JPS5857299B2 - Composite membrane manufacturing method - Google Patents

Composite membrane manufacturing method

Info

Publication number
JPS5857299B2
JPS5857299B2 JP51103245A JP10324576A JPS5857299B2 JP S5857299 B2 JPS5857299 B2 JP S5857299B2 JP 51103245 A JP51103245 A JP 51103245A JP 10324576 A JP10324576 A JP 10324576A JP S5857299 B2 JPS5857299 B2 JP S5857299B2
Authority
JP
Japan
Prior art keywords
film
plate
polymer
thickness
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51103245A
Other languages
Japanese (ja)
Other versions
JPS5328661A (en
Inventor
憲治 小山
明彦 清水
省太郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP51103245A priority Critical patent/JPS5857299B2/en
Publication of JPS5328661A publication Critical patent/JPS5328661A/en
Publication of JPS5857299B2 publication Critical patent/JPS5857299B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、高分子薄膜を多孔質物質表面に均一にかつ、
再現性よく形成せしめる方保に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for applying a thin polymer film uniformly on the surface of a porous material and
This is related to the formation of a shape with good reproducibility.

限外済過膜、逆浸透膜及びガス透過膜の主たる改良目標
は、高分離効率及び高流速の2点である。
The two main goals for improving ultrafiltration membranes, reverse osmosis membranes, and gas permeation membranes are high separation efficiency and high flow rate.

分離効率は膜の孔径分布、あるいは、分離物質と膜材料
との化学的相互作用によって決定される。
Separation efficiency is determined by the pore size distribution of the membrane or the chemical interaction between the separation substance and the membrane material.

捷た流速に関しては、膜の密な部分の厚さによって決定
される。
As for the droplet flow rate, it is determined by the thickness of the dense part of the membrane.

即ち、膜の厚さと透過流量とは逆比例関係にあり、膜を
薄くすることによって高流速が得られる。
That is, the thickness of the membrane and the permeation flow rate are inversely proportional, and a high flow rate can be obtained by making the membrane thinner.

ところが、高分子を薄膜に成型して単独に取り扱うこと
のできる厚さは、せいぜい数ミクロン1ででこれ以下の
厚みでは 膜を損傷せずに取り扱うことは困難である。
However, the thickness at which polymers can be formed into thin films and handled individually is at most a few microns, and it is difficult to handle films with a thickness smaller than this without damaging the film.

それ故、数ミクロン以下の厚みを持つ薄膜を取り扱うに
は薄膜を支持体に固定する必要が出て来るが、支持体は
、圧力損失を避ける為に多孔質体でなければならない。
Therefore, in order to handle thin films with a thickness of several microns or less, it becomes necessary to fix the thin film to a support, but the support must be porous to avoid pressure loss.

この多孔質体上に高分子を溶解した溶液を流延すると、
溶液は、多孔質体の孔中へ侵入し、多孔質体表面で溶剤
を蒸発さゼて薄膜を形成することはできない。
When a solution containing a polymer is cast onto this porous material,
The solution cannot penetrate into the pores of the porous body and evaporate the solvent on the surface of the porous body to form a thin film.

本発明者はこの様な困難を解決臥多孔質体表面に均一な
薄膜を形成せしめる方法について鋭意研究の結果、本発
明を完成した。
The present inventor completed the present invention as a result of intensive research into a method for forming a uniform thin film on the surface of a porous body to overcome these difficulties.

即ち、本発明は高分子溶液を板上に流延し、この上に多
孔質物質を置いた状態で、該溶液中の溶剤を多孔質物質
の孔を通して蒸発せしめることを特徴とする複合膜の製
法に関する。
That is, the present invention provides a composite membrane characterized in that a polymer solution is cast onto a plate, a porous substance is placed on the plate, and the solvent in the solution is evaporated through the pores of the porous substance. Regarding the manufacturing method.

発明の内容を以下に詳細に説明する。The content of the invention will be explained in detail below.

表面の滑らかな平板上に薄膜となるべき高分子を溶解し
た溶液(製膜用溶液と呼ぶことにする)を流延し、この
上に、支持体となるべき多孔質物質を気泡が製膜用溶液
と多孔質物質の間に残らぬように置き、この11、放置
または乾燥気流中で製膜用溶液中の溶剤を完全に蒸発せ
しめた後平板から、多孔質物質を剥離すると、剥離面に
高分子薄膜の形成された多孔質物質が得られる。
A solution in which a polymer to be formed into a thin film is dissolved (referred to as a film-forming solution) is cast onto a flat plate with a smooth surface, and a porous material that is to become a support is formed on top of this by bubbles. Step 11: Allow the solvent in the film-forming solution to completely evaporate by leaving it to stand or in a dry air stream, and then peel the porous material from the flat plate. A porous material with a thin polymer film formed thereon is obtained.

