JPS6339776B2 - - Google Patents
Info
- Publication number
- JPS6339776B2 JPS6339776B2 JP55117378A JP11737880A JPS6339776B2 JP S6339776 B2 JPS6339776 B2 JP S6339776B2 JP 55117378 A JP55117378 A JP 55117378A JP 11737880 A JP11737880 A JP 11737880A JP S6339776 B2 JPS6339776 B2 JP S6339776B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle speed
- signal
- fuel ratio
- air
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 53
- 239000007789 gas Substances 0.000 claims description 34
- 238000002485 combustion reaction Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内燃機関の空燃比制御装置に係り、
特に、三元触媒コンバータを備えた内燃機関の空
燃比制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio control device for an internal combustion engine,
In particular, the present invention relates to an air-fuel ratio control device for an internal combustion engine equipped with a three-way catalytic converter.
車両の排気ガス浄化装置の1つの方式として三
元触媒を用いる方式がある。これは、触媒がその
使用雰囲気により酸化性及び還元性を同時に持つ
ことを利用して、排気ガス中の有害成分である炭
化水素、一酸化炭素、および窒素化合物を同時に
処理するものである。この三元触媒で十分な浄化
率を得るには、理論空燃比の混合気を燃焼させた
場合に排気される組成に相当する酸素濃度近傍の
非常に狭い範囲内に排気ガスの組成を制御する必
要がある。
One method of a vehicle exhaust gas purification device is a method using a three-way catalyst. This method utilizes the fact that a catalyst has both oxidizing and reducing properties depending on the atmosphere in which it is used, and simultaneously processes harmful components such as hydrocarbons, carbon monoxide, and nitrogen compounds in exhaust gas. In order to obtain a sufficient purification rate with this three-way catalyst, the composition of the exhaust gas must be controlled within a very narrow range of oxygen concentration that corresponds to the composition that would be emitted when a mixture at the stoichiometric air-fuel ratio was combusted. There is a need.
このような高精度の空燃比制御は、O2センサ
で排気ガス中の酸素濃度を検出し、検出した値を
空燃比信号として、大気を吸気マニホールドに流
入させ混合気の空燃比をリーンにしたり、大気を
2次空気として排気マニホールドに供給すること
等により行なわれている。 This type of highly accurate air-fuel ratio control uses an O2 sensor to detect the oxygen concentration in the exhaust gas, and uses the detected value as an air-fuel ratio signal to cause atmospheric air to flow into the intake manifold, making the air-fuel ratio of the mixture lean. This is done by supplying atmospheric air as secondary air to the exhaust manifold.
しかし、排気ガス再循環装置を設けた内燃機関
における上記のような空燃比制御は、窒素酸化物
の発生量が元来少ない軽負荷時および排気ガス循
環量が多く窒素酸化物の発生量が少ない高車速時
においても行われる。
However, the air-fuel ratio control as described above in an internal combustion engine equipped with an exhaust gas recirculation device is difficult to control under light loads, when the amount of nitrogen oxides generated is originally low, and when the amount of exhaust gas recirculated is large and the amount of nitrogen oxides generated is low. This is done even at high vehicle speeds.
したがつて、窒素酸化物の浄化を要求されない
場合でも、空燃比が理論空然比近傍に保たれ、燃
費が悪くなるという問題があつた。 Therefore, even when purification of nitrogen oxides is not required, the air-fuel ratio is maintained close to the stoichiometric air-fuel ratio, resulting in poor fuel efficiency.
本発明の目的は、窒素酸化物の浄化を要求され
ない軽負荷時および高車速時の燃費を改善可能な
内燃機関の空燃比制御装置を提供することであ
る。 SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that does not require purification of nitrogen oxides and can improve fuel efficiency during light loads and high vehicle speeds.
