JPS634001A - Production of permanent magnet of sintered body - Google Patents

Production of permanent magnet of sintered body

Info

Publication number
JPS634001A
JPS634001A JP61146809A JP14680986A JPS634001A JP S634001 A JPS634001 A JP S634001A JP 61146809 A JP61146809 A JP 61146809A JP 14680986 A JP14680986 A JP 14680986A JP S634001 A JPS634001 A JP S634001A
Authority
JP
Japan
Prior art keywords
powder
magnetic field
wire
orientation
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146809A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61146809A priority Critical patent/JPS634001A/en
Publication of JPS634001A publication Critical patent/JPS634001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To increase the suitability of powder to orientation in a magnetic field during compression molding and to improve the characteristics of a magnet by rapidly cooling a molten magnetic alloy under prescribed conditions to form a fine wire, crushing the wire, molding the resulting powder under orientation in a specified direction in a magnetic field and sintering the molded body. CONSTITUTION:An alloy contg. prescribed components is melted. The molten alloy is solidified by rapid cooling at >=10<3> deg.C/sec cooling rate to form a fine wire and this wire is crushed to obtain fine columnar powder having >= 1.5 average aspect ratio. The powder is compression-molded in a magnetic field and the molded body is sintered and annealed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、焼結体永久磁石の製造方法に関し、とくに
粉末原料として磁場配向性の良い微細な柱状の例えば円
柱状の粉末を用いることによって磁石特性の一層の向上
を図ろうとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a sintered permanent magnet, and in particular, by using fine columnar powder, such as a cylindrical powder, with good magnetic field orientation as a powder raw material. This is an attempt to further improve the magnetic properties.

(従来の技術) 近年、各種の電気計測器や通信機器さらにはマイクロモ
ータなどに対して、小型化、軽量化、高性能化および高
信頼化への要求が一段と高まっている。このため上記し
たような機器に使用される永久磁石としては、(Bll
) maxがより大きい材料が求められている。
(Prior Art) In recent years, there has been an increasing demand for smaller size, lighter weight, higher performance, and higher reliability for various electrical measuring instruments, communication devices, and even micro motors. For this reason, the permanent magnets used in the above-mentioned devices are (Bll
) There is a demand for materials with larger max.

上記のような用途に用いて好適なものとしては、希土類
系磁石やアルニコ磁石などの合金系永久磁石があり、か
かる磁石は開発当初から高保磁力磁石として発展し現在
に至っている。
Alloy permanent magnets such as rare earth magnets and alnico magnets are suitable for use in the above-mentioned applications, and these magnets have been developed as high coercive force magnets since their initial development and have continued to the present day.

ところで上記の如き合金系永久磁石とくに希土類系永久
磁石は、磁石特性は優れているものの加工性に難点があ
るため、通常、粉末成形−焼結法によって製造されてい
る(たとえば特開昭59−46008号公報)。
By the way, although the above-mentioned alloy permanent magnets, especially rare earth permanent magnets, have excellent magnetic properties, they have difficulties in workability, so they are usually manufactured by a powder compacting and sintering method (for example, JP-A-59-1999 46008).

かかる焼結磁石の製造工程を第2図に示すが、同図に示
したとおり、まず所定の成分組成に調製された合金溶湯
を、インゴットに鋳造したのち、機械的粉砕によって粉
末化し、ついで圧縮成形、焼結および熱処理を順次に施
して製品とする。ここに製品磁石にとくに方向性を付加
する場合には、圧縮成形処理を磁場印加の下に行うこと
が肝要である。
The manufacturing process for such a sintered magnet is shown in Figure 2. As shown in Figure 2, a molten alloy prepared to have a predetermined composition is first cast into an ingot, then pulverized by mechanical crushing, and then compressed. The product is formed by sequentially applying molding, sintering, and heat treatment. In particular, when adding directionality to the product magnet, it is important to carry out the compression molding process under the application of a magnetic field.

(発明が解決しようとする問題点) 上述したとおり、粉末化は一般にインゴットからの機械
的粉砕によっているため、得られた粉末は凸凹が極めて
はげしい形状をしているが、かかる表面凸凹がはげしい
粉末を用いて成形体を作製する場合、加圧プレスを加え
ると粉末表面の凸凹に起因して粉末体同志が動いたり回
転してしまうため、たとえ磁場中で配向処理を施しつつ
成形したとしても、必ずしも磁場印加方向に全ての粒子
が揃った配向性のよい成形体が得られるわけではなかっ
た。
(Problems to be Solved by the Invention) As mentioned above, since powdering is generally done by mechanically crushing an ingot, the resulting powder has an extremely uneven shape. When producing a molded body using a pressure press, the powder bodies move or rotate due to the unevenness of the powder surface. It was not always possible to obtain a molded body with good orientation in which all the particles were aligned in the direction of application of the magnetic field.

