JPS6339612A - Production of composite membrane for separating gas - Google Patents

Production of composite membrane for separating gas

Info

Publication number
JPS6339612A
JPS6339612A JP18294386A JP18294386A JPS6339612A JP S6339612 A JPS6339612 A JP S6339612A JP 18294386 A JP18294386 A JP 18294386A JP 18294386 A JP18294386 A JP 18294386A JP S6339612 A JPS6339612 A JP S6339612A
Authority
JP
Japan
Prior art keywords
porous support
membrane
organic solvent
porous
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18294386A
Other languages
Japanese (ja)
Inventor
Shigeru Ryuzaki
粒崎 繁
Tasuke Sawada
太助 沢田
Takafumi Kajima
孝文 鹿嶋
Yozo Yoshino
吉野 庸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18294386A priority Critical patent/JPS6339612A/en
Publication of JPS6339612A publication Critical patent/JPS6339612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To easily and directly bond a porous support difficult-to be directly bonded without using an auxiliary substance by bringing the porous support into contact with a thin membrane obtained by a water surface developing method in such a state that the porous support contains an organic solvent. CONSTITUTION:As a porous support, anisotropic substance having a dense layer with surface pore diameter not more than 0.3 mum on one surface is obtained by means of a casting method by using polysulfone. Void volume is preferably 10-100 second/10 cc as Gurley value. The porous support is allowed to contain an organic solvent in the proportion of 30-100 vol.% of its void volume. As the organic solvent, aliphatic alkane, aromatic hydrocarbon and alcohol are used. The dense layer side of the porous support in a state containing the organic solvent is brought into contact with a gas separating membrane which is obtained by a water surface developing method and has high separating properties. Thereby the gas separating membrane can be easily and directly bonded on the porous support.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、混合気体の分離濃縮を行なう気体分離用複合
膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a composite membrane for gas separation that separates and concentrates a mixed gas.

従来の技術 近年、有機高分子を用いた気体分離膜が数多く提案され
ている。特に空気からの酸素富化が注目されておシ、空
気中から酸素を効率よく安価に分離濃縮できるならば、
燃焼分野、汚泥処理、健康・医療機器等に大いに貢献で
きると期待されている。
BACKGROUND OF THE INVENTION In recent years, many gas separation membranes using organic polymers have been proposed. In particular, oxygen enrichment from air is attracting attention, and if oxygen can be efficiently and inexpensively separated and concentrated from the air,
It is expected that it will greatly contribute to the combustion field, sludge treatment, health and medical equipment, etc.

特に高分子膜を利用した分離方法は、省資源、省エネル
ギーの点からも強く要望され、酸素富化空気の利用の実
現が早く、効果の著しいと思われる燃焼炉や窯業炉等に
は最適である。
In particular, separation methods using polymer membranes are strongly desired from the viewpoint of resource and energy conservation, and are ideal for combustion furnaces and ceramic furnaces, where the use of oxygen-enriched air can be realized quickly and is considered to be highly effective. be.

このような分離膜として、ポリシロキサン−ポリカーボ
ネート共重合体(特開昭51−121485号公報)ポ
リシロキサ/共重合体(特開昭56−26504号公報
)等がある。しかし、これらはシリコーンを主成分とし
たものであυ確かに透過係数は大きいが、分離係数が小
さい。例えばオルガノシロキサン−ポリカーボネート共
重合体での酸素の透過係数は10〜10  (CC−c
rv’crtl・%・(7)Hq)と大きいが酸素分離
係数(Po2/PN2)は2.0〜2.4と小さい。よ
って、30%前後の濃度であり限界である。
Examples of such separation membranes include polysiloxane-polycarbonate copolymer (JP-A-51-121485) and polysiloxa/copolymer (JP-A-56-26504). However, these are mainly composed of silicone and have a large transmission coefficient, but a small separation coefficient. For example, the oxygen permeability coefficient of organosiloxane-polycarbonate copolymer is 10 to 10 (CC-c
rv'crtl・%・(7)Hq), but the oxygen separation coefficient (Po2/PN2) is small, 2.0 to 2.4. Therefore, the concentration is around 30%, which is the limit.