本発明は、上記目的を達成するために、内燃機
関の排気マニホールドから吸気マニホールドへ排
気ガスを再循環させる排気ガス再循環装置と、該
排気ガス再循環装置の前記排気マニホールド側通
に接続され該排気マニホールドまたは該排気ガス
再循環装置を介して前記吸気マニホールドへ大気
を供給する2次空気供給装置と、前記排気マニホ
ールドに設けられ排気ガス中の酸素濃度を検出し
て空燃比信号を出力するO2センサとを有し、前
記空燃比信号により前記2次空気供給装置を作動
または停止させる内燃機関の空燃比制御装置にお
いて、内燃機関の負荷が設定負荷よりも軽負荷と
なつた時に負荷信号を出力する負荷センサと車速
を検出して設定車速以上となつた時に車速信号を
出力する車速センサの少なくとも一方のセンサを
設け、前記負荷信号または前記車速信号または前
記負荷信号と前記車速信号の両信号により、前記
空燃比信号にかかわらず、前記2次空気供給装置
を作動させる制御装置を設けたことを特徴とする
内燃機関の空燃比制御装置を提供するものであ
る。
In order to achieve the above object, the present invention provides an exhaust gas recirculation device that recirculates exhaust gas from an exhaust manifold to an intake manifold of an internal combustion engine, and an exhaust gas recirculation device that is connected to the exhaust manifold side passage of the exhaust gas recirculation device. a secondary air supply device that supplies atmospheric air to the intake manifold via the exhaust manifold or the exhaust gas recirculation device; and an oxygen supply device provided in the exhaust manifold that detects the oxygen concentration in the exhaust gas and outputs an air-fuel ratio signal. 2 sensors, the air-fuel ratio control device for an internal combustion engine operates or stops the secondary air supply device based on the air-fuel ratio signal, and the air-fuel ratio control device for an internal combustion engine operates or stops the secondary air supply device based on the air-fuel ratio signal, and the air-fuel ratio control device for an internal combustion engine generates a load signal when the load of the internal combustion engine becomes lighter than a set load. At least one of a load sensor that outputs an output and a vehicle speed sensor that detects a vehicle speed and outputs a vehicle speed signal when the vehicle speed exceeds a set vehicle speed is provided, and the load signal, the vehicle speed signal, or both the load signal and the vehicle speed signal are provided. Accordingly, there is provided an air-fuel ratio control device for an internal combustion engine, characterized in that a control device is provided that operates the secondary air supply device regardless of the air-fuel ratio signal.
本発明においては、窒素酸化物の発生量が少な
くその浄化を要求されない軽負荷時および高車速
時に、2次空気を吸気マニホールドに供給し混合
気の空燃比をリーンにするので、燃量消費量が減
り、燃費が向上することになる。
In the present invention, secondary air is supplied to the intake manifold to make the air-fuel ratio of the air-fuel mixture lean during light loads and high vehicle speeds when the amount of nitrogen oxides generated is small and purification is not required. This will reduce fuel consumption and improve fuel efficiency.
以下、図面を参照して、本発明による内燃機関
の空燃比制御装置の実施例を詳細に説明する。
Hereinafter, embodiments of an air-fuel ratio control device for an internal combustion engine according to the present invention will be described in detail with reference to the drawings.
本発明の第1実施例は、第1図に示すように、
排ガス再循環装置2と、2次空気供給装置4と、
O2センサ6と、負荷センサ8と、制御装置10
とを含んでいる。 The first embodiment of the present invention, as shown in FIG.
an exhaust gas recirculation device 2, a secondary air supply device 4,
O2 sensor 6, load sensor 8, and control device 10
Contains.
排気ガス再循環装置2は、排気ガス再循環バル
ブ12および調圧弁14を含み、排気マニホール
ド16および吸気マニホールド18に接続されて
いる。排気ガス再循環バルブ12のダイヤフラム
室12aは、調圧弁14を介して、スロツトルバ
ルブ20の直上に設けられた排気ガス再循環ポー
ト22に接続されている。 The exhaust gas recirculation device 2 includes an exhaust gas recirculation valve 12 and a pressure regulating valve 14, and is connected to an exhaust manifold 16 and an intake manifold 18. The diaphragm chamber 12a of the exhaust gas recirculation valve 12 is connected via the pressure regulating valve 14 to an exhaust gas recirculation port 22 provided directly above the throttle valve 20.
