JPH04314825A - Production of 80kgf/mm2 class high tensile strength steel excellent in weldability - Google Patents

Production of 80kgf/mm2 class high tensile strength steel excellent in weldability

Info

Publication number
JPH04314825A
JPH04314825A JP4027791A JP4027791A JPH04314825A JP H04314825 A JPH04314825 A JP H04314825A JP 4027791 A JP4027791 A JP 4027791A JP 4027791 A JP4027791 A JP 4027791A JP H04314825 A JPH04314825 A JP H04314825A
Authority
JP
Japan
Prior art keywords
steel
weldability
less
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4027791A
Other languages
Japanese (ja)
Other versions
JP2634961B2 (en
Inventor
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
為広 博
Seiji Isoda
磯田 征司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3040277A priority Critical patent/JP2634961B2/en
Publication of JPH04314825A publication Critical patent/JPH04314825A/en
Application granted granted Critical
Publication of JP2634961B2 publication Critical patent/JP2634961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile strength steel excellent in weldability by subjecting a slab of a steel containing specific trace amounts of alloy components and practically free from B to rolling, hardening, and tempering under respectively specified conditions. CONSTITUTION:A slab of a steel having a composition which contains, by weight, 0.03-0.06% C, <0.5% Si, 0.8-1.5% Mn, <0.02% P, <0.008% S, 0.9-1.8% Cu, 0.3-2.0% Ni, 0.4-0.7% Mo, 0.005-0.040% Nb, 0.02-0.08% V, 0.005-0.020% Ti, <0.06% Al, and 0.0015-0.0060% N or further contains 0.05-0.4% Cr and/or 0.0005-0.005% Ca and in which the sum of 59.3C(%) and Cu(%) is regulated to <=42% is reheated to 950-1150 deg.C, rolled so that cumulative reduction of area at <=1000 deg.C becomes >=40%, hardened from >=850 deg.C, and reheated to <=700 deg.C to undergo tempering treatment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は溶接性の優れた80kg
f/mm2 級高張力鋼の製造法に関するものである。
[Industrial Application Field] The present invention is a 80 kg machine with excellent weldability.
The present invention relates to a method for manufacturing f/mm2 class high tensile strength steel.

【0002】0002

【従来の技術】従来の80kgf/mm2 級高張力鋼
(以下HT80)の殆どはB添加鋼を焼入れ焼戻処理す
ることにより製造していた。しかし、B添加HT80は
溶接性がHT60に比較して著しく劣っていた。このた
め、溶接施工時には溶接割れ防止のため200℃程度の
予熱(溶接時に鋼板の温度を一定の温度に保つ)が必要
とされ、施工能率の著しい低下を招いていた。このよう
なB添加HT80の欠点を改良するため最近、特開平2
−129317号公報のようなB無添加HT80が発明
されている。しかしながら、この製造法では、厳しい溶
接条件に於て溶接による硬化は避けられなかった。即ち
、溶接後の冷却速度が速い場合(溶接入熱が小さく、溶
接する鋼の板厚が厚い)は溶接による硬化は避けられず
、溶接割れを防止するためには高い予熱温度が必須であ
った。このため、厳しい溶接条件に於て優れた溶接性を
有するHT80の研究開発が強く望まれていた。
BACKGROUND OF THE INVENTION Most conventional 80 kgf/mm2 class high tensile strength steels (hereinafter referred to as HT80) have been produced by quenching and tempering B-added steel. However, the weldability of B-added HT80 was significantly inferior to that of HT60. Therefore, during welding, preheating to about 200° C. (maintaining the temperature of the steel plate at a constant temperature during welding) is required to prevent weld cracking, resulting in a significant decrease in construction efficiency. In order to improve the drawbacks of B-added HT80, recently, JP-A-2
B-free HT80 as disclosed in Japanese Patent No. 129317 has been invented. However, with this manufacturing method, hardening due to welding was unavoidable under severe welding conditions. In other words, if the cooling rate after welding is fast (welding heat input is small and the steel plate to be welded is thick), hardening due to welding is unavoidable, and a high preheating temperature is essential to prevent weld cracking. Ta. For this reason, research and development of HT80, which has excellent weldability under severe welding conditions, has been strongly desired.

