel cell electrode catalyst according to claim 11, wherein the amount of the noble metal element is 1 to 10% by weight based on the weight of the carbon-based powder. 13. Production of an electrode catalyst for a fuel cell according to any one of claims 7 to 12, wherein the amount of graphite fluoride is 10 to 80% by weight based on the total weight of the noble metal element and carbon-based powder. Method. 14 Alcohol is methanol, ethanol, isopropanol, 2-methoxyethanol or
1. The method for producing a fuel cell electrode catalyst according to any one of claims 7 to 13, which is 1,2-dimethoxyethane. 15 The alcohol concentration of the water-alcohol solvent is
The method for producing an electrode catalyst for a fuel cell according to any one of claims 7 to 14, wherein the content is 10 to 90% by volume. 16. Production of the fuel cell electrode catalyst according to any one of claims 7 to 15, wherein the hydrophilic polymer is polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, polymethyl methacrylate, gelatin, or gum arabic. Method. 17. The method for producing an electrode catalyst for a fuel cell according to any one of claims 7 to 16, wherein the hydrophilic polymer is blended in a weight ratio of 0.1 to 50 to the noble metal element.
JP55142378A 1980-10-14 1980-10-14 Electrode catalyst for fuel cell and its production Granted JPS5768142A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55142378A JPS5768142A (en) 1980-10-14 1980-10-14 Electrode catalyst for fuel cell and its production
EP81108278A EP0050300B1 (en) 1980-10-14 1981-10-13 Fuel cell
DE8181108278T DE3177176D1 (en) 1980-10-14 1981-10-13 FUEL CELL.
CA000387906A CA1160282A (en) 1980-10-14 1981-10-14 Fuel cell
US06/311,179 US4407905A (en) 1980-10-14 1981-10-14 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55142378A JPS5768142A (en) 1980-10-14 1980-10-14 Electrode catalyst for fuel cell and its production

Publications (2)

Publication Number Publication Date
JPS5768142A JPS5768142A (en) 1982-04-26
JPS6340135B2 true JPS6340135B2 (en) 1988-08-09

Family

ID=15313977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55142378A Granted JPS5768142A (en) 1980-10-14 1980-10-14 Electrode catalyst for fuel cell and its production

Country Status (5)

Country Link
US (1) US4407905A (en)
EP (1) EP0050300B1 (en)
JP (1) JPS5768142A (en)
CA (1) CA1160282A (en)
DE (1) DE3177176D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183560A (en) * 2008-04-11 2008-08-14 Japan Steel Works Ltd:The Carrier-free hydrocarbon direct decomposition catalyst