2次空気供給装置4は、排気ガス再循環装置2
の排気マニホールド側通路に接続されている。そ
して、2次空気供給置4のダイヤフラム室4a
は、電磁弁24を介して、負圧センサ8に接続さ
れている。 The secondary air supply device 4 is the exhaust gas recirculation device 2
connected to the exhaust manifold side passage. And the diaphragm chamber 4a of the secondary air supply device 4
is connected to the negative pressure sensor 8 via the solenoid valve 24.
負圧センサ8は、吸気マニホールド18に接続
され、一定負圧以上となつたとき負荷信号を制御
装置10に出力する。負圧センサ8が負荷信号を
出力するのは、負荷と負圧との間に、負荷が軽く
なると負圧が大きくなるという関係があるからで
ある。すなわち、負圧センサ8は負荷センサの役
目を果している。 Negative pressure sensor 8 is connected to intake manifold 18 and outputs a load signal to control device 10 when the negative pressure exceeds a certain level. The reason why the negative pressure sensor 8 outputs the load signal is because there is a relationship between the load and the negative pressure such that as the load becomes lighter, the negative pressure becomes larger. That is, the negative pressure sensor 8 serves as a load sensor.
O2センサ6は、排気ガス中の酸素濃度を検出
し、空燃比信号を出力する。図示しない車速セン
サは、例えばトランスミツシヨンの出側に取付け
られ、車両の速度を検知し一定車速以上となつた
時に車速信号を制御装置10に出力する。 The O 2 sensor 6 detects the oxygen concentration in the exhaust gas and outputs an air-fuel ratio signal. A vehicle speed sensor (not shown) is attached, for example, to the exit side of the transmission, detects the speed of the vehicle, and outputs a vehicle speed signal to the control device 10 when the vehicle speed exceeds a certain speed.
制御装置10は、例えばコンピユータまたは論
理回路からなり、空燃比信号により電磁弁24を
切換えて2次空気供給装置4を作動または停止さ
せ、負荷信号または車速信号または負荷信号と車
速信号の両信号により電磁弁24を切換え、2次
空気供給装置4を作動させる。この制御装置10
の具体的構成は、例えば第2図のようになる。図
において、26はアンド回路であり、車速センサ
からの車速信号と負荷センサ8からの負荷信号が
入力されている。また、28は、オア回路であ
り、O2センサ6からの空燃比信号とアンド回路
26からの出力信号が入力されている。 The control device 10 is composed of, for example, a computer or a logic circuit, and operates or stops the secondary air supply device 4 by switching the solenoid valve 24 based on an air-fuel ratio signal, and operates or stops the secondary air supply device 4 based on a load signal, a vehicle speed signal, or both a load signal and a vehicle speed signal. The solenoid valve 24 is switched to operate the secondary air supply device 4. This control device 10
The specific configuration is shown in FIG. 2, for example. In the figure, 26 is an AND circuit to which the vehicle speed signal from the vehicle speed sensor and the load signal from the load sensor 8 are input. Further, 28 is an OR circuit, into which the air-fuel ratio signal from the O 2 sensor 6 and the output signal from the AND circuit 26 are input.
次に、本実施例の動作について説明する。通常
の走行状態では、O2センサ6からの空燃比信号
を制御装置10に取込み、制御装置10からの出
力により電磁弁24を切換えている。すなわち、
空燃比信号がリーンのときは、電磁弁24を大気
側に切換え、空燃比信号がリツチのときは、電磁
弁24を吸気マニホールドの負圧側に切換えてい
る。空燃比信号のリツチ、リーンに応じて電磁弁
24が切換わると、2次空気供給装置4が作動
し、大気を吸気マニホールドに供給しまたは大気
の供給を停止する。また、排気ガス再循環装置2
は、スロツトルバルブ20の開度に応じて作動
し、排気ガスを排気マニホールドから吸気マニホ
ールドに再循環させる。なお、排気ガス再循環装
置2が作動している場合、2次空気供給装置4が
作動したときは、2次空気供給装置4から供給さ
れた大気は、排気ガス再循環バルブ12を介し
て、吸気マニホールド18に供給される。 Next, the operation of this embodiment will be explained. In normal driving conditions, the air-fuel ratio signal from the O 2 sensor 6 is input to the control device 10, and the solenoid valve 24 is switched based on the output from the control device 10. That is,
When the air-fuel ratio signal is lean, the solenoid valve 24 is switched to the atmospheric side, and when the air-fuel ratio signal is rich, the solenoid valve 24 is switched to the negative pressure side of the intake manifold. When the solenoid valve 24 is switched in accordance with the richness or leanness of the air-fuel ratio signal, the secondary air supply device 4 is activated to supply atmospheric air to the intake manifold or to stop the supply of atmospheric air. In addition, the exhaust gas recirculation device 2
operates according to the opening degree of the throttle valve 20 to recirculate exhaust gas from the exhaust manifold to the intake manifold. Note that when the exhaust gas recirculation device 2 is operating and the secondary air supply device 4 is operating, the atmosphere supplied from the secondary air supply device 4 is passed through the exhaust gas recirculation valve 12, The air is supplied to the intake manifold 18.