【0003】0003

【発明が解決しようとする課題】本発明は溶接性が優れ
たHT80の製造技術を提供するものである。本発明法
に基づいて製造したHT80は溶接後の冷却速度が速い
厳しい溶接条件に於ても溶接熱影響部(HAZ)の硬化
が少なく、溶接施工時の予熱の軽減が可能である。
SUMMARY OF THE INVENTION The present invention provides a manufacturing technique for HT80 having excellent weldability. HT80 manufactured based on the method of the present invention has less hardening of the weld heat affected zone (HAZ) even under severe welding conditions where the cooling rate after welding is fast, and it is possible to reduce preheating during welding work.

【0004】0004

【課題を解決するための手段】本発明の要旨は重量比で
C:0.03〜0.05%、Si:0.5%以下、Mn
:0.8〜1.5%、P:0.02%以下、S:0.0
08%以下、Cu:0.9〜1.8%、Ni:0.3〜
2.0%、Mo:0.4〜0.7%、Nb:0.005
〜0.040%、V:0.02〜0.08%、Ti:0
.005〜0.020%、Al:0.06%以下、N:
0.0015〜0.0060%、さらに必要によりCr
:0.05〜0.4%、Ca:0.0005〜0.00
5%の1種または2種を含有し、59.3C(%)+C
u(%)の和が4.2(%)以下を満足し、残部が鉄及
び不可避的不純物からなる実質的にBを含有しない鋼を
950℃〜1150℃の温度範囲に再加熱して、100
0℃以下の累積圧下量が40%以上になるように圧延を
行なった後、850℃以上の温度から焼入れし、ついで
700℃以下の温度に再加熱して焼戻処理することを特
徴とする溶接性の優れた80kgf/mm2 級高張力
鋼の製造法である。
[Means for Solving the Problems] The gist of the present invention is that C: 0.03 to 0.05%, Si: 0.5% or less, Mn
: 0.8-1.5%, P: 0.02% or less, S: 0.0
08% or less, Cu: 0.9 to 1.8%, Ni: 0.3 to
2.0%, Mo: 0.4-0.7%, Nb: 0.005
~0.040%, V:0.02~0.08%, Ti:0
.. 005-0.020%, Al: 0.06% or less, N:
0.0015-0.0060%, further Cr as necessary
:0.05~0.4%, Ca:0.0005~0.00
Contains 5% of one or two types, 59.3C (%) + C
A steel that satisfies a sum of u (%) of 4.2 (%) or less and the balance is iron and inevitable impurities and is substantially free of B is reheated to a temperature range of 950 ° C. to 1150 ° C., 100
After rolling so that the cumulative reduction at 0°C or lower is 40% or more, it is quenched at a temperature of 850°C or higher, and then reheated to a temperature of 700°C or lower for tempering. This is a method for manufacturing 80kgf/mm2 class high tensile strength steel with excellent weldability.

【0005】[0005]

【作用】以下本発明について詳細に説明する。発明者ら
の研究によれば、従来HT80の溶接性を抜本的に解決
するためには鋼中C量の低減とB無添加が必須であった
。しかしながら、C量の低減とB無添加はどちらも母材
強度を確保するため重要な合金元素であった。このため
、母材強度と良溶接性を満足させる方法について鋭意検
討し、従来の発想と全く異なった新しい鋼を発明するこ
とができた。
[Operation] The present invention will be explained in detail below. According to the inventors' research, in order to fundamentally solve the weldability of conventional HT80, it was essential to reduce the amount of C in the steel and eliminate the addition of B. However, reducing the amount of C and not adding B were both important alloying elements to ensure the strength of the base material. For this reason, we conducted extensive research into ways to satisfy base metal strength and good weldability, and were able to invent a new steel that is completely different from conventional ideas.

【0006】本発明では、1)C量の低減とB無添加に
よる母材強度の低下はCu,Nb,Vの析出硬化を利用
、2)また、従来から溶接割れ発生に硬さが大きく影響
し、割れ発生の抑制に必要な硬さの限界値はHv350
程度であることが知られていた。このため、厳しい溶接
条件でもHAZの硬さが最大でもHv350以下となる
成分規制が必要である。このクラスのHT80は厳しい
溶接条件では、HAZのミクロ組織が殆どマルテンサイ
トとなり、その硬さはC量とCu量の和で決まることを
見いだした。
In the present invention, 1) Precipitation hardening of Cu, Nb, and V is used to reduce the amount of C and reduce the strength of the base material by not adding B, and 2) In addition, hardness has traditionally had a large influence on the occurrence of weld cracking. However, the hardness limit required to suppress cracking is Hv350.
It was known that the extent of Therefore, it is necessary to control the composition so that the hardness of the HAZ is at most Hv350 or less even under severe welding conditions. It has been found that in this class of HT80, under severe welding conditions, the HAZ microstructure becomes mostly martensite, and its hardness is determined by the sum of the C content and the Cu content.

