JPS6339660B2 - - Google Patents

Info

Publication number
JPS6339660B2
JPS6339660B2 JP2490383A JP2490383A JPS6339660B2 JP S6339660 B2 JPS6339660 B2 JP S6339660B2 JP 2490383 A JP2490383 A JP 2490383A JP 2490383 A JP2490383 A JP 2490383A JP S6339660 B2 JPS6339660 B2 JP S6339660B2
Authority
JP
Japan
Prior art keywords
toughness
steel
strength
less
pwht
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2490383A
Other languages
Japanese (ja)
Other versions
JPS59153866A (en
Inventor
Makoto Yamada
Haruo Suzuki
Hisatoshi Tagawa
Aoshi Tsuyama
Hiroyuki Ichinose
Saburo Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP2490383A priority Critical patent/JPS59153866A/en
Publication of JPS59153866A publication Critical patent/JPS59153866A/en
Publication of JPS6339660B2 publication Critical patent/JPS6339660B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非調質の高強度高靱性圧力容器用鋼の
創案に係り、溶接後熱処理によつても優れた強度
特性と靱性特性値を確保することのできる高強度
高靱性圧力容器用鋼を提供しようとするものであ
る。 アンモニアコンバーターやメタノールコンバー
ターのような高温水素雰囲気で使用される容器
や、高温で運転されるボイラー用鋼としては従来
C−0.5Mo鋼が多く使用されている。即ちこのC
−0.5Mo鋼としてはASTM規格ではA204が規格
化されており、又JISではJIS.G3103にSB46M、
49Mとして規格されているもので、成分的には比
較的高Cを基本とし、0.15〜0.30wt%Si、0.9wt
%以下のMn、0.45〜0.60wt%のMoを含有してい
ることを特徴としている。ところで従来これらの
材料は高温で使用されることから開発の主眼が高
温強度やクリープ特性におかれていて、靱性に関
しては余り顧みられていないが、最近では事故事
例からして斯うした材料についても靱性が要求さ
れるようになり、強度を具備しつつ優れた靱性を
有するものが強く望まれている。又斯うした材料
は容器製作時に数回の溶接後熱処理(Post Weld
Hert Treatment:以下PWHTという)を受け
るため、鋼板製造時のみならず、苛酷なPWHT
条件後においても充分な強度、靱性を具備させる
ことが必要である。然るに前記した従来のC−
0.5Mo鋼は板厚が38mmを超えると焼準(Nor)又
は焼準−焼戻(Nor−Temp)されるのが一般的
であるが、Mn量が低く、焼入性が低いため、フ
エライトを主体とした組織、即ちフエライト+ベ
イナイト組織になる。しかも高温での強度を確保
する目的から一般には高C系となつており、靱性
の低いベイナイト組織がフエライト地に分散され
たような組織になつていて、斯うした成分系は鋼
板製造時の靱性を損うばかりでなく、PWHT時
における処理時間、処理温度の増加によつて靱性
劣化を示す、所謂SR(応力除去焼鈍)脆化現象が
著しくなり、PWHT後の靱性確保がますます困
難となる。又前記SR脆化は強度低下を伴つた靱
性劣化現象であり、強度低下と靱性劣化を同時に
極力抑制する必要があるが、C量増加による強度
確保は靱性レベルの低下と共に靱性劣化を助長
し、更にこのC量増加は溶接性や加工性を損うこ
ととなるので、何れにしても前記したような要請
に即応し得ないこととなる。 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、非調質の厚肉C−
0.5Mo鋼において、溶接性、加工性を損うことな
しに前記PWHT後においても充分な強度を有し、
又従来鋼に比較して高靱性を具備させた鋼を得る
ことに成功した。即ち本発明によるものの成分組
成wt%(以下単に%という)は、0.07%≦C≦
0.25%、0.10%≦Si≦0.50%、0.40%≦Mn≦0.90
%、P≦0.030%、S≦0.020%、0.50%<Mo≦
0.65%、0.005%≦sol.Al≦0.04%、0.05%≦Cr≦
0.40%に更に0.005%≦Nb≦0.05%を添加し、残
部がFeおよび不可避的不純物からなるものであ
り、更にこのような基本発明のものに対して0.05
%≦Ni≦0.40%、0.0002%≦B≦0.0020%の何れ
か1種又は2種を含有したものであつて、特に
PWHT条件が厳しい板厚50mm以上の鋼を対象と
するものである。 然してこのような本発明の場合における強度、
靱性の目安としては、PWHT後の焼もどしパラ
メータ〔T.P=T(Log t+20)〕が19.0×103
下の範囲で、強度的にはA204若しくはSB46、
49Mの規格値を満足すること、靱性値的にはvTs
≦0℃であることとする。なお上記した焼戻しパ
ラメータT.P=T(Log t+20)において、Tは
PWHTにおける処理温度(単位〓=℃+273)、
tは当該PWHTにおける処理時間(単位hr)で
あり、又鋼板製造時に焼準後焼戻しを行なつてい
る場合はPWHTだけでなく焼戻処理におけるT.
P値も併せて考えなければならないことは言うま
でもない。更に念のため附言すれば前記T.P値が
19.0×103というのは、例えば焼戻処理を行なつ
ておらず、PWHTの温度として600〜650℃を採
用した場合には当該温度で大略3.5〜58hr処理す
ることを意味するものである。 上記したような本発明によるものの特徴は、C
−0.5Mo鋼に、0.05〜0.4%の小量のCrと、0.005
〜0.05%のNbを添加することによりPWHT後の
強度と靱性を著しく改善したことにある。 一列として第1表に示す本発明鋼と従来鋼につ
いて、その焼準時の冷却速度変化に伴う引張強さ
(TS)およびPWHT後のvTsの変化を要約して
示すと第1図の如くである。
The present invention relates to the creation of a non-heat-refined high-strength, high-toughness steel for pressure vessels, which can ensure excellent strength and toughness properties even through post-weld heat treatment. This is what we are trying to provide. Conventionally, C-0.5Mo steel has been widely used for containers used in high-temperature hydrogen atmospheres, such as ammonia converters and methanol converters, and for boilers that operate at high temperatures. That is, this C
-0.5Mo steel is standardized as A204 in ASTM standards, and in JIS as JIS.G3103, SB46M,
It is standardized as 49M, and its composition is basically relatively high C, 0.15 to 0.30wt%Si, 0.9wt
% Mn and 0.45 to 0.60 wt% Mo. By the way, since these materials are used at high temperatures, the focus of development has traditionally been on high-temperature strength and creep properties, and little attention has been paid to toughness, but recent accidents have led to the development of such materials. In addition, toughness is now required, and there is a strong desire for a material that has both strength and excellent toughness. In addition, such materials undergo several post-weld heat treatments during container manufacturing.
