JPH06218254A - Composite film and performance-recovering method therefor - Google Patents

Composite film and performance-recovering method therefor

Info

Publication number
JPH06218254A
JPH06218254A JP1220493A JP1220493A JPH06218254A JP H06218254 A JPH06218254 A JP H06218254A JP 1220493 A JP1220493 A JP 1220493A JP 1220493 A JP1220493 A JP 1220493A JP H06218254 A JPH06218254 A JP H06218254A
Authority
JP
Japan
Prior art keywords
membrane
weight
vinyl
copolymer
vinyl acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220493A
Other languages
Japanese (ja)
Inventor
Kengo Magara
謙吾 真柄
Hidenori Fujimoto
英典 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1220493A priority Critical patent/JPH06218254A/en
Publication of JPH06218254A publication Critical patent/JPH06218254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a compsite film having sufficient durability against wide concentration range of various organic materials and high permeation rate and separation factor by applying a specific copolymer on at least one side of the surface layer of a porous film. CONSTITUTION:The composite film is obtained by applying the copolymer composed of vinyl chloride, vinyl acetate and vinyl alcohol or the copolymer composed of vinyl chloride, vinyl acetate and maleic acid on at least one side of the surface layer of the porous film. By using the composite film, precise separation at a high and stable separation factor and large permeation rate in industry for long term use is provided. And the film is adaptable in wide application such as vapor permeation, dialysis and dehumidifying of air by making use of the characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に水/有機物混合液
体または有機物/有機物混合液体を、浸透気化法、蒸気
透過法または浸透抽出法により分離する目的に適した複
合膜およびその性能回復方法に関する。
FIELD OF THE INVENTION The present invention relates to a composite membrane suitable for the purpose of separating a water / organic mixed liquid or an organic / organic mixed liquid by pervaporation, vapor permeation or permeation extraction, and a method for recovering the performance thereof. Regarding

【0002】[0002]

【従来の技術】膜を用いた有機物水溶液の濃縮、分離に
関しては、一部の低濃度の有機物水溶液の濃縮に対して
逆浸透法が実用化されてきた。しかしながら、逆浸透法
は分離液の浸透圧以上の圧力を被分離液に加える必要が
あるため、浸透圧が高くなる高濃度水溶液に対しては適
用不可能であり、従って、分離できる溶液の濃度に限界
がある。
2. Description of the Related Art Regarding the concentration and separation of an aqueous organic solution using a membrane, a reverse osmosis method has been put into practical use for the concentration of some low-concentration aqueous organic solutions. However, the reverse osmosis method cannot be applied to a high-concentration aqueous solution having a high osmotic pressure because it is necessary to apply a pressure equal to or higher than the osmotic pressure of the separated solution to the liquid to be separated. Is limited.

【0003】これに対して、浸透圧の影響を受けない分
離方法として、浸透気化法および蒸気透過法が脚光を浴
びつつある。浸透気化法とは、膜の一次側に被分離液を
供給し、膜の二次側 (透過側) を減圧にするか又はキャ
リヤーガスを通気することによって、分離物質を気体状
で膜透過させる方法であり、蒸気透過法とは膜の一次側
への供給が混合蒸気である点が浸透気化法とは異なるも
のである。膜透過物質は、透過蒸気を冷却、濃縮するこ
とによって採取することができる。
On the other hand, permeation vaporization and vapor permeation are in the spotlight as separation methods which are not affected by osmotic pressure. The pervaporation method is a method in which the liquid to be separated is supplied to the primary side of the membrane and the secondary side (permeation side) of the membrane is depressurized or a carrier gas is aerated to allow the separated substance to permeate through the membrane in a gaseous state. The method is different from the vapor permeation method in that the supply to the primary side of the membrane is a mixed vapor, which is different from the pervaporation method. The membrane-permeable substance can be collected by cooling and concentrating the permeated vapor.