【0007】従来の知見では、殆どマルテンサイトの硬
さはおよそHv=800C(%)+293程度であるこ
とが知られていた。発明者らはCu添加量が0.8%以
上の鋼では、殆どマルテンサイトの硬さはC量以外にC
u添加量にも依存することを見いだした。この結果を数
式で表わすとHv(殆どマルテンサイトの硬さ)=80
0C(%)+13.5Cu(%)+293となる。
According to conventional knowledge, it has been known that the hardness of most martensite is approximately Hv=800C(%)+293. The inventors found that in steels with a Cu content of 0.8% or more, the hardness of martensite is mostly due to C content other than the C content.
It was found that it also depends on the amount of u added. Expressing this result mathematically, Hv (hardness of almost martensite) = 80
0C (%) + 13.5Cu (%) + 293.

【0008】このような検討から、厳しい溶接条件に於
て硬さ値を一定以下(Hv350以下)に抑える条件は
59.3C+Cuの和を4.2以下とすることで達成で
きることを見いだした。3)さらに、母材の強度をCu
,Nb,V等の析出硬化で達成する場合、鋼成分の焼入
性が低いため母材の靭性確保が難しい課題であった。 この課題を解決するためには、添加元素の制約とともに
製造法が適切でなければならない。このため、鋼(スラ
ブ)の再加熱、圧延、冷却条件を限定する必要がある。 再加熱温度はNb,Vなどの固溶と加熱時のオーステナ
イト粒の粗大化の両面から規制が必要である。950℃
未満ではNbが殆ど固溶せず、Vの固溶も十分でなくな
り、母材の強度が不足するため下限を950℃とした。 また、1150℃超ではNbやVは十分固溶し、母材の
強度は十分であるがオーステナイト粒が粗大化して母材
の靭性が著しく劣化するため上限を1150℃とした。
From these studies, it has been found that under severe welding conditions, the hardness value can be kept below a certain level (Hv 350 or below) by setting the sum of 59.3C+Cu to 4.2 or below. 3) Furthermore, the strength of the base material is increased by Cu
, Nb, V, etc., it has been difficult to ensure the toughness of the base metal because the hardenability of the steel components is low. In order to solve this problem, the manufacturing method must be appropriate as well as restricting the additive elements. Therefore, it is necessary to limit the conditions for reheating, rolling, and cooling the steel (slab). The reheating temperature must be regulated from both the viewpoints of solid solution of Nb, V, etc. and coarsening of austenite grains during heating. 950℃
If it is less than 950° C., almost no Nb will be dissolved in solid solution, V will not be sufficiently dissolved, and the strength of the base material will be insufficient, so the lower limit was set at 950°C. Further, at temperatures exceeding 1150°C, Nb and V are sufficiently dissolved and the strength of the base material is sufficient, but the austenite grains become coarse and the toughness of the base material deteriorates significantly, so the upper limit was set at 1150°C.

【0009】つぎに1000℃以下の累積圧下量を40
%以上としなければならない。圧延によるオーステナイ
ト粒の微細化のためには、1000℃以下の累積圧下量
が重要であり、その下限を40%とした(好ましい範囲
45〜70%)。さらに、HT80の強度と靭性を得る
ためには、850℃以上の温度から焼入れを行ない、7
00℃以下の温度で焼戻処理する必要がある。
[0009] Next, the cumulative reduction amount below 1000°C is 40
% or more. For refinement of austenite grains by rolling, a cumulative reduction of 1000° C. or less is important, and the lower limit thereof is set to 40% (preferably range 45 to 70%). Furthermore, in order to obtain the strength and toughness of HT80, quenching is performed at a temperature of 850°C or higher.
It is necessary to perform the tempering treatment at a temperature of 00°C or lower.

【0010】一部重要な成分の規制と適正な製造方法に
ついて述べたが、優れた溶接性を有するHT80とする
ためには基本成分を適正範囲に規制する必要がある。以
下この点について説明する。
Although the regulation of some important components and the appropriate manufacturing method have been described, in order to produce HT80 with excellent weldability, it is necessary to regulate the basic components within appropriate ranges. This point will be explained below.