最近では、酸素分離係数の高い、また薄膜化が可能な高
分子材料が見出されており、ポリ−4−メチル−ペンテ
ン−1,ポリフェニレンオキサイド、ポリスチレン、ポ
リブタジェン等が挙げられる。
Recently, polymeric materials that have a high oxygen separation coefficient and can be made into thin films have been discovered, such as poly-4-methyl-pentene-1, polyphenylene oxide, polystyrene, and polybutadiene.

しかしながら、これら高分子材料は水面展開法により薄
膜を得ることはできるが、その機械的強度を保持する多
孔質支持体との接着が直接接着せず、多孔質支持体に接
着性の良い薄膜を形成し、その後、気体分離膜を接着さ
せる方法、あるいは、接着性の良い材料とプレノドし気
体分離膜とし接着する方法等があるが、これら方法では
、接着性の良好な材料では、例えばシリコーン系のもの
で、前述のように、分離係数があまシ高くなく、気体分
離膜の透過性能9分離性能が、シリコーン膜により、低
下する欠点がある。まだ、特願昭59−86495号に
は多孔質支持体に有機溶剤を含浸させ、その有機溶剤を
蒸発させて多孔質支持体に直接接着する方法が提示され
ているが有機溶剤が含浸された状態で引き上げると気体
分離膜は接着しておらず、蒸発させるまで時間が必要で
ある。
However, although thin films of these polymeric materials can be obtained by the water surface spreading method, they do not adhere directly to the porous support that maintains their mechanical strength; There are methods such as forming a gas separation membrane and then adhering a gas separation membrane, or pre-coating with a material with good adhesiveness and adhering it to form a gas separation membrane. However, as mentioned above, the separation coefficient is not very high, and the separation performance of the gas separation membrane is reduced by the silicone membrane. However, Japanese Patent Application No. 59-86495 proposes a method of impregnating a porous support with an organic solvent, evaporating the organic solvent, and bonding directly to the porous support; If the gas separation membrane is pulled up in this state, it will not be adhered and it will take time for it to evaporate.

あるいは装置が大がかりになる等の欠点がちうた。Also, there are drawbacks such as the equipment being bulky.

発明が解決しようとする問題点 本発明の目的は、上記欠点を解消し、水面展開法により
得られる高分離性の気体分離膜を多孔質体上に容易に直
接接着することができ、かつ膜特性の良好な気体分離用
複合膜の製造方法を提供せんとするものである。
Problems to be Solved by the Invention It is an object of the present invention to solve the above-mentioned drawbacks, to easily bond a high-separation gas separation membrane obtained by a water surface spreading method directly onto a porous body, and to The present invention aims to provide a method for manufacturing a composite membrane for gas separation with good properties.

問題点を解決するための手段 本発明は、上記目的を達成するため、多孔質支持体に有
機溶剤を、その空孔率に対して30体積パーセントから
100体積パーセント含有させた状態で、多孔質支持体
とは直接、接着することの困難な高分離性気体分離膜の
水面展開法で得た薄膜上に接触し、多孔質体上に直接気
体分離膜を接着させ複合膜を製造する方法である。
Means for Solving the Problems In order to achieve the above object, the present invention provides a porous support in which an organic solvent is contained in the porous support at 30% to 100% by volume based on the porosity of the porous support. In this method, a composite membrane is manufactured by directly bonding a gas separation membrane onto a porous material by directly contacting a thin film obtained by a water surface spreading method of a high-separation gas separation membrane that is difficult to bond to a support. be.

本発明における多孔質支持体は、キヤステング法によシ
得られるものであり、特に片面に緻密層を有する異方性
多孔質体が適している。延伸法で得られる多孔質支持体
、例えばポリプロピレン多孔質体であれば、表裏の孔の
形状が同じであるため、溶剤の保持時間が短く、この方
法には適していない材料である。一方、キヤステング法
によシ全体が緻密層よシ形成される多孔質支持体は、逆
に溶剤が飛びにくいため、時間がかかシネ適当である。
The porous support in the present invention is obtained by a casting method, and an anisotropic porous material having a dense layer on one side is particularly suitable. A porous support obtained by a stretching method, such as a polypropylene porous material, has pores of the same shape on the front and back, so the solvent retention time is short, and the material is not suitable for this method. On the other hand, in the case of a porous support whose entire surface is formed as a dense layer by the casting method, it is difficult for the solvent to be blown off, so it is time consuming and suitable for cine processing.