ここで、一定車速以上かつ一定負圧以上となつ
たときは、車速信号および負荷信号が制御装置1
0に入力される。この車速信号は一定車速以上と
なつたとき出力されるものであり、負荷信号は一
定負圧以上すなわち軽負荷となつたとき出力され
るものである。そこで、制御装置10は、車速信
号および負荷信号が入力されたときに電磁弁24
を作動させ、吸気マニホールド18の負圧を2次
空気供給装置のダイヤフラム室4aに作用させ、
2次空気供給装置4を作動させる。制御装置10
の作動について第2図を用いて説明すれば、車速
センサからの車速信号と負圧センサ8からの負荷
信号が入力されると、アンド回路26からオン信
号がオア回路28に出力される。オア回路28か
らは、O2センサからの空燃比信号が入力されて
いるか否かにかかわらず、オン信号が出力され、
電磁弁24を切換える。 Here, when the vehicle speed is above a certain level and the negative pressure is above a certain level, the vehicle speed signal and the load signal are
It is input to 0. This vehicle speed signal is output when the vehicle speed exceeds a certain level, and the load signal is output when the vehicle speed exceeds a certain level of negative pressure, that is, when the load becomes light. Therefore, the control device 10 controls the solenoid valve 24 when the vehicle speed signal and the load signal are input.
is activated to apply negative pressure in the intake manifold 18 to the diaphragm chamber 4a of the secondary air supply device,
Activate the secondary air supply device 4. Control device 10
The operation will be explained using FIG. 2. When the vehicle speed signal from the vehicle speed sensor and the load signal from the negative pressure sensor 8 are input, an ON signal is output from the AND circuit 26 to the OR circuit 28. An ON signal is output from the OR circuit 28 regardless of whether or not the air-fuel ratio signal from the O 2 sensor is input.
Switch the solenoid valve 24.
このとき、スロツトルバルブ20の開度は一定
開度以上となつているので、排気ガス再循環装置
2が作動しており、2次空気供給装置4から供給
された大気は、排気ガスと共に、排気ガス再循環
バルブ12を介して吸気マニホールド18に供給
される。 At this time, since the opening degree of the throttle valve 20 is above a certain opening degree, the exhaust gas recirculation device 2 is operating, and the atmosphere supplied from the secondary air supply device 4, together with the exhaust gas, The exhaust gas is supplied to the intake manifold 18 via the exhaust gas recirculation valve 12 .
本実施例によれば、一定車速以上で軽負荷運転
をする場合、混合気の空燃比がリーンとなり、燃
費が向上する。 According to this embodiment, when the vehicle is operated with a light load at a constant vehicle speed or higher, the air-fuel ratio of the air-fuel mixture becomes lean, and fuel efficiency improves.
なお、車速および負荷が条件から外れた場合
は、O2センサからの空燃比信号による制御に戻
るので、加速性やドライバビリテイが悪化するこ
とがない。 Note that if the vehicle speed and load deviate from the conditions, control returns to the air-fuel ratio signal from the O 2 sensor, so acceleration and drivability will not deteriorate.