【0011】Cの下限0.03%は母材および溶接部の
強度確保ならびにNb,Vなどの効果を発揮させるため
の最小量である。しかしC量が多すぎると溶接性の劣化
を招くため上限を0.06%とした。しかも、前述した
ようにC量の上限はCu量との関係で規制する必要があ
り、59.3C(%)+Cu(%)の和が4.2(%)
以下とする。溶接性の観点からC量は0.05%以下が
望ましい。
The lower limit of 0.03% of C is the minimum amount in order to ensure the strength of the base metal and the welded part and to exhibit the effects of Nb, V, etc. However, if the amount of C is too large, weldability deteriorates, so the upper limit was set at 0.06%. Moreover, as mentioned above, the upper limit of the C content needs to be regulated in relation to the Cu content, and the sum of 59.3C (%) + Cu (%) is 4.2 (%).
The following shall apply. From the viewpoint of weldability, the amount of C is desirably 0.05% or less.

【0012】Siは多く添加すると溶接性、HAZ靭性
を劣化させるため、上限を0.5%とした。Mnは強度
、靭性を確保する上で不可欠な元素であり、その下限は
0.8%である。しかし、Mn量が多すぎると焼入性が
増加して溶接性、HAZ靭性を劣化させるため、その上
限を1.5%とした。
[0012] Adding a large amount of Si deteriorates weldability and HAZ toughness, so the upper limit was set at 0.5%. Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.8%. However, if the amount of Mn is too large, hardenability increases and weldability and HAZ toughness deteriorate, so the upper limit was set at 1.5%.

【0013】本発明鋼において不純物であるP,Sの上
限を0.02%,0.008%とした理由は母材、HA
Z靭性をより一層向上させるためである。P量の低減は
焼戻時の粒界破壊を防止し、S量の低減はMnSによる
靭性の劣化を防止するためである。
[0013] The reason why the upper limits of impurities P and S in the steel of the present invention are set to 0.02% and 0.008% is that
This is to further improve Z toughness. The purpose of reducing the amount of P is to prevent grain boundary fracture during tempering, and the purpose of reducing the amount of S is to prevent deterioration of toughness due to MnS.

【0014】Cuは溶接性の劣化を少なく抑えて母材強
度を確保するため重要な元素である。しかしながら、1
.8%を超える添加量ではHAZ靭性を損なうので上限
を1.8%とした。また、成分中のC量を低く抑えてい
るので、強度を確保するためCu量の下限は0.9%と
した。さらに、溶接性を劣化させないため、Cu量の上
限はC量との関係で規制する必要があり、Cu(%)+
59.3C(%)の和が4.2(%)以下とする。
[0014] Cu is an important element in order to suppress the deterioration of weldability to a minimum and ensure the strength of the base metal. However, 1
.. If the amount added exceeds 8%, HAZ toughness will be impaired, so the upper limit was set at 1.8%. Furthermore, since the amount of C in the components is kept low, the lower limit of the amount of Cu was set at 0.9% to ensure strength. Furthermore, in order not to deteriorate weldability, the upper limit of the Cu content must be regulated in relation to the C content, and Cu (%) +
The sum of 59.3C (%) shall be 4.2 (%) or less.

【0015】Niは溶接性に悪影響が少なく強度、靭性
を向上させるほか、Cuクラックの防止にも効果がある
。しかし2.0%を超えると溶接性に好ましくないため
上限を2.0%とした。また0.3%未満では、その効
果が少ないため下限を0.3%とした。
[0015] Ni has little adverse effect on weldability, improves strength and toughness, and is also effective in preventing Cu cracks. However, if it exceeds 2.0%, it is not favorable for weldability, so the upper limit was set at 2.0%. Moreover, if it is less than 0.3%, the effect is small, so the lower limit was set at 0.3%.

【0016】Moは母材の強度、靭性をともに向上させ
る元素で、0.4%以上が必須である。しかし多すぎる
と溶接性を劣化させるため、その上限を0.7%とした
。Nbは母材の強度、靭性を確保するため重要な元素で
あり、0.005%が下限である。また、添加量が多す
ぎるとHAZ靭性を劣化させるので、上限を0.040
%とした。Vは母材の強度を確保するため重要であり、
0.02%が下限である。また、0.08%を超えると
HAZ靭性を損なうため0.08%を上限とした。
[0016] Mo is an element that improves both the strength and toughness of the base material, and its content of 0.4% or more is essential. However, since too much content deteriorates weldability, the upper limit was set at 0.7%. Nb is an important element for ensuring the strength and toughness of the base material, and its lower limit is 0.005%. In addition, if the amount added is too large, the HAZ toughness will deteriorate, so the upper limit is set to 0.040.
%. V is important to ensure the strength of the base material,
0.02% is the lower limit. Further, if it exceeds 0.08%, HAZ toughness is impaired, so 0.08% is set as the upper limit.