片面に緻密層を有し異方性多孔質体は、その緻密層表面
孔径が0.3μm以下であることが好ましい。0.3μ
m以上の場合には耐圧等の関係により気体透過膜の膜厚
を厚くする方向になシ、透過量が低下するため好ましく
ない。
The anisotropic porous body having a dense layer on one side preferably has a surface pore diameter of 0.3 μm or less. 0.3μ
If it is more than m, it is not preferable because the amount of permeation decreases as the thickness of the gas permeable membrane increases due to pressure resistance and the like.

このような多孔質支持体として、キヤステング法で得ら
れ、しかも、片面に緻密層を有する異方性の多孔質体と
して、ポリスルホン、ポリエーテルスルホン多孔質体を
挙げることができる。特にポリエーテルスルホン多孔質
体は耐溶剤性があるため適している。多孔質支持体の厚
み、空孔率は特に限定されるものでなく、ガレ−値が1
0〜100秒/10ccのものが良好であり、10秒/
cC以下であれば、緻密層が薄く溶剤が早く飛んでしま
い好ましくない。
Examples of such porous supports include polysulfone and polyethersulfone porous bodies, which are anisotropic porous bodies obtained by the casteng method and have a dense layer on one side. In particular, polyether sulfone porous materials are suitable because of their solvent resistance. The thickness and porosity of the porous support are not particularly limited, and the Galley value is 1.
0 to 100 seconds/10cc is good, and 10 seconds/10cc is good.
If it is less than cC, the dense layer will be thin and the solvent will fly away quickly, which is not preferable.

100秒/1oCC以上であれば、多孔質支持体での圧
力損失が大きくなシ、気体分離膜の透過特性を低下させ
るため好ましくない。好ましくは20〜80秒/10c
cである。
If it is 100 seconds/1oCC or more, it is not preferable because the pressure loss in the porous support is large and the permeation characteristics of the gas separation membrane are deteriorated. Preferably 20-80 seconds/10c
It is c.

多孔質支持体に含有させる有機溶剤としては、多孔質支
持体を溶解しない溶剤であれば特に限定されるものでは
ない。これら有機溶剤としては、n−ヘキサン、ヘプタ
/シクロヘキサン等の脂肪族アルカン、および環状アル
カンが適している。
The organic solvent contained in the porous support is not particularly limited as long as it does not dissolve the porous support. Suitable examples of these organic solvents include aliphatic alkanes such as n-hexane and hepta/cyclohexane, and cyclic alkanes.

特にポリエーテルスルホン多孔質支持体の場合について
は、ベンゼン、トルエン、キシレン等の芳香族、メタノ
ール、エタノール等のアルコールテも適している。これ
ら有機溶剤を多孔質支持体にその空孔率の30体積パー
セントから100%体積パーセント含有させた状態を形
成し、水面展開法で得た高分離性の気体分離膜に緻密層
側を接触させることによシ、容易に接着することができ
るものである。溶剤量が30体積パーセント以下の場合
は、溶剤量が少なく接着できない。100体積パーセン
ト以上であれば、多孔質支持体に濡れた状態で存在する
ため接着するまでに時間がかかる。この含有状態を形成
する方法は、有機溶剤に浸漬後風乾する方法、もしくは
溶剤の蒸気中にさらす方法等があるが特に限定するもの
ではない。
Particularly in the case of polyethersulfone porous supports, aromatics such as benzene, toluene, xylene and alcohols such as methanol and ethanol are also suitable. A state is formed in which these organic solvents are contained in a porous support at a volume percent of 30% to 100% of the porosity of the porous support, and the dense layer side is brought into contact with a highly separable gas separation membrane obtained by a water surface development method. In particular, it is one that can be easily glued. If the amount of solvent is less than 30% by volume, the amount of solvent is too small to bond. If it is 100% by volume or more, it will take time to adhere to the porous support because it will exist in a wet state. Methods for forming this containing state include a method of immersing the material in an organic solvent and then air-drying it, a method of exposing it to vapor of a solvent, etc., but is not particularly limited.