【0004】浸透気化法については、これまでに多くの
研究例が報告されている。例えば、米国特許 3750735
号、および米国特許 4067805号には、活性アニオン基を
有したポリマーによる水/有機物混合液体の分離の例が
あり、米国特許 2953502号および米国特許 3035060号に
はそれぞれセルロースアセテート膜およびビニルアルコ
ール膜を用いた水/エタノール混合液体の分離例があ
る。また、日本においても特開昭59−109204号公報に、
セルロースアセテート膜およびポリビニルアルコール
膜、特開昭59−55305 号公報にポリエチレンイミン架橋
膜による例がある。また、特公昭54−10548 号、同54−
10549 号および同59−49041 号公報にはイオン性基を導
入した合成高分子膜を用いて、水/有機物混合液体を分
離した実験例が報告されている。しかしながら、これら
の公報に記載された膜が発現する分離性能は、とりわけ
透過速度が低く実用性に乏しいと言える。
Many studies have been reported so far regarding the pervaporation method. For example, US Pat.
U.S. Pat. No. 4,067,805 and U.S. Pat. No. 4,067,805 have examples of separation of water / organic mixed liquids by polymers having active anionic groups. U.S. Pat. No. 2953502 and U.S. Pat. There is an example of separation of the water / ethanol mixed liquid used. Further, in Japan, in JP-A-59-109204,
There are examples of a cellulose acetate membrane and a polyvinyl alcohol membrane, and a polyethyleneimine crosslinked membrane in JP-A-59-55305. In addition, Japanese Patent Publications No. 54-10548 and 54-
No. 10549 and No. 59-49041 disclose experimental examples in which a water / organic mixed liquid is separated by using a synthetic polymer membrane into which an ionic group is introduced. However, it can be said that the separation performance exhibited by the membranes described in these publications is particularly low in permeation rate and poor in practicality.

【0005】また、液体や蒸気の透過は、溶解と拡散に
より支配されているという理論に基づき、自由体積の小
さな膜を使用して透過分子のサイズ差により分離を行お
うとする試みが成されてきた (J.Memb.Sci.,30,1987)。
しかし、自由体積の小さな膜は、分離係数は大きいが透
過速度が小さいという欠点があった。このため、透過速
度を増しさらに選択性を上げるため物質の溶解度の差を
利用する試みがあった。例えば、特開昭56−24007 号公
報には芳香族ポリアミドイミドの分子鎖中にスルホン基
を導入することにより透水速度を改善した透過膜が開示
されているが、ポリマー中にスルホン基の量が増えるの
に従って、膜形成能に乏しく、また得られる膜の機械的
強度の低下と共に、分子サイズによる選択性が膨潤によ
り失われ、結果として水と有機物の分離選択性が失われ
るという欠点があった。
Further, based on the theory that the permeation of liquids and vapors is governed by dissolution and diffusion, attempts have been made to separate by the size difference of permeation molecules using a membrane with a small free volume. (J. Memb. Sci., 30, 1987).
However, the membrane having a small free volume has a drawback that the separation coefficient is large but the permeation rate is small. For this reason, there have been attempts to utilize the difference in the solubility of substances in order to increase the permeation rate and further increase the selectivity. For example, Japanese Patent Application Laid-Open No. 56-24007 discloses a permeable membrane in which a water permeation rate is improved by introducing a sulfone group into the molecular chain of an aromatic polyamideimide. As the number increased, the membrane-forming ability became poor, and the mechanical strength of the obtained membrane decreased, and the selectivity due to molecular size was lost due to swelling, resulting in the loss of the separation selectivity between water and organic matter. .