Hert Treatment (hereinafter referred to as PWHT)
It is necessary to have sufficient strength and toughness even after the conditions. However, the conventional C-
When the thickness of 0.5Mo steel exceeds 38 mm, it is generally normalized (Nor) or normalized-tempered (Nor-Temp), but due to the low Mn content and low hardenability, ferrite is used. It becomes a structure mainly composed of ferrite + bainite. Moreover, in order to ensure strength at high temperatures, it is generally a high C system, with a bainite structure with low toughness dispersed in a ferrite base, and such a composition system is used during the manufacturing of steel sheets. In addition to impairing toughness, the so-called SR (stress relief annealing) embrittlement phenomenon, which shows toughness deterioration due to increases in processing time and processing temperature during PWHT, becomes significant, making it increasingly difficult to maintain toughness after PWHT. Become. In addition, the SR embrittlement is a toughness deterioration phenomenon that is accompanied by a decrease in strength, and it is necessary to simultaneously suppress the decrease in strength and the deterioration in toughness as much as possible, but ensuring strength by increasing the amount of C reduces the toughness level and promotes the deterioration of toughness. Furthermore, this increase in the amount of C impairs weldability and workability, so in any case, the above-mentioned requirements cannot be met immediately. The present invention was devised after repeated studies in view of the above-mentioned circumstances, and is a non-heat-treated thick-walled C-
0.5Mo steel has sufficient strength even after the PWHT without impairing weldability and workability,
We also succeeded in obtaining a steel with higher toughness than conventional steel. That is, the component composition wt% (hereinafter simply referred to as %) of the product according to the present invention is 0.07%≦C≦
0.25%, 0.10%≦Si≦0.50%, 0.40%≦Mn≦0.90
%, P≦0.030%, S≦0.020%, 0.50%<Mo≦
0.65%, 0.005%≦sol.Al≦0.04%, 0.05%≦Cr≦
Further, 0.005%≦Nb≦0.05% is added to 0.40%, and the remainder consists of Fe and unavoidable impurities, and further 0.05% is added to the basic invention.
It contains one or two of the following: %≦Ni≦0.40%, 0.0002%≦B≦0.0020%, and especially
This applies to steel with a plate thickness of 50 mm or more, which has severe PWHT conditions. However, in the case of the present invention, the strength
As a guideline for toughness, the tempering parameter [TP = T (Log t + 20)] after PWHT is within the range of 19.0 × 10 3 or less, and in terms of strength, it is A204 or SB46,
Satisfy the standard value of 49M, toughness value vTs
The temperature shall be ≦0°C. In addition, in the above tempering parameter TP=T (Log t+20), T is
Processing temperature in PWHT (unit = °C + 273),
t is the processing time (unit: hr) in the relevant PWHT, and if tempering is performed after normalizing during steel plate manufacturing, T.
It goes without saying that the P value must also be considered. Furthermore, just to be sure, the above TP value is
19.0×10 3 means that, for example, when no tempering treatment is performed and a PWHT temperature of 600 to 650° C. is employed, the treatment is performed at that temperature for approximately 3.5 to 58 hours. The features of the invention as described above are as follows:
-0.5Mo steel with a small amount of Cr of 0.05-0.4% and 0.005
The strength and toughness after PWHT were significantly improved by adding ~0.05% Nb. Figure 1 summarizes the changes in tensile strength (TS) due to changes in cooling rate during normalization and vTs after PWHT for the inventive steel and conventional steel shown in Table 1 as a row. .