また、高分離性を有する気体分離膜としては、ポリフェ
ニレンオキサイド、ポリ−4−メチルペンテ/−1、ポ
リブタジェン、ポリエチレン、ポリフマル酸エステル、
エチルセルロース、等ヲ挙げることができる。
In addition, gas separation membranes with high separation properties include polyphenylene oxide, poly-4-methylpente/-1, polybutadiene, polyethylene, polyfumaric acid ester,
Ethyl cellulose, etc. can be mentioned.

作   用 この構成によシ、支持体には直接接着することのできな
かった高分離性の気体分離膜でも、片面に緻密層を有す
る異方性の多孔質体に、その空孔率の30体積パーセン
トから100体積パーセントの範囲で有機溶剤を含有さ
せ、多孔質体の緻密層側を水面展開法で得だ気体分離膜
上に接触するのみで容易に接着できる方法である。
Function: Due to this structure, even a gas separation membrane with high separation properties that cannot be directly bonded to a support can be applied to an anisotropic porous body with a dense layer on one side, with a porosity of 30%. This is a method in which an organic solvent is contained in a range from 100% by volume to 100% by volume, and the dense layer side of the porous body can be easily bonded by simply contacting it on the gas separation membrane obtained by a water surface spreading method.

実施例 以下、実施例によシさらに具体的に説明する。Example Hereinafter, a more specific explanation will be given using examples.

(比較例1) ポリ−4−メチルペンテン−1(TPX三井東圧化学工
業■)をシクロヘキサノンに溶$ 1.2wt%溶液と
し、この溶液に、さらに7係のTHFを添加した。この
溶液を水面上に展開し、薄膜を形成した。この薄膜上に
、キヤステング法で得たポリスルホン多孔質体の緻密層
側を静かに置き、引き上げだが、膜はそのまま水面上に
残り、接着することはできなかった。
(Comparative Example 1) Poly-4-methylpentene-1 (TPX Mitsui Toatsu Chemical Industry ■) was dissolved in cyclohexanone to make a $1.2 wt% solution, and to this solution, 7 parts THF was further added. This solution was spread on the water surface to form a thin film. The dense layer side of the polysulfone porous material obtained by the casting method was gently placed on top of this thin film and pulled up, but the film remained on the water surface and could not be bonded.

(実施例1) 比較例1に用いたポリスルホ/多孔質体にエチルアルコ
ールの蒸気を含有させ、比較例1と同様の膜上に緻密層
側を静かに置き引き上げることにより、気体分離膜を多
孔質支持体上に得た。この時の多孔質体に含有する溶剤
の量をガスクロマトグラフ(島津製作所製GC−9A)
で測定した結果、空孔率に対して、46体積パーセント
であった。
(Example 1) The polysulfo/porous material used in Comparative Example 1 was made to contain ethyl alcohol vapor, and the dense layer side was gently placed on the same membrane as in Comparative Example 1 and pulled up to form a porous gas separation membrane. obtained on a quality support. At this time, the amount of solvent contained in the porous body was measured using a gas chromatograph (GC-9A manufactured by Shimadzu Corporation).
As a result of measurement, the porosity was 46% by volume.

熱風乾燥後の得られた複合膜の酸素の透過秒数は、1o
、14cdの膜面積で1.0 KgF/ caの圧力で
3.□feJ//CQ分離係数(F○2/FN2)は、
3.8であシ、高分離性を有する複合膜を得た。
The oxygen permeation time of the obtained composite membrane after hot air drying is 1o
, 3. at a pressure of 1.0 KgF/ca with a membrane area of 14 cd. □feJ//CQ separation coefficient (F○2/FN2) is
3.8, a composite membrane with high separation properties was obtained.