本発明に用いる表面の滑らかな平板は、例えば、ガラス
板、金属板、高分子板等が用いられるがこのうち、高分
子板は製膜用溶液に膨潤、溶解しないことが必要である
この為、高分子板は、製膜用溶液との関係で選ぶ必要が
あるが、例えば、ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリ塩化1ビニリデン、ポリ弗化エチレン
、ポリ弗化ビニリデン、ポリ四弗化ビニル、セルロース
混合エステル等が有効である。
The flat plate with a smooth surface used in the present invention may be, for example, a glass plate, a metal plate, a polymer plate, etc. Among these, the polymer plate must not swell or dissolve in the film forming solution. The polymer plate must be selected depending on the film forming solution, and examples include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyethylene fluoride, polyvinylidene fluoride, and polyvinyl tetrafluoride. , cellulose mixed ester, etc. are effective.

製膜用溶液に溶解している高分子は、全く任意に選ぶこ
とができ、これは、単一高分子である必要も無く、異種
高分子の混合物や、共重合体であってもか1わない。
The polymer dissolved in the film-forming solution can be selected arbitrarily; it does not need to be a single polymer, and may be a mixture of different polymers or a copolymer. No.

また高分子を溶解している溶剤としては、高分子を溶解
するものであれば単一溶剤、混合溶剤を問わない。
Further, the solvent in which the polymer is dissolved may be a single solvent or a mixed solvent as long as it dissolves the polymer.

製膜用溶液の濃度は最終的に形成される薄膜の厚さに密
接に関係することから、重要であり、流延面積と、目的
とする薄膜の厚さとを考え合わせて決定する必要がある
The concentration of the film-forming solution is important because it is closely related to the thickness of the thin film that is ultimately formed, and it must be determined by considering the casting area and the desired thickness of the thin film. .

最終的に薄膜の支持体となるべき多孔質物質もまた、製
膜用溶液に膨潤、溶解しないものでなければならない。
The porous material that will ultimately serve as a support for the thin film must also not swell or dissolve in the film-forming solution.

このような多孔質物質としては例えば、表面を研摩した
ガラスフィルター、銀製□クロフィルター等の無機質フ
ィルターや、一般に使用されている、ポリ塩化ビニル、
ナイロン、ポリ四弗化エチレン、ポリプロピレン、セル
ロース混合エステル等で作られた□クロフィルター類が
ある。
Examples of such porous materials include inorganic filters such as glass filters with polished surfaces, silver black filters, commonly used polyvinyl chloride,
There are □Clofilters made of nylon, polytetrafluoroethylene, polypropylene, cellulose mixed ester, etc.

これらの多孔質体の孔径はできるだけ均一であることが
望ましく、またその平均孔径は、表面に形成される高分
子薄膜の厚さの2倍を越えないこと、望ましくは、その
厚さと同程度であることが望捷しい。
It is desirable that the pore diameters of these porous materials be as uniform as possible, and the average pore diameter should not exceed twice the thickness of the thin polymer film formed on the surface, and preferably be approximately the same as that thickness. Something is hopeful.

本発明によって提供される複合膜の表面薄膜の厚さは最
低約300オングストローム程度まで可能であり、限外
濾過膜、逆浸透膜、ガス分離膜として使用できる。
The surface thin film of the composite membrane provided by the present invention can have a thickness of at least about 300 angstroms, and can be used as an ultrafiltration membrane, a reverse osmosis membrane, or a gas separation membrane.

以下さらに具体的に説明するため実施例を示す。Examples will be shown below for more specific explanation.

実施例 1 ポリテトラヒトロワランの0.1多ベンゼン溶液をガラ
ス板上に流延し、この上に、ポリプロピレン製□クロフ
ィルター(孔径0.1μm)を気泡が残らない様、注意
深く置き、その1寸 ベンゼンを蒸発させた。
Example 1 A 0.1 polybenzene solution of polytetrahydrowalane was cast on a glass plate, and a polypropylene black filter (pore size 0.1 μm) was carefully placed on top of it so that no air bubbles remained. 1 inch Benzene was evaporated.

3時間後、このガラス板をメタノールに浸漬した状態で
、ガラス板上のポリプロピレン製ミクロフィルターを剥
離した。
After 3 hours, the polypropylene microfilter on the glass plate was peeled off while the glass plate was immersed in methanol.

ポリプロピレン製ミクロフィルターの剥離面は紅色の散
乱光を示し、またこの複合膜は、圧力差650mmHg
にむいてメタノールを全く通さず、ピンホールは存在し
ないことが確認された。
The peeled surface of the polypropylene microfilter shows red scattered light, and this composite membrane can withstand a pressure difference of 650 mmHg.
It was confirmed that methanol did not pass through the glass at all, and there were no pinholes.

この複合膜の表面薄膜の厚さは計算上約2500オング
ストロームである。
The thickness of the surface thin film of this composite film is calculated to be about 2500 angstroms.