次に、本発明の第2実施例を説明する。本実施
例は、第3図に示すように、第1実施例の制御装
置10をオア回路30で構成し、これにO2セン
サ6からの空燃比信号と負荷センサ8からの負荷
信号を入力するものである。本実施例では、一定
負圧よりも軽負荷側になれば、空燃比信号に関係
なく、電磁弁24が切換り、吸気マニホールドに
2次空気が供給される。 Next, a second embodiment of the present invention will be described. In this embodiment, as shown in FIG. 3, the control device 10 of the first embodiment is configured with an OR circuit 30, into which an air-fuel ratio signal from an O 2 sensor 6 and a load signal from a load sensor 8 are input. It is something to do. In this embodiment, when the load becomes lighter than the constant negative pressure, the solenoid valve 24 switches regardless of the air-fuel ratio signal, and secondary air is supplied to the intake manifold.
第4図に本発明の第3実施例を示す。本実施例
は、制御装置として第2実施例のオア回路30を
用い、これにO2センサ6からの空燃比信号と車
速センサからの車速信号を入力したものである。 FIG. 4 shows a third embodiment of the present invention. In this embodiment, the OR circuit 30 of the second embodiment is used as a control device, and the air-fuel ratio signal from the O 2 sensor 6 and the vehicle speed signal from the vehicle speed sensor are input to this.
本実施例では、一定車速以上になれば、空燃比
信号に関係なく、電磁弁24が切換り、吸気マニ
ホールドに2次空気が供給される。 In this embodiment, when the vehicle speed exceeds a certain level, the solenoid valve 24 switches regardless of the air-fuel ratio signal, and secondary air is supplied to the intake manifold.
本実施例の空燃比と車速との関係を第5図に示
す。図において、AはO2センサの空燃比信号の
みで制御した場合の平均の関係を示し、Bは本実
施例における全量2次空気を供給した場合の関係
を示す。 FIG. 5 shows the relationship between the air-fuel ratio and vehicle speed in this embodiment. In the figure, A shows the average relationship when controlled only by the air-fuel ratio signal of the O 2 sensor, and B shows the relationship when the entire amount of secondary air is supplied in this embodiment.
本発明によれば、窒素酸化物の発生量が少なく
理論空燃比を保つことが要求されない軽負荷時お
よび高車速時に、空燃比をリーンにして燃費を向
上できる。
According to the present invention, fuel efficiency can be improved by keeping the air-fuel ratio lean during light loads and high vehicle speeds when the amount of nitrogen oxides generated is small and maintaining the stoichiometric air-fuel ratio is not required.
第1図は本発明による内燃機関の空燃比制御装
置の第1実施例を示す系統図、第2図は第1実施
例に使用する制御装置の具体的回路図、第3図お
よび第4図はそれぞれ本発明の第2および第3実
施例に使用する制御装置の回路図、第5図は前記
第3実施例の空燃比と車速との関係を示す図であ
る。
2……排気ガス再循環装置、4……2次空気供
給装置、6……O2センサ、8……負圧センサ、
10……制御装置。
FIG. 1 is a system diagram showing a first embodiment of the air-fuel ratio control device for an internal combustion engine according to the present invention, FIG. 2 is a specific circuit diagram of the control device used in the first embodiment, and FIGS. 3 and 4 are circuit diagrams of control devices used in the second and third embodiments of the present invention, respectively, and FIG. 5 is a diagram showing the relationship between the air-fuel ratio and vehicle speed in the third embodiment. 2...Exhaust gas recirculation device, 4...Secondary air supply device, 6... O2 sensor, 8...Negative pressure sensor,
10...control device.