(比較例2) 比較例1のポリスルホン多孔質体の代わりに、ポリエー
テルスルホン多孔質体を使用し、同様な方法で膜との接
着を試みたが接着できなかった。
(Comparative Example 2) A polyethersulfone porous material was used in place of the polysulfone porous material of Comparative Example 1, and an attempt was made to adhere it to the membrane in the same manner, but the adhesion was not possible.

(実施例2) ポリエーテルスルホ/多孔質体をトルエン中に浸漬後、
トルエン溶液が多孔質体の表面からなくなる状態まで風
乾し、比較例1の膜上に緻密層側を静かに置き、引き上
げだところ複合膜を得た。
(Example 2) After immersing the polyether sulfo/porous body in toluene,
The porous body was air-dried until the toluene solution disappeared from the surface of the porous body, the dense layer side was gently placed on the membrane of Comparative Example 1, and the porous body was pulled up to obtain a composite membrane.

この時の多孔質体に含有する溶剤の量は、空孔率に対し
て81体積パーセントであった。さらに、熱風乾燥後の
得られた複合膜の特性は、実施例1と同様にして測定し
た結果、酸素透過秒数は2.6秒μ分離係数(F02/
FN2)は4.0であった。
The amount of solvent contained in the porous body at this time was 81% by volume based on the porosity. Furthermore, the properties of the obtained composite membrane after hot air drying were measured in the same manner as in Example 1, and as a result, the oxygen permeation time was 2.6 seconds μ separation coefficient (F02/
FN2) was 4.0.

(実施例3) 実施例2のトルエ/の代わりにヘキサ/分用いた。その
結果、同様に複合膜を得だ。この時のヘキサンの含有量
は、32体積パーセントであったまだ複合膜の特性は実
施例1と同様にして測定した結果、実施例2と同様であ
った。
(Example 3) Hex/min was used instead of toluene/min in Example 2. As a result, a composite membrane was similarly obtained. The content of hexane at this time was 32% by volume.However, the properties of the composite membrane were measured in the same manner as in Example 1, and as a result were found to be the same as in Example 2.

(実施例4) 実施例2のポリ−4−メチルペンテン−1の代わりにポ
リフェニレンオキサイドの膜材料をトルエン溶液に溶解
し、2.0w t%浴溶液した。この溶液を水面上に展
開し薄膜を形成した。ポリエーテルスルホン多孔質体を
メチルアルコール溶液に浸漬し、引き上げ風乾後、薄膜
の上に緻密層側を静かに置き、引き上げたところ複合膜
を得だ。この時の多孔質体に含有する溶剤の量は、空孔
率に対して61体積パーセントであった。得られた複合
膜を熱風乾燥後、実施例1と同様にして測定した結果、
酸素透過秒数は4.3秒μ、分離係数(Fo2/FN2
 )は4.0であった〇 以上のように、本発明で得られた複合膜はいずれも膜特
性の良好なものであった。
(Example 4) A membrane material of polyphenylene oxide instead of poly-4-methylpentene-1 in Example 2 was dissolved in a toluene solution to form a 2.0 wt % bath solution. This solution was spread on the water surface to form a thin film. A porous polyether sulfone material was immersed in a methyl alcohol solution, pulled up and air-dried, then the dense layer side was gently placed on top of the thin film and pulled up to obtain a composite film. The amount of solvent contained in the porous body at this time was 61% by volume based on the porosity. After drying the obtained composite membrane with hot air, measurements were carried out in the same manner as in Example 1. As a result,
Oxygen permeation time is 4.3 secondsμ, separation coefficient (Fo2/FN2
) was 4.0 As shown above, all the composite membranes obtained in the present invention had good membrane properties.

発明の効果 本発明の気体分離用複合膜の製造方法は、水面展開法で
得られる接着性に乏しい高分子薄膜に片面に緻密層を有
する多孔質支持体に、その空孔率に対し有機溶剤を30
体積パーセントから100体積パフセントを含有させた
状態で接触させることにより、容易に接着ができ、従来
法に比べ、作業時間の短縮、連続製膜装置の簡易化が図
れ、しかも、分離膜と支持体の間に接着補助的な物質を
設ける必要がないため、分離膜の持つ特性を損うことな
く、極めて優れた性能を有する複合膜を得ることができ
るものである。
Effects of the Invention The method for producing a composite membrane for gas separation according to the present invention is to apply an organic solvent to a porous support having a dense layer on one side of a polymer thin film with poor adhesion obtained by a water surface spreading method, depending on its porosity. 30
By contacting with a volume percentage of 100% to 100% by volume, bonding can be easily achieved, and compared to conventional methods, work time can be shortened and continuous membrane forming equipment can be simplified. Since there is no need to provide an adhesion auxiliary substance between the membranes, it is possible to obtain a composite membrane with extremely excellent performance without impairing the properties of the separation membrane.