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107612A3 (en) * 1982-09-02 1985-12-27 Eltech Systems Limited Method of conditioning a porous gas-diffusion electrode
USH16H (en) 1984-03-02 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Fuel cell electrode and method of preparation
EP0157385B1 (en) * 1984-04-02 1991-06-12 Hitachi, Ltd. Fuel cell electrode, process for producing the same and fuel cell using the same
US4614575A (en) * 1984-11-19 1986-09-30 Prototech Company Polymeric hydrogel-containing gas diffusion electrodes and methods of using the same in electrochemical systems
WO1988006646A1 (en) * 1987-03-02 1988-09-07 Westinghouse Electric Corporation Coprecipitated hydrogels in pressure tolerant gas diffusion electrodes
EP0374145A1 (en) * 1987-03-02 1990-06-27 Westinghouse Electric Corporation Ionomeric polymers with ionomer membrane in pressure tolerant gas diffusion electrodes
US5092976A (en) * 1987-03-02 1992-03-03 Westinghouse Electric Corp. Hydrogel loaded active layer in pressure tolerant gas diffusion electrodes
US4787964A (en) * 1987-05-11 1988-11-29 Caterpillar Industrial Inc. Gas diffusion electrodes, electrochemical cells and methods exhibiting improved voltage performance
JPH0624635B2 (en) * 1987-05-19 1994-04-06 ヤンマーディーゼル株式会社 Highly active catalyst powder for methanol fuel cell and method for producing highly active electrode using the same
US5041195A (en) * 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
US5133842A (en) * 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
US5132193A (en) * 1990-08-08 1992-07-21 Physical Sciences, Inc. Generation of electricity with fuel cell using alcohol fuel
JPH06106076A (en) * 1991-12-04 1994-04-19 Stonehard Assoc Inc Preparation of high-dispersion metal particle carrying catalyst
JPH06114274A (en) * 1991-12-04 1994-04-26 Stonehard Assoc Inc Preparation of high-dispersion metal particle carrying catalyst
US5330860A (en) * 1993-04-26 1994-07-19 E. I. Du Pont De Nemours And Company Membrane and electrode structure
US5599638A (en) 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US6703150B2 (en) 1993-10-12 2004-03-09 California Institute Of Technology Direct methanol feed fuel cell and system
KR100372029B1 (en) * 1994-10-18 2003-04-11 유니버시티 오브 서던 캘리포니아 Organic Fuel Cell
DE4443701C1 (en) * 1994-12-08 1996-08-29 Degussa Shell catalyst, process for its production and its use
GB9507012D0 (en) * 1995-04-05 1995-05-31 Johnson Matthey Plc Improved electrode
US5683829A (en) * 1995-05-22 1997-11-04 Sarangapani; Shantha Redox promoters for methonol fuel cells
US5928806A (en) * 1997-05-07 1999-07-27 Olah; George A. Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons
DE19721437A1 (en) * 1997-05-21 1998-11-26 Degussa CO-tolerant anode catalyst for PEM fuel cells and process for its manufacture
DE19745904A1 (en) * 1997-10-17 1999-04-22 Hoechst Ag Water-soluble metal colloid solution, used as catalyst for fuel cells and electrolysis cells
FR2775622A1 (en) * 1998-03-03 1999-09-03 Atochem Elf Sa SUPPORTED BIMETALLIC CATALYZER BASED ON PLATINUM OR SILVER, ITS MANUFACTURING PROCESS AND ITS USE FOR ELECTROCHEMICAL CELLS
CN1205685C (en) 1999-11-17 2005-06-08 尼电源系统公司 Fuel cells having silicon substrates and/or sol-gel derived support structures
EP1290068B1 (en) 2000-06-02 2010-08-25 SRI International Polymer membrane composition
DE10059743A1 (en) * 2000-12-01 2002-06-20 Rolf Hempelmann Catalyst separation process
US7316855B2 (en) 2001-06-01 2008-01-08 Polyfuel, Inc. Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US7005206B2 (en) 2001-06-01 2006-02-28 Polyfuel, Inc. Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US7094490B2 (en) 2002-05-13 2006-08-22 Polyfuel, Inc. Ion conductive block copolymers
US7354679B2 (en) 2002-05-13 2008-04-08 Polyfuel, Inc. Ion conductive random copolymers
EP1517929B1 (en) 2002-05-13 2010-07-14 University Of North Florida Board of Trustees Sulfonated copolymer
KR100420375B1 (en) * 2002-05-28 2004-02-26 유니버시티 오브 서던 캘리포니아 Liquid feed fuel cell using fuel mixed with perfluorooctansulfonic acid
US7282291B2 (en) 2002-11-25 2007-10-16 California Institute Of Technology Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells
JP4293831B2 (en) * 2003-05-16 2009-07-08 三洋電機株式会社 Fuel cell
JP2005235435A (en) * 2004-02-17 2005-09-02 Seiko Epson Corp Functional material layer forming composition, forming method of functional material layer, manufacturing method of fuel cell, electronic apparatus, and automobile
US20060292407A1 (en) * 2004-12-15 2006-12-28 Dominic Gervasio Microfluidic fuel cell system and method for portable energy applications
KR101201816B1 (en) * 2005-03-07 2012-11-15 삼성에스디아이 주식회사 Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
US20090047512A1 (en) * 2005-06-06 2009-02-19 Conroy Jeffrey L Dispersed metal nanoparticles in polymer films
US7967965B2 (en) 2007-05-11 2011-06-28 Honeywell International Inc. Gas sensor
GB0709166D0 (en) * 2007-05-11 2007-06-20 Honeywell Int Inc Gas sensors
US20090120794A1 (en) * 2007-05-11 2009-05-14 Life Safety Distribution Ag Gas Sensor
JP5158334B2 (en) * 2007-10-05 2013-03-06 信越化学工業株式会社 Method for producing electrode catalyst for fuel cell
CN109289840A (en) * 2018-10-15 2019-02-01 天津工业大学 A kind of preparation method of the network-like palladium nano chain catalyst of methanol electro-oxidizing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310434A (en) * 1963-05-06 1967-03-21 Union Carbide Corp Method of catalyzing porous electrodes
US3274031A (en) * 1963-08-07 1966-09-20 Gen Electric Fuel cell electrode and methods of preparation
SE309800B (en) * 1965-01-28 1969-04-08 Engelhard Ind Inc
US3388004A (en) * 1965-09-30 1968-06-11 Leesona Corp Method of making electrodes using hydrophobic polymer
NL6613162A (en) * 1965-09-30 1967-03-31
US3432362A (en) * 1967-04-11 1969-03-11 Exxon Research Engineering Co Electrode catalyst for electrochemical cell prepared with organoaluminum reducing agent
GB1194642A (en) * 1967-04-19 1970-06-10 Gen Electric Improvements in Fuel Cell Electrodes
US3442714A (en) * 1968-02-27 1969-05-06 Yuasa Battery Co Ltd Fuel cells
CA1058283A (en) * 1974-12-20 1979-07-10 Henry G. Petrow Fuel cell electrodes with finely divided platinum catalyst
US4017664A (en) * 1975-09-02 1977-04-12 United Technologies Corporation Silicon carbide electrolyte retaining matrix for fuel cells
US4166143A (en) * 1977-01-24 1979-08-28 Prototech Company Control of the interaction of novel platinum-on-carbon electrocatalysts with fluorinated hydrocarbon resins in the preparation of fuel cell electrodes
US4235748A (en) * 1979-02-28 1980-11-25 Yardney Electric Corporation Method of making improved hydrogenation catalyst
US4263376A (en) * 1980-02-04 1981-04-21 Institute Of Gas Technology Fuel cell electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183560A (en) * 2008-04-11 2008-08-14 Japan Steel Works Ltd:The Carrier-free hydrocarbon direct decomposition catalyst