【表】 蓋し同一冷却速度の場合、即ち同一板厚での焼
準材において、本発明鋼Aが従来鋼Bに比較して
高強度且つ高靱性であることは明らかである。本
発明鋼の場合、板厚150mmのような極厚鋼板にお
いても焼ならし処理−PWHT後で50Kg/mm2以上
の引張強さ、0℃以下のvTsが得られていること
は図示の通りである。 又第2図は本発明鋼A(板厚98mm材)と従来鋼
B(板厚50mm材および100mmシユミレーシヨン材、
即ち100mm材が焼準時において冷却される冷却速
度と同等の冷却速度を再現して焼準した材料)と
の焼戻しパラメーターに伴う強度、靱性の変化を
比較した結果を示すが、略同じ冷却速度材である
本発明鋼Aの98mm材と比較鋼の100mmシユミレー
シヨン材について強度、靱性を比較すると本発明
鋼Aが少なくとも5Kg/mm2以上の強度、少なくと
も20℃以上の高靱性を得ていることが明らかであ
る。又本発明鋼Aの98mm材における靱性は従来鋼
Bの厚さ50mm材と同じ靱性を示しているが強度的
には板厚の厚い本発明鋼が上記のように高く、複
合添加の有効性が示され、本発明鋼では、例えば
19.5×103という苛酷なPWHT条件下においても
充分な強度、靱性を具備していることは明らかで
ある。 本発明における各元素の範囲限定理由は以下の
如くである。 Cは、ASTMA204、JISG3103のSB46M、
49MにおけるC−0.5Mo鋼の強度規格値を満足す
るために0.07%以上を添加することが必要であ
り、一方0.25%を超える添加は低温靱性を劣化さ
せ、溶接性を損うので、0.07〜0.25%とする。 Siは、脱酸剤として必要な元素であり、且つ高
温酸化の防止、高温強度の確保に必要な元素であ
つて、0.10%未満ではその効果がなく、又0.5%
を越えると母材靱性を劣化させるためその範囲を
0.10〜0.50%とした。 Mnは、焼入性を向上させ、又強度、靱性を向
上させるのに必要な元素であつて、0.40%未満で
は規格の強度を満足させることができず、又靱性
の著しい低下を招く。然し0.9%を超えると溶接
性を阻害し、溶接熱影響部の硬さを著しく高める
ため、その範囲は0.4〜0.9%とすることが必要で
ある。 Pは、不純物元素として不可避的に含まれる元
素であるが、0.030%を超えることは低温靱性の
劣化を招くので、その上限を0.030%とする。 Sは、前記Pと同様に不可避的に含まれる元素
であつて、靱性の劣化、材質の異方性助長、板厚
方向特性の劣化、熱間加工性の低下などを招くた
め、特に厚肉材への適用頻度の高い本発明鋼では
その上限を0.020%とすることが必要である。 Moは、高温で使用される鋼材には黒鉛化防
止、高温強度の確保、水素侵食の防止などの観点
からMoを添加するが、0.50%以下ではその効果
が乏しく、又焼入性低下による強度、靱性の劣化
を招く。これに対し0.65%を越える添加は溶接性
を阻害し、溶接継手部靱性を低下させる。従つて
0.50超え0.65%迄の範囲とすることが必要であ
る。 sol.Alは、固溶Nを固定し、組織微細化による
靱性向上をもたらすが、0.005%未満では結晶粒
粗大化を惹起し、又0.04%以上添加すると熱間加
工時の延性低下を来すので、0.005〜0.04%未満
の範囲とする。 Crは、既述したように上限を0.40%とし、一方
下限については0.05%未満ではCrの効果が認めら
れないので0.05〜0.40%の範囲とすることが必要
である。 Nbは、微細な炭化物(一部炭窒物)を形成し、
組織の微細化による靱性向上、析出強化による常
温、高温強度の向上をもたらすものであり、又
PWHT処理に伴うセメンタイト、Mo2Cの粗大化
を抑制するため苛酷なPWHT処理条件で使用さ
れるこの種の圧力容器用鋼では必須の元素であ
る。即ち0.005%未満のNbではその効果がなく、
一方0.05%を越えるNbの添加は溶接性を損い、
靱性を劣化させる。従つてNbについては0.005〜
0.05%の範囲とした。 上記したような基本発明に対し、本発明では更
にNi、Bを添加することができ、これらの範囲
限定理由は以下の如くである。 Niは、固溶して強度および靱性を向上させる
のに有効な元素であるが、0.05%未満ではその効
果が明確でなく、又このクラスの鋼の経済性を考
慮すれば0.40%を越える添加は著しく不経済とな
るので、0.05〜0.40%とする。 Bは、Crと同様に焼入性を向上させる元素で
あり、Crの一部をBに置きかえて使用すること
は強度、靱性確保の面から有効である。然し
0.0002%未満では焼入性に効果がなく、一方
0.002%を越える添加は溶接性の劣化を招くので、
その範囲を0.0002〜0.002%とした。 本発明によるものの具体的な製造例をその比較
例と共に示して本発明の特徴を説明すると以下の
如くである。 次の第2表に本発明者等の用いた供試鋼の化学
成分を示すが、鋼1〜3は比較鋼であつて、鋼1
は従来鋼、鋼2、3はそれぞれNb、Crを単独に
添加した従来鋼である。これに対し鋼4〜11が本
発明鋼であり、鋼4〜6がCr−Nb系、鋼7〜8
がCr−Nb−Ni系、鋼9がCr−Nb−B系、鋼10
〜11がCr−Nb−Ni−B系である。
[Table] It is clear that the steel A of the present invention has higher strength and toughness than the conventional steel B at the same cooling rate, that is, at the same plate thickness. As shown in the figure, in the case of the steel of the present invention, a tensile strength of 50 Kg/mm 2 or more and a vTs of 0°C or less are obtained after normalizing treatment and PWHT, even for extremely thick steel plates such as 150 mm thick. It is. Fig. 2 shows the present invention steel A (98 mm plate thickness material) and conventional steel B (50 mm plate thickness material and 100 mm simulation material,