また粉末形状によっては、形状異方性が大きくなってし
まい、必ずしも磁場印加方向に粉末の磁化容易軸が配向
するわけでもなかった。
Further, depending on the shape of the powder, the shape anisotropy becomes large, and the axis of easy magnetization of the powder is not necessarily oriented in the direction of application of the magnetic field.

上記したような配向状態の成形体を焼成しても、良好な
磁石特性は得られるけれども、磁石特性のより一層の向
上のためには、粉末の配向性を高めることが肝要である
Although good magnetic properties can be obtained by firing a compact with the above-mentioned orientation, in order to further improve the magnetic properties, it is important to improve the orientation of the powder.

この発明は、上記した現状に鑑みて開発されたもので、
粉末成形−焼結法よって永久磁石を製造するに当たり、
粉末原料として、表面凸凹が従来のインゴット破砕粉に
比べて極めて小さく、加圧プレス時においても粉末体同
志の移動や回転が非常に少なく、従って加圧プレス後に
おいても配向が大きく乱れず磁場印加方向への配向をそ
のまま保持できるいわゆる磁場配向性の良い粉末を用い
ることによって、磁石特性のより一層の向上を図り得る
焼結体永久磁石の製造方法を提案することを目的とする
This invention was developed in view of the above-mentioned current situation.
When manufacturing permanent magnets using the powder compaction-sintering method,
As a powder raw material, the surface unevenness is extremely small compared to conventional crushed ingot powder, and there is very little movement or rotation of the powder particles among themselves even during pressure pressing, so the orientation is not greatly disturbed even after pressure pressing and no magnetic field is applied. The purpose of the present invention is to propose a method for manufacturing a sintered permanent magnet that can further improve magnetic properties by using powder with so-called good magnetic field orientation that can maintain its orientation in the same direction.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく鋭意研究を重
ねた結果、 i) 粉末原料として、たてよこ比すなわちアスペクト
比が大きな粉末を用い、かかる粉末の反磁場係数の差異
による形状異方性を利用して磁場中で特定方向に配向さ
せつつ圧縮成形し、しかるのち焼結ついで熱処理を施す
ことが所期した目的の達成に極めて有効である、ii)
  かかる粉末としては、単にアスペクト比が大きいだ
けでなく、長軸方向が磁場印加方向に配向する性質をそ
なえることや、プレス加工時に粉末体同志の接触により
配向の乱れが生じない程度に表面凸凹が小さいことが要
求されるが、かような粉末としては急冷細線を粉砕した
ものが極めて好適である、 ことの知見を得た。
(Means for solving the problem) As a result of intensive research to achieve the above object, the inventors have found that: i) Using a powder with a large vertical-to-width ratio, that is, a large aspect ratio, as a powder raw material, It is extremely effective to achieve the intended purpose by taking advantage of the shape anisotropy caused by the difference in the demagnetizing field coefficient of the powder, oriented it in a specific direction in a magnetic field, and compression molding it, followed by sintering and heat treatment. , ii)
Such a powder should not only have a large aspect ratio, but also have the property that its major axis is oriented in the direction of magnetic field application, and should have surface irregularities to the extent that the orientation will not be disturbed due to contact between the powder bodies during press processing. Although small size is required, it has been found that pulverized quenched fine wire is extremely suitable as such a powder.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、所定の成分組成に調製した合金溶
湯を、103℃/S以上の冷却速度で急冷凝固して細線
としたのち、この細線を粉砕して平均アスペクト比が1
.5以上の微細柱状粉末とし、その後かかる粉末を磁場
印加の下に圧縮成形したのち、焼結ついで焼鈍処理を施
すことから成る焼結体永久磁石の製造方法である。
That is, in this invention, a molten alloy prepared to have a predetermined composition is rapidly solidified into a thin wire at a cooling rate of 103° C./s or more, and then the thin wire is crushed to have an average aspect ratio of 1.
.. This is a method for manufacturing a sintered permanent magnet, which comprises forming a fine columnar powder of 5 or more, compressing the powder under the application of a magnetic field, sintering it, and then annealing it.