Also Published As

Publication number Publication date
CA1160282A (en) 1984-01-10
EP0050300A2 (en) 1982-04-28
JPS5768142A (en) 1982-04-26
DE3177176D1 (en) 1990-06-07
EP0050300A3 (en) 1982-09-15
US4407905A (en) 1983-10-04
EP0050300B1 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
JPS6340135B2 (en)
JP3896137B2 (en) Supported catalyst and method for producing the same
KR101132074B1 (en) Platinum Catalysts Obtained by Reducing In-situ Formed Platinum Dioxide
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP4447561B2 (en) Supported catalyst and method for producing the same
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
KR100837396B1 (en) Supported catalyst, method for preparing the same, cathode electrode comprising the same, and fuel cell comprising the electrode
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP5456797B2 (en) Fuel cell electrode catalyst
US20050032635A1 (en) HCMS carbon capsule, electrocatalysts for fuel cell supported by HCMS carbon capsule, and method of preparing the same
JPH11250918A (en) Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JPS6346958B2 (en)
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JPH07246336A (en) Anode electrode catalyst for fuel cell and production thereof
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP2005246380A (en) Platinum based catalyst and methanol fuel cell using it
JP2775771B2 (en) Manufacturing method of fuel electrode catalyst for liquid fuel cell
JP2005332662A (en) Catalyst for fuel cell and its manufacturing method
JP4082800B2 (en) Catalyst production method
JP3890653B2 (en) Methanol fuel cell
JP3452096B2 (en) Method for manufacturing gas diffusion electrode for fuel cell
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
CN1678417A (en) Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using same