【0006】従って、これらの膜は実用化に際して透過
速度を高めるためにコーティング等の薄膜化技術を必要
とされるが、コート層割れの問題のため実用化が困難で
あった。
Therefore, in order to increase the permeation rate of these films, a thinning technique such as coating is required for practical use, but it was difficult to put them into practical use due to the problem of cracking of the coat layer.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、浸透
気化、蒸気透過または浸透抽出による有機物/有機物混
合液体または水/有機物混合液体の分離において、種々
の有機物の広範囲な濃度領域に対して充分な耐久性と高
い透過速度および分離係数を有する複合膜を得るととも
に、コート層割れが生じた場合の膜性能の回復方法を提
供することにある。
DISCLOSURE OF THE INVENTION It is an object of the present invention to separate organic / organic mixed liquids or water / organic mixed liquids by pervaporation, vapor permeation or permeation extraction over a wide concentration range of various organics. It is intended to obtain a composite membrane having sufficient durability, a high permeation rate and a separation coefficient, and to provide a method for recovering the membrane performance when a crack occurs in a coat layer.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、本発明を完成するに至
った。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems.

【0009】即ち、本発明は、多孔性膜の少なくとも一
方の表層部に、塩化ビニル、酢酸ビニル及びビニルアル
コールよりなる共重合体、または、塩化ビニル、酢酸ビ
ニル及びマレイン酸よりなる共重合体をコートした複合
膜に関する。また、本発明は、コート層に割れ、傷によ
る欠陥が生じた該複合膜を、乾式または湿式のいずれか
の環境中で、該コート層素材共重合体をガラス転移点以
上の温度まで加熱して膜性能を回復させることを特徴と
する複合膜の性能回復方法に関する。
That is, in the present invention, a copolymer composed of vinyl chloride, vinyl acetate and vinyl alcohol or a copolymer composed of vinyl chloride, vinyl acetate and maleic acid is provided on at least one surface layer portion of the porous membrane. Coated composite membrane. Further, in the present invention, the composite film having cracks in the coat layer and defects caused by scratches is heated to a temperature not lower than the glass transition point of the coat layer material copolymer in either a dry or wet environment. The invention relates to a method for recovering the performance of a composite membrane, which is characterized by recovering the membrane performance.

【0010】本発明におけるコート層ポリマーは、塩化
ビニル、酢酸ビニル及びビニルアルコールまたはマレイ
ン酸の三元共重合体であることを特徴としているが、こ
れについて、塩化ビニルホモポリマーでは、分離に際し
て膜中の水分子の透過速度が余りにも遅く、また水選択
性も低いため、充分な分離性能 (分離係数) の膜が得ら
れない。この分離性能は、酢酸ビニル、ビニルアルコー
ル、マレイン酸のうち、どれか一種類を共重合すること
により幾分改善可能であるが、透過速度を増大させるに
は難がある。また、酢酸ビニルとビニルアルコールまた
はマレイン酸の共重合体では耐溶剤性が低く、実用に耐
え得る膜が得られない。よって、分離係数、透過速度が
高く、耐溶剤性のある膜を得るため、塩化ビニル、酢酸
ビニル及びビニルアルコールまたはマレイン酸を共重合
することが好ましい。
The polymer for the coat layer in the present invention is characterized by being a terpolymer of vinyl chloride, vinyl acetate and vinyl alcohol or maleic acid. Since the permeation rate of water molecules is too slow and the water selectivity is low, a membrane with sufficient separation performance (separation coefficient) cannot be obtained. This separation performance can be improved to some extent by copolymerizing any one of vinyl acetate, vinyl alcohol and maleic acid, but it is difficult to increase the permeation rate. Further, a copolymer of vinyl acetate and vinyl alcohol or maleic acid has low solvent resistance, and a film that can be practically used cannot be obtained. Therefore, it is preferable to copolymerize vinyl chloride, vinyl acetate and vinyl alcohol or maleic acid in order to obtain a membrane having a high separation coefficient and a high permeation rate and solvent resistance.