この°発明において、急冷細線の作製法としては、メル
トスピニング法や、引き揚げ法、引き抜き法さらにはメ
ルトエクストラクション法などが好適である。そしてか
かる急冷法を利用するのは、希土類系磁石やアルニコ磁
石などは非常に脆いため、通常のインゴット−圧延−線
引き法では細線化が達成できず、とはいえ単にインゴッ
トを粉砕しただけでは等方的に粉砕されて求めるアスペ
クト比が得られないからである。
In this invention, suitable methods for producing the quenched fine wire include melt spinning, pulling, drawing, and melt extraction. This quenching method is used because rare earth magnets and alnico magnets are extremely brittle, so the normal ingot-rolling-drawing method cannot achieve thinning. This is because the desired aspect ratio cannot be obtained due to the unidirectional pulverization.

ここに急冷細線作製時における冷却速度が103’C/
sに満たないと、成分によっては酸化が激しくなり、目
的とする磁気特性が得られない等の不利があるので、冷
却速度は103℃/S以上とする必要がある。
Here, the cooling rate during the production of rapidly quenched thin wire is 103'C/
If the cooling rate is less than s, there are disadvantages such as severe oxidation of some components and the failure to obtain desired magnetic properties, so the cooling rate needs to be 103° C./s or more.

また粉末の平均アスペクト比を1.5以上の範囲に限定
したのは、次の理由による。
The reason why the average aspect ratio of the powder is limited to a range of 1.5 or more is as follows.

すなわちこの発明では、粉末素材として急冷細線を用い
るわけであるが、急冷状態のままでは強い磁気異方性定
数を有していないので、アスペクト比が1.5よりも小
さいと、たとえプレス時に磁場を印加したとしても粉末
の長軸方向が磁場印加方向に充分には配向しない。この
点、アスペクト比が1.5以上であると、粉末の長軸方
向の反磁場系数が小さくなるので、磁場印加方向に粉末
の長軸方向が良(揃うようになるからである。
In other words, in this invention, a rapidly quenched thin wire is used as the powder material, but it does not have a strong magnetic anisotropy constant in the quenched state, so if the aspect ratio is less than 1.5, even if the magnetic field is Even if the magnetic field is applied, the long axis direction of the powder is not sufficiently oriented in the direction of the applied magnetic field. In this regard, when the aspect ratio is 1.5 or more, the demagnetizing field coefficient in the long axis direction of the powder becomes small, so that the long axis direction of the powder becomes well aligned with the direction of applying the magnetic field.

なお急冷細線の直径は、たとえば希土類系磁石では15
0μm以下程度とするのが好ましい。というのは、直径
が150μmよりも大きいと、線の酸化がはなはだしく
なることと、さらにもろくなることがあるばかりでなく
、粉砕時に線の長平方向だけでなく直径方向に垂直な方
向にも粉砕される頻度が高まり、求めるアスペクト比が
得難くなると共に、粉末の表面が粗(なるおそれが大き
くなるからである。
Note that the diameter of the quenched fine wire is, for example, 15 mm for rare earth magnets.
It is preferable to set it to about 0 μm or less. This is because if the diameter is larger than 150 μm, not only will the wire be severely oxidized and become more brittle, but also the wire will be crushed not only in the longitudinal direction of the wire but also in the direction perpendicular to the diameter direction. The reason for this is that the frequency of oxidation increases, making it difficult to obtain the desired aspect ratio, and increasing the possibility that the surface of the powder will become rough.

かくして得られた粉末を、磁場中配向処理を施しつつ圧
縮成形し、ついで常法に従って焼結および熱処理を施し
て製品とするのである。
The powder thus obtained is compression molded while being subjected to orientation treatment in a magnetic field, and then sintered and heat treated according to conventional methods to produce a product.

ここに圧縮成形時における印加磁場の大きさは1 kO
e以上とするのが好ましい。
Here, the magnitude of the applied magnetic field during compression molding is 1 kO.
It is preferable that it be more than e.

また焼結は、900〜1300℃、1〜100分間程度
分間性下に行うのが望ましく、さらに900℃以下で1
0分以上程度の熱処理を施すことによって優れた磁石特
性を発現させるのである。
Sintering is preferably performed at 900 to 1300°C for 1 to 100 minutes, and further at 900°C or less for 1 to 100 minutes.
Excellent magnetic properties are developed by applying heat treatment for approximately 0 minutes or more.

第1図に、この発明に従う焼結体永久磁石の製造工程を
ブロック図で示しておく。
FIG. 1 is a block diagram showing the manufacturing process of a sintered permanent magnet according to the present invention.