【0017】TiはAl量が少ないときOと結合してT
i2 O3を主成分とする酸化物を形成してHAZ靭性
を向上させる。また、Nと結合してTiNを形成し、再
加熱時のオーステナイト粒の粗大化を抑制、圧延後の組
織の微細化に効果を発揮する。これらの効果を得るため
には最低0.005%必要である。しかし、多すぎると
TiCを形成して母材靭性やHAZ靭性を害するため、
上限を0.02%とした。
[0017] When the amount of Al is small, Ti combines with O and becomes T.
Forms an oxide mainly composed of i2O3 to improve HAZ toughness. It also combines with N to form TiN, which suppresses coarsening of austenite grains during reheating and is effective in refining the structure after rolling. A minimum content of 0.005% is required to obtain these effects. However, if there is too much, TiC will form and will harm the base material toughness and HAZ toughness.
The upper limit was set at 0.02%.

【0018】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、そ
の下限は限定しない。しかし、Al量が多くなると鋼の
清浄性が悪くなるばかりでなく、この鋼を使用して溶接
した溶接金属の靭性が劣化するので上限を0.06%と
した。
Al is an element generally contained in deoxidized steel, but Si or Ti alone is sufficient for deoxidation, and the lower limit is not limited. However, when the amount of Al increases, not only does the cleanliness of the steel deteriorate, but also the toughness of the weld metal welded using this steel deteriorates, so the upper limit was set at 0.06%.

【0019】Nは不可避的不純物として鋼中に含まれる
ものであるが、Nbと結合して炭窒化物を形成して強度
を増加させ、またTiNを形成して前述のようなHT8
0の性質を高める。しかしこのため、最低0.0015
%の添加が必要である。しかしながら、N量の増加はH
AZ靭性に有害なため、上限を0.0060%とした。
N is contained in steel as an unavoidable impurity, but it combines with Nb to form carbonitrides to increase strength, and also forms TiN to form HT8 as mentioned above.
Enhance the nature of 0. However, for this reason, the minimum
% addition is required. However, the increase in the amount of N
Since it is harmful to AZ toughness, the upper limit was set to 0.0060%.

【0020】つぎにCr,Caを添加する理由について
説明する。基本となる成分にさらにこれらの元素を添加
する目的は本発明鋼の特徴を損なうことなく、強度、靭
性の向上を図るためである。Crは母材、溶接部の強度
を高めるが、多すぎると溶接性やHAZ靭性を著しく劣
化させる。このためその上下限をそれぞれ0.05%、
0.4%とした。Caは硫化物の形態を制御し、母材靭
性を向上させる。しかし、Ca量が0.0005%未満
では実用上効果がなく、また0.005%を超えるとC
aO,CaSが多量に生成して大型介在物となり、靭性
を低下させる。このため添加量の上下限をそれぞれ0.
005%,0.005%とした。
Next, the reason for adding Cr and Ca will be explained. The purpose of adding these elements to the basic components is to improve the strength and toughness of the steel of the present invention without impairing its characteristics. Cr increases the strength of the base metal and the welded part, but if it is present too much, it significantly deteriorates weldability and HAZ toughness. For this reason, the upper and lower limits are each 0.05%,
It was set at 0.4%. Ca controls the morphology of sulfides and improves the toughness of the base metal. However, if the amount of Ca is less than 0.0005%, it has no practical effect, and if it exceeds 0.005%, C
A large amount of aO and CaS are generated and become large inclusions, which reduce toughness. For this reason, the upper and lower limits of the addition amount are set to 0.
005% and 0.005%.