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質支持体と気体分離膜とから構成され、前記
気体分離膜を前記多孔質支持体に接着する際に、前記多
孔質支持体に有機溶剤をその空孔率に対し、30体積パ
ーセント〜100体積パーセント含有させた状態で、前
記気体分離膜に接触させ、多孔質支持体に直接気体分離
膜を接着させることを特徴とする気体分離用複合膜の製
造方法。
(1) Consisting of a porous support and a gas separation membrane, when adhering the gas separation membrane to the porous support, apply an organic solvent to the porous support at a volume of 30 vol. % to 100% by volume, the gas separation membrane is brought into contact with the porous support, and the gas separation membrane is bonded directly to the porous support.
(2)多孔質支持体がキャステング法で得られ、片面に
緻密層を持つ多孔質体である特許請求の範囲第1項記載
の気体分離用複合膜の製造方法。
(2) The method for producing a composite membrane for gas separation according to claim 1, wherein the porous support is a porous body obtained by a casting method and has a dense layer on one side.
(3)多孔質支持体がポリスルホン、ポリエーテルスル
ホンである特許請求の範囲第1項記載の気体分離用複合
膜の製造方法。
(3) The method for producing a composite membrane for gas separation according to claim 1, wherein the porous support is polysulfone or polyethersulfone.
JP18294386A 1986-08-04 1986-08-04 Production of composite membrane for separating gas Pending JPS6339612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18294386A JPS6339612A (en) 1986-08-04 1986-08-04 Production of composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18294386A JPS6339612A (en) 1986-08-04 1986-08-04 Production of composite membrane for separating gas

Publications (1)

Publication Number Publication Date
JPS6339612A true JPS6339612A (en) 1988-02-20

Family

ID=16127078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18294386A Pending JPS6339612A (en) 1986-08-04 1986-08-04 Production of composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS6339612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them

Similar Documents

Publication Publication Date Title
KR900001397A (en) Composite membranes and methods for their preparation and use
US4673418A (en) Method for producing an integral, asymmetric membrane and the resultant membrane
HU213925B (en) Composite a symmetric membrane and process for selectively removing viral particles from solutions and process for forming a composite membrane
CA2432046A1 (en) Separation membrane, separation membrane element, separation membrane module, sewage treatment apparatus, and method for making the separation membrane
KR880012255A (en) Composite membrane for improved fluid separation
JPH0610277B2 (en) Membrane material
JP2002240215A5 (en)
EP1024886A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
JPH07258456A (en) Production of porous polymer article from nonporous polymer composition and article produced thereby
JPH0317533B2 (en)
KR20160026070A (en) Manufacturing method of gas separator membrane
JPS59225705A (en) Composite membrane and preparation thereof
KR900002095B1 (en) Production of porous membrane
CN107537329B (en) Silicone rubber composite membrane with supporting layer surface grafted with cross-linking agent, preparation method and application
JPH07275676A (en) Multiple membrane,its preparation and method of application
JPS6339612A (en) Production of composite membrane for separating gas
JP2726471B2 (en) Anisotropic hollow fiber composite membrane
JPH0521615B2 (en)
CN1236844C (en) Method for preparing hydrophilic microporous material
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
JPH01258724A (en) Production of gas separation membrane
JPS59304A (en) Fpreparation of separation membrane
JPS5857299B2 (en) Composite membrane manufacturing method
CN116272431A (en) Preparation method of ultrafiltration membrane with controllable thickness of humidity sensing small pore layer and ultrafiltration equipment
JPH09239248A (en) Method for treatment of pervaporation membrane