【0011】この場合、本発明に使用する塩化ビニル、
酢酸ビニル及びビニルアルコールよりなる共重合体は、
その組成割合が、塩化ビニル2〜95重量%、酢酸ビニル
1〜97重量%、ビニルアルコール1〜97重量%の範囲で
あるものが好ましい。また、塩化ビニル、酢酸ビニル及
びマレイン酸よりなる共重合体は、その組成割合が、塩
化ビニル2〜95重量%、酢酸ビニル1〜95重量%、マレ
イン酸1〜20重量%の範囲であるものが好ましい。
In this case, vinyl chloride used in the present invention,
The copolymer consisting of vinyl acetate and vinyl alcohol is
The composition ratio thereof is preferably in the range of 2 to 95% by weight of vinyl chloride, 1 to 97% by weight of vinyl acetate, and 1 to 97% by weight of vinyl alcohol. Further, the copolymer composed of vinyl chloride, vinyl acetate and maleic acid has a composition ratio of 2 to 95% by weight of vinyl chloride, 1 to 95% by weight of vinyl acetate, and 1 to 20% by weight of maleic acid. Is preferred.

【0012】共重合体の重合方法は特に限定されず、例
えば、オートクレーブ中でのアゾビスイソブチロニトリ
ルを開始剤とした懸濁重合といった公知の重合方法によ
り製造し得るが、共重合体中に含まれるビニルアルコー
ルは、酢酸ビニルの部分鹸化によって得られることを含
み、また、同様に共重合体中のマレイン酸は、無水マレ
イン酸を共重合した後、加水分解して得られることを含
むのもである。
The method of polymerizing the copolymer is not particularly limited, and it can be produced by a known polymerization method such as suspension polymerization using azobisisobutyronitrile as an initiator in an autoclave. The vinyl alcohol contained in includes that it is obtained by partial saponification of vinyl acetate, and similarly, the maleic acid in the copolymer is obtained by copolymerizing maleic anhydride and then hydrolyzing it. It is also.

【0013】これらの共重合体は、ゲルパーミエーショ
ンクロマトグラフィーを用いて、ポリスチレン換算で求
めたその分子量範囲が重量平均分子量で 1,000〜500,00
0 の範囲にあることが好ましく、さらに20,000〜40,000
の範囲にあることが、良好な分離性能を発現する上で望
ましい。
These copolymers have a weight average molecular weight of 1,000 to 500,00 in terms of polystyrene-converted molecular weight range determined by gel permeation chromatography.
It is preferably in the range of 0, and further 20,000 to 40,000
It is desirable that it be in the range of 3 to express good separation performance.

【0014】本発明の複合膜の製造に当たって、支持膜
として使用される多孔性膜には、限外濾過膜、逆浸透
膜、バッテリーに用いられる高分子製セパレーターシー
トなど様々なものを用いることが可能であるが、膜を透
過する分子の抵抗とならないために、少なくとも該膜の
窒素ガスの透過速度Q (N2) が、5×10-6cm3(STP)/cm2
・sec・cmHg以上であることが必要である。ここで、STP
とは0℃、1気圧の標準状態(Standard Temp.Press.)を
いう。
In the production of the composite membrane of the present invention, various materials such as an ultrafiltration membrane, a reverse osmosis membrane, and a polymer separator sheet used in a battery can be used as the porous membrane used as the support membrane. Although it is possible, the nitrogen gas permeation rate Q (N 2 ) of the membrane is at least 5 × 10 −6 cm 3 (STP) / cm 2 because it does not become the resistance of the molecule that permeates the membrane.
・ It must be sec / cmHg or more. Where STP
Means a standard state (Standard Temp. Press.) At 0 ° C. and 1 atmosphere.