In other words, the results of a comparison of changes in strength and toughness due to tempering parameters with a material normalized at a cooling rate equivalent to the cooling rate at which a 100 mm material is cooled during normalization are shown. Comparing the strength and toughness of the 98 mm steel of the present invention A and the 100 mm simulation material of the comparison steel, it is found that the steel of the present invention has a strength of at least 5 kg/mm 2 or higher and a high toughness of at least 20°C or higher. it is obvious. In addition, the toughness of the 98 mm steel material of the invention steel A is the same as that of the 50 mm thick material of the conventional steel B, but in terms of strength, the thicker steel of the invention is higher as described above, indicating the effectiveness of the composite addition. is shown, and in the steel of the present invention, for example,
It is clear that it has sufficient strength and toughness even under severe PWHT conditions of 19.5×10 3 . The reason for limiting the range of each element in the present invention is as follows. C is ASTMA204, JISG3103 SB46M,
In order to satisfy the strength standard value of C-0.5Mo steel in 49M, it is necessary to add 0.07% or more.On the other hand, addition of more than 0.25% deteriorates low temperature toughness and impairs weldability, so 0.07~ The rate shall be 0.25%. Si is an element necessary as a deoxidizing agent, as well as for preventing high-temperature oxidation and ensuring high-temperature strength. If it is less than 0.10%, it has no effect, and if it is less than 0.5%
Exceeding this range will deteriorate the toughness of the base material.
It was set at 0.10-0.50%. Mn is an element necessary to improve hardenability, as well as strength and toughness, and if it is less than 0.40%, it will not be possible to satisfy the specified strength and will cause a significant decrease in toughness. However, if it exceeds 0.9%, it impairs weldability and significantly increases the hardness of the weld heat affected zone, so it is necessary to keep the content within the range of 0.4 to 0.9%. P is an element that is inevitably included as an impurity element, but if it exceeds 0.030%, it causes deterioration of low temperature toughness, so the upper limit is set to 0.030%. Like P, S is an element that is unavoidably contained, and it causes deterioration of toughness, promotion of material anisotropy, deterioration of properties in the thickness direction, and reduction of hot workability, so S is an element that is unavoidably contained, especially in thick walls. For the steel of the present invention, which is frequently applied to materials, it is necessary to set the upper limit to 0.020%. Mo is added to steel materials used at high temperatures to prevent graphitization, ensure high-temperature strength, and prevent hydrogen corrosion, but if it is less than 0.50%, the effect is poor, and the hardenability decreases, resulting in increased strength. , leading to deterioration of toughness. On the other hand, addition of more than 0.65% inhibits weldability and reduces the toughness of welded joints. accordingly