(作 用) この発明において、粉末原料として急冷細線破砕粉を用
いるのは、かかる粉末は、 (1)アスペクト比が大きいものが得られる、(2)長
軸方向が磁場印加方向に揃い易い、(3)粉末表面の凸
凹が小さく、プレス加工時に粉末体同志が動いたり回転
したりすることが少ない、 などの性質をそなえていることによる。
(Function) In this invention, the quenched fine wire crushed powder is used as the powder raw material because: (1) a powder having a large aspect ratio can be obtained; (2) the major axis direction is easily aligned with the direction of applying the magnetic field; (3) The powder surface has small irregularities, and the powder particles hardly move or rotate during press processing.

なおこの発明に従う焼結磁石の製造方法は、希土類系磁
石やアルニコ磁石のみならずFe −Cr −C。
Note that the method for manufacturing sintered magnets according to the present invention applies not only to rare earth magnets and alnico magnets, but also to Fe-Cr-C magnets.

系やMn −A ji系、Mn−B1系など合金系の磁
石であればいずれにも適用できる。
The present invention can be applied to any alloy-based magnet such as Mn-A ji-based, Mn-A ji-based, or Mn-B1-based.

(実施例) 実施例1 第3図に示す直接細線製造装置を用いて、at%でNd
+5FetsB+oの組成になる合金溶湯を、大気中に
直接射出し、急冷凝固(冷却速度:105℃八)させて
約5μmφの急冷細線を作製した。なお図中番号1は高
周波溶解コイル、2は合金溶湯、3はガラス系チューブ
、4は回転ドラム、5はモーターである。
(Example) Example 1 Using the direct thin wire manufacturing apparatus shown in FIG.
A molten alloy having a composition of +5FetsB+o was directly injected into the atmosphere and rapidly solidified (cooling rate: 105° C.) to produce a rapidly solidified thin wire with a diameter of about 5 μm. In the figure, number 1 is a high-frequency melting coil, 2 is a molten alloy, 3 is a glass tube, 4 is a rotating drum, and 5 is a motor.

ついでこのm線を粉砕したのち、表1に示す種々の平均
アスペクト比になる粉末によりわけた。
The m-line was then crushed and divided into powders having various average aspect ratios shown in Table 1.

その後、各アスペクト比になる粉末それぞれにつき、5
 kOeの磁場印加の下に、5ton/rcm”の圧力
で所定形状に圧縮成形し、しかるのち真空中1200℃
で焼結し、ついで650℃、60分間の焼鈍を施した。
Then, for each powder of each aspect ratio, 5
It is compression molded into a predetermined shape at a pressure of 5 ton/rcm under the application of a magnetic field of kOe, and then heated at 1200°C in vacuum.
and then annealed at 650°C for 60 minutes.

か(して得られた各焼結磁石の磁石特性について調べた
結果を表1に併記する。
Table 1 also shows the results of investigating the magnetic properties of each of the sintered magnets obtained.

なお表1には、従来法に従い、インゴット破砕粉を原料
とし、同様な処理を施して得られた製品の磁石特性につ
いて調べた結果も併せて示す。
Table 1 also shows the results of investigating the magnetic properties of products obtained by subjecting crushed ingot powder to raw materials and subjecting them to similar treatments according to the conventional method.

表   1 同表から明らかなように、この発明に従い粉末原料とし
て平均アスペクト比1.5以上の急冷細線破砕粉を用い
て得られた磁石製品はいずれも、従来品に比べて著しく
高い磁石特性を呈していた。
Table 1 As is clear from the table, all magnetic products obtained according to the present invention using quenched fine wire crushed powder with an average aspect ratio of 1.5 or more as a powder raw material have significantly higher magnetic properties than conventional products. It was showing.

実施例2 wt%でSm3sCObsの組成になる合金溶湯から上
記実施例1と同様にして8μmφの急冷細線を作製した
Example 2 A quenched fine wire with a diameter of 8 μm was produced in the same manner as in Example 1 above from a molten alloy having a composition of Sm3sCObs in wt%.

ついで粉砕したのち、表2に示す種々の平均アスペクト
比になる粉体によりわけてから、実施例1と同じ条件の
下で、圧縮成形、焼結ついで焼鈍処理を施した。
After pulverization, the powders were separated into powders having various average aspect ratios shown in Table 2, and then subjected to compression molding, sintering, and annealing under the same conditions as in Example 1.

かくして得られた各焼結磁石の磁石特性について調べた
結果を、従来例と比較して表2に併記する。
The results of investigating the magnetic properties of each of the sintered magnets thus obtained are also listed in Table 2 in comparison with the conventional example.