【0015】コーティングに当たっては、これら共重合
体は、支持膜に用いる多孔体に対して非溶媒である有機
溶媒中に1〜20重量%濃度で溶解され、多孔体上に塗布
される。その後溶媒を除去するために乾式または湿式に
加熱を行うが、この時、塗布した共重合体のガラス転移
点以上の温度に加熱することが、多孔体にコート層を接
着させかつ共重合体分子鎖のアニーリングを行う上で望
ましい。コート層の厚みとしては、10μm 以下が適当で
ある。
In coating, these copolymers are dissolved at a concentration of 1 to 20% by weight in an organic solvent which is a non-solvent with respect to the porous material used for the supporting film, and applied on the porous material. After that, heating is performed in a dry or wet manner to remove the solvent. At this time, heating to a temperature equal to or higher than the glass transition point of the applied copolymer causes the coat layer to adhere to the porous body and the copolymer molecule. It is desirable for chain annealing. The thickness of the coat layer is suitably 10 μm or less.

【0016】また、一般に複合膜はコート層に割れが生
じ易く、それによる性能低下が問題となるが、本発明に
よる複合膜のコート層に使用される共重合体は、架橋を
行っていないのでガラス転移点以上の温度でポリマーは
ゴム状となるため、生じた割れを修正することが可能で
ある。よって、コート層に割れの生じた分離膜は、分離
しようとする水/有機物混合液体または有機物/有機物
混合液体である供給液、または供給液の代わりに、水や
平均分子量 600以下のポリエチレングリコールなどの、
膜を侵さない他の液体を入れて、これをガラス転移点以
上の温度に加熱する (湿式) か、それが不可能であれば
供給液を除いた状態で膜をガラス転移点以上の温度に加
熱する (乾式) ことにより、性能回復を図ることができ
る。
Further, in general, the composite film is liable to crack in the coat layer, which causes a problem of performance deterioration, but the copolymer used in the coat layer of the composite film according to the present invention is not crosslinked. Since the polymer becomes rubbery at a temperature above the glass transition point, it is possible to repair the cracks that have occurred. Therefore, the separation membrane with cracks in the coat layer should be a water / organic mixed liquid or an organic / organic mixed liquid to be separated, or instead of the supplied liquid, water or polyethylene glycol having an average molecular weight of 600 or less. of,
Add another liquid that does not attack the membrane and heat it to a temperature above the glass transition temperature (wet type), or if that is not possible, remove the supply liquid and bring the membrane to a temperature above the glass transition temperature. The performance can be recovered by heating (dry type).

【0017】このようにして作製した複合膜は、浸透気
化法、蒸気透過法および浸透抽出法などの分離手段を用
いて、例えば、エタノール、イソプロパノール、ヘキサ
ン、シクロヘキサン、ジエチルエーテルなどの一般溶剤
からの脱水やジメチルカーボネート/メタノール共沸混
合物からの脱メタノールに適用できる。
The composite membrane thus produced is separated from a general solvent such as ethanol, isopropanol, hexane, cyclohexane or diethyl ether by using separation means such as pervaporation method, vapor permeation method and permeation extraction method. It can be applied to dehydration and demethanol removal from dimethyl carbonate / methanol azeotrope.

【0018】[0018]

【実施例】次に、実施例によってこの発明を具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

【0019】ここで、分離係数 (α) は、下式より求め
られる。 α=(Xp/Yp)/(Xf/Yf) 尚、 X、Y は2成分系での水および有機物のそれぞれの
重量組成を、またpおよびfは、それぞれ膜の透過側お
よび供給側を表す。
Here, the separation coefficient (α) is obtained from the following equation. α = (X p / Y p ) / (X f / Y f ), where X and Y are the weight compositions of water and organic substances in the binary system, and p and f are the permeation side of the membrane and Represents the supply side.