【0021】[0021]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼を製造
し、母材の強度、靭性、厳しい溶接条件でのHAZ硬さ
の測定等の調査を実施した。表1に本発明鋼と比較鋼の
化学成分を、表2に鋼板の製造プロセスと母材の強度、
靭性、厳しい溶接条件でのHAZ硬さの測定結果を示す
[Example] Various types of steel were manufactured using a converter-continuous casting-thick plate process, and investigations were conducted to measure the strength, toughness, and HAZ hardness of the base metal under severe welding conditions. Table 1 shows the chemical composition of the inventive steel and comparative steel, and Table 2 shows the manufacturing process of the steel plate and the strength of the base material.
The measurement results of toughness and HAZ hardness under severe welding conditions are shown.

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【表2】[Table 2]

【0024】[0024]

【表3】[Table 3]

【0025】[0025]

【表4】[Table 4]

【0026】表1の鋼1〜10に本発明鋼の化学成分を
、鋼10〜20に比較鋼の化学成分を示す。また、表2
の鋼1〜10に本発明鋼の、鋼11〜20に比較鋼につ
いて母材強度、靭性および厳しい溶接条件でのHAZ硬
さの測定結果を示す。
Steels 1 to 10 in Table 1 show the chemical compositions of the steels of the present invention, and Steels 10 to 20 show the chemical compositions of comparative steels. Also, Table 2
The measurement results of base metal strength, toughness, and HAZ hardness under severe welding conditions are shown for Steels 1 to 10 of the present invention steels and Steels 11 to 20 of comparative steels.

【0027】本発明鋼はC,Cu量を制御しており、5
9.3C+Cuの和は4.2未満である。このため、溶
接入熱10kJ/cmの厳しい条件でもHAZ硬さの最
高値は350未満であった。さらに、母材の強度、靭性
ともHT80として十分な特性であった。
[0027] The steel of the present invention has controlled amounts of C and Cu, and
The sum of 9.3C+Cu is less than 4.2. Therefore, even under the severe conditions of welding heat input of 10 kJ/cm, the maximum value of HAZ hardness was less than 350. Furthermore, both the strength and toughness of the base metal had sufficient properties as HT80.

【0028】これに対し、比較鋼の鋼11〜17では母
材の特性は十分であるが、化学成分中のCが高くまた、
C+Cuの和が高いためHAZ硬さがHv350をはる
かに超え溶接性が不十分であった。また比較鋼18〜2
0ではHAZ硬さは350未満であったが、鋼18でM
n,Mo量が不十分なため母材強度が80キロに達しな
かった。鋼19では、Cu量が少ないため母材強度が8
0キロに達しなかった。さらに、鋼20でNbが添加さ
れてないため母材強度が80キロに達しなかった。
On the other hand, comparative steels 11 to 17 have sufficient base metal properties, but have a high C content in their chemical components, and
Since the sum of C+Cu was high, the HAZ hardness far exceeded Hv350 and weldability was insufficient. Also, comparative steel 18-2
0, the HAZ hardness was less than 350, but steel 18 had a HAZ hardness of less than 350.
The strength of the base material did not reach 80 kg due to insufficient amounts of n and Mo. Steel 19 has a base metal strength of 8 due to the small amount of Cu.
It didn't reach 0km. Furthermore, since Nb was not added to Steel 20, the base metal strength did not reach 80 kg.

【0029】[0029]