実施例 2 ポリエチレン板上に2−ビニルピリジンとスチレンとの
ブロック共重合体(重量組成比2:1)の0.05%)
ルエン溶液を流延し、この上にポリ四弗化ビニル製のミ
クロンフィルター(孔径0.2μm)を気泡の生じない
ように注意深く置き、その11、トルエンを完全に蒸発
せしめた後、注意深くポリエチレン板上のポリ四弗化エ
チレン製ミクロフィルターを剥離した。
Example 2 0.05% of a block copolymer of 2-vinylpyridine and styrene (weight composition ratio 2:1) on a polyethylene plate
Cast the toluene solution, carefully place a polyvinyl tetrafluoride micron filter (pore size 0.2 μm) on top of the toluene solution so as not to create bubbles, and then carefully place a polyethylene plate after completely evaporating the toluene. The upper polytetrafluoroethylene microfilter was peeled off.

ポリ四弗化エチレン製ミクロフィルターの剥離面は、紅
色を発し、この複合膜の圧力差650mmHgに訟ける
メタノールの透過は実質的に無かったことよりピンホー
ルは存在しないことが確認された。
The peeled surface of the polytetrafluoroethylene microfilter turned red, and it was confirmed that there were no pinholes because there was virtually no permeation of methanol despite the pressure difference of 650 mmHg across this composite membrane.

この複合膜の表面薄膜の厚さは計算上1800オングス
トロームであった。
The thickness of the surface thin film of this composite film was calculated to be 1800 angstroms.

実施例 3 ポリビニレンカーボネートの0.008%IIVF溶液
をポリ四弗化エチレンの平板上に流延し、これを銀フィ
ルター(孔型0.2μm)で覆い、80℃の乾燥窒素中
で乾燥(28時間)後、注意深く銀フィルターをポリ四
弗化エチレン板より剥離した。
Example 3 A 0.008% IIVF solution of polyvinylene carbonate was cast onto a polytetrafluoroethylene flat plate, covered with a silver filter (pore size 0.2 μm), and dried in dry nitrogen at 80°C ( After 28 hours), the silver filter was carefully peeled off from the polytetrafluoroethylene plate.

この膜は、圧力差650 MHgに釦いて窒素ガスを全
く通さず、ピンホールの無い均一な薄膜が銀フィルター
上に形成していることが確認された。
It was confirmed that this membrane did not allow any nitrogen gas to pass through it under a pressure difference of 650 MHg, and that a uniform thin film without pinholes was formed on the silver filter.

銀フィルター上のポリビニレンカーボネートの厚さは計
算上、600オングストロームであった。
The calculated thickness of the polyvinylene carbonate on the silver filter was 600 angstroms.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子溶液を板上に流延し、この上に多孔質物質を
置いた状態で、該溶液中の溶剤を多孔質物質の孔を通し
て蒸発せしめることを特徴とする複合膜の製法。
1. A method for producing a composite membrane, which comprises casting a polymer solution onto a plate, placing a porous substance on top of the plate, and evaporating the solvent in the solution through the pores of the porous substance.
JP51103245A 1976-08-31 1976-08-31 Composite membrane manufacturing method Expired JPS5857299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51103245A JPS5857299B2 (en) 1976-08-31 1976-08-31 Composite membrane manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51103245A JPS5857299B2 (en) 1976-08-31 1976-08-31 Composite membrane manufacturing method

Publications (2)

Publication Number Publication Date
JPS5328661A JPS5328661A (en) 1978-03-17
JPS5857299B2 true JPS5857299B2 (en) 1983-12-19

Family

ID=14349046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51103245A Expired JPS5857299B2 (en) 1976-08-31 1976-08-31 Composite membrane manufacturing method

Country Status (1)

Country Link
JP (1) JPS5857299B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2516791B1 (en) * 1981-11-24 1986-08-29 Oreal NAIL VARNISH CONTAINING AS POLYTETRAHYDROFURAN RESIN

Also Published As

Publication number Publication date
JPS5328661A (en) 1978-03-17

Similar Documents

Publication Publication Date Title
US3642668A (en) Microporous vinylidene fluoride polymer and process of making same
US3762136A (en) Preparation of asymmetric polymer membranes
US4673418A (en) Method for producing an integral, asymmetric membrane and the resultant membrane
US3625734A (en) Ultra-thin liquid membrane construction
JPH07507237A (en) supported microporous membrane
US4265959A (en) Process for producing semipermeable membranes
KR900001397A (en) Composite membranes and methods for their preparation and use
EP1024886A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
US4242159A (en) Process for the production of composite membranes
US4772440A (en) Method for production of porous membrane
JPS6038166B2 (en) Composite membrane manufacturing method
JPS5857299B2 (en) Composite membrane manufacturing method
JP2726471B2 (en) Anisotropic hollow fiber composite membrane
US5324430A (en) High performance pan composite membranes
US4746473A (en) Ultrathin blended cellulose nitrate polymer films and their preparation
JPH0112530B2 (en)
JPH0359733B2 (en)
US4900621A (en) Ultrathin blended cellulose nitrate polymer films and their preparation
JPH06218254A (en) Composite film and performance-recovering method therefor
JPS59304A (en) Fpreparation of separation membrane
JPS5857458B2 (en) Composite membrane manufacturing method
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPH0521615B2 (en)
JP3114985B2 (en) Separation membrane for water-soluble organic substances