It is necessary to keep it within the range of over 0.50 to 0.65%. sol.Al fixes solid solution N and improves toughness by refining the structure, but if it is less than 0.005%, it causes grain coarsening, and if it is added more than 0.04%, it causes a decrease in ductility during hot working. Therefore, it should be in the range of less than 0.005 to 0.04%. As mentioned above, the upper limit of Cr is set to 0.40%, and the lower limit of Cr is required to be in the range of 0.05 to 0.40% since the effect of Cr is not recognized if it is less than 0.05%. Nb forms fine carbides (some carbonitrites),
It improves toughness by making the structure finer and improves strength at room temperature and high temperature by precipitation strengthening.
It is an essential element in this type of pressure vessel steel used under severe PWHT treatment conditions in order to suppress the coarsening of cementite and Mo 2 C that accompanies PWHT treatment. In other words, less than 0.005% Nb has no effect;
On the other hand, adding more than 0.05% Nb impairs weldability.
Degrades toughness. Therefore, for Nb, 0.005~
The range was set at 0.05%. In the present invention, Ni and B can be further added to the basic invention as described above, and the reason for limiting the range thereof is as follows. Ni is an element that is effective in solid solution to improve strength and toughness, but its effect is not clear when it is less than 0.05%, and when considering the economic efficiency of this class of steel, addition of more than 0.40% is extremely uneconomical, so it is set at 0.05 to 0.40%. B, like Cr, is an element that improves hardenability, and using B in place of a part of Cr is effective in terms of ensuring strength and toughness. However
Less than 0.0002% has no effect on hardenability;
Addition of more than 0.002% will lead to deterioration of weldability.
The range was set to 0.0002 to 0.002%. The characteristics of the present invention will be explained below by showing specific manufacturing examples of the present invention together with comparative examples thereof. Table 2 below shows the chemical composition of the test steels used by the inventors. Steels 1 to 3 are comparative steels, and Steel 1
is a conventional steel, and Steels 2 and 3 are conventional steels to which Nb and Cr are respectively added. On the other hand, Steels 4 to 11 are steels of the present invention, Steels 4 to 6 are Cr-Nb series, and Steels 7 to 8 are steels of the present invention.
is Cr-Nb-Ni system, steel 9 is Cr-Nb-B system, steel 10
~11 is Cr-Nb-Ni-B system.