Claims (1)
ールドへ排気ガスを再循環させる排気ガス再循環
装置と、該排気ガス再循環装置の前記排気マニホ
ールド側通路に接続され該排気マニホールドまた
は該排気ガス再循環装置を介して前記吸気マニホ
ールドへ大気を供給する2次空気供給装置と、前
記排気マニホールドに設けられ排気ガス中の酸素
濃度を検出して空燃比信号を出力するO2センサ
とを有し、前記空燃比信号により前記2次空気供
給装置を作動または停止させる内燃機関の空燃比
制御装置において、 内燃機関の負荷が設定負荷よりも軽負荷となつ
た時に負荷信号を出力する負荷センサと車速を検
出して設定車速以上となつた時に車速信号を出力
する車速センサのうち少なくとも一方のセンサを
設け、前記負荷信号または前記車速信号または前
記負荷信号と前記車速信号の両信号により、前記
空燃比信号にかかわらず、前記2次空気供給装置
を作動させる制御装置を設けたことを特徴とする
内燃機関の空燃比制御装置。[Scope of Claims] 1. An exhaust gas recirculation device that recirculates exhaust gas from an exhaust manifold to an intake manifold of an internal combustion engine, and an exhaust gas recirculation device that is connected to the exhaust manifold side passage of the exhaust gas recirculation device and that It has a secondary air supply device that supplies atmospheric air to the intake manifold via a gas recirculation device, and an O 2 sensor that is provided in the exhaust manifold and that detects the oxygen concentration in the exhaust gas and outputs an air-fuel ratio signal. The air-fuel ratio control device for an internal combustion engine that operates or stops the secondary air supply device based on the air-fuel ratio signal includes a load sensor that outputs a load signal when the load of the internal combustion engine becomes lighter than a set load. At least one of the vehicle speed sensors that detects the vehicle speed and outputs a vehicle speed signal when the vehicle speed exceeds a set vehicle speed is provided, and the load signal, the vehicle speed signal, or both of the load signal and the vehicle speed signal are used to detect the vehicle speed. An air-fuel ratio control device for an internal combustion engine, comprising a control device that operates the secondary air supply device regardless of a fuel ratio signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55117378A JPS5741438A (en) | 1980-08-26 | 1980-08-26 | Air fuel ratio controller for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55117378A JPS5741438A (en) | 1980-08-26 | 1980-08-26 | Air fuel ratio controller for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5741438A JPS5741438A (en) | 1982-03-08 |
JPS6339776B2 true JPS6339776B2 (en) | 1988-08-08 |
Family
ID=14710161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55117378A Granted JPS5741438A (en) | 1980-08-26 | 1980-08-26 | Air fuel ratio controller for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5741438A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353069U (en) * | 1989-09-29 | 1991-05-22 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62130160U (en) * | 1986-02-08 | 1987-08-17 |
-
1980
- 1980-08-26 JP JP55117378A patent/JPS5741438A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353069U (en) * | 1989-09-29 | 1991-05-22 |
Also Published As
Publication number | Publication date |
---|---|
JPS5741438A (en) | 1982-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4467602A (en) | Split engine control system | |
US4240389A (en) | Air-fuel ratio control device for an internal combustion engine | |
US4393839A (en) | System for controlling an air-fuel ratio | |
US4365603A (en) | System for controlling air-fuel ratio | |
US4103657A (en) | Twin-barrel carburetor with an air-fuel ratio control device | |
US4111170A (en) | Air-fuel ratio control system | |
US4137877A (en) | Electronic closed loop air-fuel ratio control system | |
US4393840A (en) | Fuel control system for automobile engine | |
US4452209A (en) | Air-fuel ratio control system for an internal combustion engine | |
JPS6339776B2 (en) | ||
JPS6256346B2 (en) | ||
US4617900A (en) | Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load | |
US4569318A (en) | Secondary intake air supply system for internal combustion engines | |
GB2057724A (en) | Automatic control of air/fuel ratio in ic engines | |
US4651699A (en) | Air-fuel ratio control system | |
US4489693A (en) | Air-fuel ratio control system | |
JPS60192845A (en) | Air-fuel ratio control device | |
JPS59165852A (en) | Fuel supply device for gas engine | |
US4604984A (en) | Air intake side secondary air supply system for an internal combustion engine | |
JPS6142093B2 (en) | ||
JPS6342095B2 (en) | ||
JPH0513963Y2 (en) | ||
JPS6255447A (en) | Air-fuel ratio feedback control device for carburetor engine | |
JPS6259218B2 (en) | ||
GB2111254A (en) | Air-fuel ratio control system |