表   2 (発明の効果) かくしてこの発明によれば、焼結体永久磁石を製造する
に当たり、圧縮成形時における磁場配向性を従来に比べ
て格段に高くすることができ、ひいては磁石特性に優れ
た焼結体永久磁石を得ることができる。
Table 2 (Effects of the Invention) Thus, according to the present invention, when manufacturing a sintered permanent magnet, the magnetic field orientation during compression molding can be made much higher than in the past, and the magnetic properties can be improved. A sintered permanent magnet can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の粉末成形−焼結法の製造工程を示した
ブロック図、 第2図は、この発明に従う焼結体永久磁石の製造工程を
示したブロック図、 第3図は、直接細線製造装置の模式図である。
Figure 1 is a block diagram showing the manufacturing process of the conventional powder compaction-sintering method, Figure 2 is a block diagram showing the manufacturing process of a sintered permanent magnet according to the present invention, and Figure 3 is a block diagram showing the manufacturing process of a sintered permanent magnet according to the present invention. FIG. 2 is a schematic diagram of a thin wire manufacturing device.

Claims (1)

【特許請求の範囲】[Claims] 1、所定の成分組成に調製した合金溶湯を、10^3℃
/s以上の冷却速度で急冷凝固して細線としたのち、こ
の細線を粉砕して平均アスペクト比が1.5以上の微細
柱状粉末とし、その後かかる粉末を磁場印加の下に圧縮
成形したのち、焼結ついで焼鈍処理を施すことを特徴と
する焼結体永久磁石の製造方法。
1. Heat the molten alloy prepared to a predetermined composition at 10^3°C.
After rapidly solidifying into fine wires at a cooling rate of /s or more, the fine wires are crushed into fine columnar powder with an average aspect ratio of 1.5 or more, and then such powders are compression-molded under the application of a magnetic field. A method for manufacturing a sintered permanent magnet, characterized by performing sintering and then annealing.
JP61146809A 1986-06-25 1986-06-25 Production of permanent magnet of sintered body Pending JPS634001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146809A JPS634001A (en) 1986-06-25 1986-06-25 Production of permanent magnet of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146809A JPS634001A (en) 1986-06-25 1986-06-25 Production of permanent magnet of sintered body

Publications (1)

Publication Number Publication Date
JPS634001A true JPS634001A (en) 1988-01-09

Family

ID=15416016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146809A Pending JPS634001A (en) 1986-06-25 1986-06-25 Production of permanent magnet of sintered body

Country Status (1)

Country Link
JP (1) JPS634001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068301U (en) * 1992-06-30 1994-02-01 駿河精機株式会社 Paper cup loading mechanism
WO2015146888A1 (en) * 2014-03-27 2015-10-01 日立金属株式会社 R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068301U (en) * 1992-06-30 1994-02-01 駿河精機株式会社 Paper cup loading mechanism
WO2015146888A1 (en) * 2014-03-27 2015-10-01 日立金属株式会社 R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same
CN106165026A (en) * 2014-03-27 2016-11-23 日立金属株式会社 R-T-B series alloy powder and manufacture method thereof and R-T-B system sintered magnet and manufacture method thereof
JPWO2015146888A1 (en) * 2014-03-27 2017-04-13 日立金属株式会社 R-T-B system alloy powder and manufacturing method thereof, R-T-B system sintered magnet and manufacturing method thereof
US10020100B2 (en) 2014-03-27 2018-07-10 Hitachi Metals, Ltd. R-T-B-based alloy powder and method for producing same, and R-T-B-based sintered magnet and method for producing same

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JPS634001A (en) Production of permanent magnet of sintered body
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPH07122414A (en) Rare earth permanent magnet and manufacture thereof
JPS63116404A (en) Anisotropic magnet powder and manufacture thereof
JP2007123467A (en) Method for manufacturing anisotropic magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
RU2015857C1 (en) Method for manufacture of powder textured magnet
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPH01318219A (en) Manufacture of rare-earth-iron permanent magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH03141610A (en) Rare-earth magnet and its manufacture
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS62167842A (en) Production of rare earth magnet
JPH0732102B2 (en) Rare earth alloy permanent magnet manufacturing method
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
JPS63213317A (en) Rare earth iron permanent magnet
JPS5848606A (en) Production of permanent magnet of rare earths
Tattam et al. Improvement in the mechanical properties of PTFE bonded Nd Fe B magnets by heat treatment
JPH03247703A (en) Manufacture of permanent magnet
JPH0547532A (en) Permanent magnet and manufacture thereof