【表】 然してこれらの供試鋼についての引張特性およ
び衝撃特性は次の第3表の如くである。
[Table] The tensile properties and impact properties of these test steels are as shown in Table 3 below.

【表】【table】

【表】 即ち鋼4〜11の本発明鋼は何れの成分の組合せ
においても従来鋼もしくは比較鋼に比し高強度、
高靱性を示しており、特に衝撃特性の改善は著し
いものであり、vEo(0℃におけるシヤルピー吸
収エネルギー)は10Kg・m以上となつている。従
来鋼は高C系であるため強度的には充分高い値を
示しているとして靱性が低く、Nb単独系では組
織微細化による靱性改善は認められるものの焼入
性不足から強度が低く、又Cr単独系では同様に
強度は高いけれども組織微細化による靱性改善が
なされていないため低靱性となつている。 以上説明したような本発明によるときは、非調
質のC−0.5Mo鋼たる基本成分系にCrとNbを複
合添加し、或いは必要に応じてこのものに更に
Ni、Bの1種又は2種を添加することにより
PWHT後の強度および靱性を充分に確保し、高
強度にして、高靱性圧力容器用鋼として好ましい
鋼種を提供し得るものであつて工業的にその効果
の大きい発明である。
[Table] That is, steels 4 to 11 of the present invention have higher strength than conventional steel or comparative steel in any combination of ingredients.
It exhibits high toughness, and the improvement in impact properties is particularly remarkable, with vEo (Sharpey absorbed energy at 0°C) being 10 Kg·m or more. Conventional steels are high C-based steels, so although they exhibit sufficiently high strength values, they have low toughness; Nb-only steels have low toughness due to lack of hardenability, although improvements in toughness are observed due to microstructural refinement; In a single system, the strength is similarly high, but the toughness is low because the toughness has not been improved by microstructural refinement. According to the present invention as explained above, Cr and Nb are added in combination to the basic component system of non-tempered C-0.5Mo steel, or if necessary, this material is further added.
By adding one or both of Ni and B
This invention is capable of ensuring sufficient strength and toughness after PWHT, making it high in strength, and providing a steel type preferable as a high-toughness steel for pressure vessels, and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつ
て、第1図は本発明鋼および比較鋼についての強
度および靱性の冷却速度依存性を示した図表、第
2図は同じく本発明鋼および比較鋼について強
度、靱性の焼もどしパラメーターに伴う変化を示
した図表である。
The drawings show the technical contents of the present invention, and Fig. 1 is a chart showing the cooling rate dependence of strength and toughness for the inventive steel and comparative steel, and Fig. 2 is a chart showing the cooling rate dependence of the strength and toughness of the inventive steel and comparative steel. 1 is a chart showing changes in strength and toughness of steel due to tempering parameters.