【発明の効果】本発明により、溶接性の優れたHT80
の製造が可能となった。従来のHT80に比較し、溶接
施工能率の大幅な改善や、構造物の安全性が著しく向上
することが期待できる。従って本発明の方法で製造した
厚鋼板は建築構造物、圧力容器、海洋構造物など厳しい
環境下で使用される溶接構造物に用いることができる。
Effect of the invention: The present invention provides HT80 with excellent weldability.
became possible to manufacture. Compared to the conventional HT80, it can be expected to significantly improve welding efficiency and the safety of structures. Therefore, the thick steel plate produced by the method of the present invention can be used for welded structures used in harsh environments such as building structures, pressure vessels, and marine structures.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量比で、 C:0.03〜0.06%、 Si:0.5%以下、 Mn:0.8〜1.5%、 P:0.02%以下、 S:0.008%以下、 Cu:0.9〜1.8%、 Ni:0.3〜2.0%、 Mo:0.4〜0.7%、 Nb:0.005〜0.040%、 V:0.02〜0.08%、 Ti:0.005〜0.020%、 Al:0.06%以下、 N:0.0015〜0.0060%、 59.3C(%)+Cu(%)の和が4.2(%)以下
、 残部が鉄及び不可避的不純物からなる実質的にBを含有
しない鋼を950℃〜1150℃の温度範囲に再加熱し
て、1000℃以下の累積圧下量が40%以上になるよ
うに圧延を行なった後、850℃以上の温度から焼入れ
し、ついで700℃以下の温度に再加熱して焼戻処理す
ることを特徴とする溶接性の優れた80kgf/mm2
 級高張力鋼の製造法。
[Claim 1] In weight ratio: C: 0.03 to 0.06%, Si: 0.5% or less, Mn: 0.8 to 1.5%, P: 0.02% or less, S: 0 .008% or less, Cu: 0.9-1.8%, Ni: 0.3-2.0%, Mo: 0.4-0.7%, Nb: 0.005-0.040%, V : 0.02 to 0.08%, Ti: 0.005 to 0.020%, Al: 0.06% or less, N: 0.0015 to 0.0060%, 59.3C (%) + Cu (%) The sum of 4.2 (%) or less, the balance being iron and unavoidable impurities, and substantially B-free steel is reheated to a temperature range of 950°C to 1150°C to achieve a cumulative reduction of 1000°C or less. The 80kgf/80kgf/100% weldable steel sheet with excellent weldability is characterized by being rolled so that the mm2
Manufacturing method for grade high tensile strength steel.
【請求項2】  重量比で、 Cr:0.05〜0.4%、 Ca:0.0005〜0.005% の1種または2種を含有する請求項1記載の溶接性の優
れた80kgf/mm2 級高張力鋼の製造法。
2. The 80 kgf excellent weldability according to claim 1, which contains one or two of Cr: 0.05 to 0.4% and Ca: 0.0005 to 0.005% in weight ratio. /mm2 class high tensile strength steel manufacturing method.
JP3040277A 1991-03-06 1991-03-06 Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability Expired - Lifetime JP2634961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040277A JP2634961B2 (en) 1991-03-06 1991-03-06 Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040277A JP2634961B2 (en) 1991-03-06 1991-03-06 Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability

Publications (2)

Publication Number Publication Date
JPH04314825A true JPH04314825A (en) 1992-11-06
JP2634961B2 JP2634961B2 (en) 1997-07-30

Family

ID=12576132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040277A Expired - Lifetime JP2634961B2 (en) 1991-03-06 1991-03-06 Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability

Country Status (1)

Country Link
JP (1) JP2634961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695771A (en) * 2013-12-03 2014-04-02 武汉钢铁(集团)公司 610MPa-tensile-strength hot-rolled high-strength steel sheet and production method thereof
WO2022267173A1 (en) * 2021-06-21 2022-12-29 山东钢铁股份有限公司 High-strength, low-temperature-resistant h-shaped steel for marine engineering tempering treatment and preparation method thereoffor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605822A (en) * 1983-03-17 1985-01-12 ア−ムコ,インコ−ポレ−テツド Low alloy steel sheet and manufacture
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605822A (en) * 1983-03-17 1985-01-12 ア−ムコ,インコ−ポレ−テツド Low alloy steel sheet and manufacture
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695771A (en) * 2013-12-03 2014-04-02 武汉钢铁(集团)公司 610MPa-tensile-strength hot-rolled high-strength steel sheet and production method thereof
WO2022267173A1 (en) * 2021-06-21 2022-12-29 山东钢铁股份有限公司 High-strength, low-temperature-resistant h-shaped steel for marine engineering tempering treatment and preparation method thereoffor

Also Published As

Publication number Publication date
JP2634961B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
KR100699629B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JPS6366368B2 (en)
JP5266804B2 (en) Method for producing rolled non-heat treated steel
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JP2634961B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP5412915B2 (en) Ferrite-pearlite rolled non-heat treated steel
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2500948B2 (en) Manufacturing method of thick 80kgf / mm2 grade high strength steel with excellent weldability
KR100311791B1 (en) METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART
KR910003883B1 (en) Making process for high tension steel
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPS6121304B2 (en)
JP2528561B2 (en) Low yield ratio 70kgf / mm2 class high strength steel with excellent weldability
RU2726056C1 (en) Rolled sheet made from high-strength steel
JP3208495B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
KR102100050B1 (en) Steel plate and method of manufacturing the same
JPH01255622A (en) Manufacture of directly quenched wear resistant steel plate having superior delayed cracking resistance
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3007247B2 (en) Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less
JPH04325625A (en) Production of non-ni-added-type high tensile strength steel with high toughness
JPS63235430A (en) Manufacture of tempered high-tensile steel stock excellent in toughness and weldability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term