Claims (1)

【特許請求の範囲】 1 C:0.07〜0.25wt%、 Si:0.10〜0.50wt%、 Mn:0.40〜0.90wt%、 Cr:0.05〜0.40wt%、 Mo:0.50超え0.65wt%迄、 P:0.030wt%以下、 S:0.020wt%以下、 sol.Al:0.005〜0.04wt%未満、 Nb:0.005〜0.05wt% を含有し、残部は鉄および不可避的不純物からな
ることを特徴とする非調質の高強度高靱性圧力容
器用鋼。 2 C:0.07〜0.25wt%、 Si:0.10〜0.50wt%、 Mn:0.40〜0.90wt%、 Cr:0.05〜0.40wt%、 Mo:0.50超え0.65wt%迄、 P:0.030wt%以下、 S:0.020wt%以下、 sol.Al:0.005〜0.04wt%未満、 Nb:0.005〜0.05wt% を含有し、しかも Ni:0.05〜0.40wt%、 B:0.0002〜0.002wt%、 の何れか1種又は2種を含有し、残部は鉄および
不可避的不純物からなることを特徴とする非調質
の高強度高靱性圧力容器用鋼。
[Claims] 1 C: 0.07 to 0.25 wt%, Si: 0.10 to 0.50 wt%, Mn: 0.40 to 0.90 wt%, Cr: 0.05 to 0.40 wt%, Mo: over 0.50 to 0.65 wt%, P: 0.030wt% or less, S: 0.020wt% or less, sol.Al: 0.005 to less than 0.04wt%, Nb: 0.005 to 0.05wt%, and the remainder consists of iron and inevitable impurities. High-quality, high-strength, high-toughness pressure vessel steel. 2 C: 0.07-0.25wt%, Si: 0.10-0.50wt%, Mn: 0.40-0.90wt%, Cr: 0.05-0.40wt%, Mo: More than 0.50 up to 0.65wt%, P: 0.030wt% or less, S : 0.020wt% or less, sol.Al: 0.005 to less than 0.04wt%, Nb: 0.005 to 0.05wt%, and any one of Ni: 0.05 to 0.40wt%, B: 0.0002 to 0.002wt%. or 2 types, with the remainder consisting of iron and inevitable impurities.
JP2490383A 1983-02-18 1983-02-18 Steel for pressure vessel having high strength and toughness Granted JPS59153866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2490383A JPS59153866A (en) 1983-02-18 1983-02-18 Steel for pressure vessel having high strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2490383A JPS59153866A (en) 1983-02-18 1983-02-18 Steel for pressure vessel having high strength and toughness

Publications (2)

Publication Number Publication Date
JPS59153866A JPS59153866A (en) 1984-09-01
JPS6339660B2 true JPS6339660B2 (en) 1988-08-05

Family

ID=12151132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2490383A Granted JPS59153866A (en) 1983-02-18 1983-02-18 Steel for pressure vessel having high strength and toughness

Country Status (1)

Country Link
JP (1) JPS59153866A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778398B1 (en) 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR101908804B1 (en) * 2016-12-21 2018-10-16 주식회사 포스코 Steel sheet for pressure vessel having excellent post weld heat treatment resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JPS59153866A (en) 1984-09-01

Similar Documents

Publication Publication Date Title
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
US4755234A (en) Method of manufacturing pressure vessel steel with high strength and toughness
US4988393A (en) Method for producing high-strength steel having improved weldability
US3463677A (en) Weldable high strength steel
JPS625986B2 (en)
JPS6339660B2 (en)
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPS613833A (en) Manufacture of high strength steel with superior weldability
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS6033340A (en) Extremely thick low carbon steel plate with excellent weldability
JPH05171343A (en) Steel for high temperature pressure vessel having high strength and high toughness
JPH0860291A (en) Steel for machine structural use, excellent in delayed fracture resistance
JPH0368100B2 (en)
JPS63186822A (en) Production of high strength austenitic stainless steel
JPS59153867A (en) Steel for high toughness pressure vessel having excellent weldability
JPS6237342A (en) High-toughness steel for vessel for high-temperature and high-pressure service excellent in strength at high temperature and sr cracking resistance
JPS6133049B2 (en)
JPS6254019A (en) Manufacture of 80kg class ultrathick high tensile steel plate superior in weldability and low temperature toughness
JPH08120399A (en) Steel for machine structure excellent in delayed fracture resistance
JPH07242991A (en) High toughness chromium-molybdenum steel sheet excellent in weldability
JPS642185B2 (en)
JPS6289844A (en) Low-carbon cr-mo steel excellent in sr crack-resisting characteristics
JPH04314825A (en) Production of 80kgf/mm2 class high tensile strength steel excellent in weldability