【0020】実施例1 オートクレーブ中に、加水分解率80%のポリビニルアル
コールを少量溶解した水と、開始剤であるアゾビスイソ
ブチロニトリル及び酢酸ビニルモノマーを加え、蓋を閉
めたのちドライアイス・メタノール浴中でオートクレー
ブを−20℃に冷却した。同様に冷却して液化した塩化ビ
ニルモノマーをオートクレーブ中に仕込み、攪拌しなが
ら58℃まで昇温して重合を行った。圧力が低下し始めた
時点で重合反応を停止し、生じたポリマーを水洗して乾
燥した。ポリアクリロニトリル系非対称限外濾過膜であ
る DUY-L平膜 (ダイセル化学工業株式会社製) を水洗し
た後風乾し、この膜上に先に重合した共重合体 (重量平
均分子量40,000、塩化ビニル/酢酸ビニル/ビニルアル
コール=80/5/15 (重量%) 、ガラス転移点72℃) の
5重量%テトラヒドロフラン溶液をコートした。次にこ
の膜を、常圧下85℃で1時間乾燥して複合膜とした (コ
ート層厚み4μm) 。浸透気化法によって水/イソプロ
パノール混合液からの脱水性能 (評価液90重量%イソプ
ロパノール、70℃) を5mmHgで測定した結果、分離係数
(α) = 1,000、透過速度= 0.81kg/m2・hrを得た。
Example 1 In an autoclave, water in which a small amount of polyvinyl alcohol having a hydrolysis rate of 80% was dissolved, an initiator azobisisobutyronitrile and a vinyl acetate monomer were added, and the lid was closed. The autoclave was cooled to -20 ° C in a methanol bath. Similarly, the vinyl chloride monomer liquefied by cooling was charged into an autoclave, and the temperature was raised to 58 ° C. with stirring to carry out polymerization. The polymerization reaction was stopped when the pressure started to decrease, and the resulting polymer was washed with water and dried. A polyacrylonitrile-based asymmetric ultrafiltration membrane, DUY-L flat membrane (manufactured by Daicel Chemical Industries, Ltd.) was washed with water and then air-dried, and the copolymer previously polymerized on this membrane (weight average molecular weight 40,000, vinyl chloride / A 5 wt% tetrahydrofuran solution of vinyl acetate / vinyl alcohol = 80/5/15 (wt%), glass transition point 72 ° C.) was coated. Next, this film was dried at 85 ° C. under normal pressure for 1 hour to form a composite film (coat layer thickness 4 μm). The dewatering performance (evaluation liquid 90% by weight isopropanol, 70 ° C) from water / isopropanol mixture was measured at 5 mmHg by the pervaporation method.
(α) = 1,000 and permeation rate = 0.81 kg / m 2 · hr were obtained.

【0021】実施例2 オートクレーブ中に、加水分解率80%のポリビニルアル
コールを少量溶解した水と、開始剤であるアゾビスイソ
ブチロニトリル、酢酸ビニルモノマー及びマレイン酸を
加え、蓋を閉めたのちドライアイス・メタノール浴中で
オートクレーブを−20℃に冷却した。同様に冷却して液
化した塩化ビニルモノマーをオートクレーブ中に仕込
み、攪拌しながら58℃まで昇温して重合を行った。圧力
が低下し始めた時点で重合反応を停止し、生じたポリマ
ーを水洗して乾燥した。
Example 2 Water in which a small amount of polyvinyl alcohol having a hydrolysis rate of 80% was dissolved, an initiator azobisisobutyronitrile, a vinyl acetate monomer and maleic acid were added to an autoclave, and the lid was closed. The autoclave was cooled to -20 ° C in a dry ice / methanol bath. Similarly, the vinyl chloride monomer liquefied by cooling was charged into an autoclave, and the temperature was raised to 58 ° C. with stirring to carry out polymerization. The polymerization reaction was stopped when the pressure started to decrease, and the resulting polymer was washed with water and dried.

【0022】ポリアクリロニトリル系非対称限外濾過膜
である DUY-L平膜 (ダイセル化学工業株式会社製) を水
洗した後風乾し、この膜上に先に重合した共重合体 (重
量平均分子量30,000、塩化ビニル/酢酸ビニル/マレイ
ン酸=81/17/2 (重量%)、ガラス転移点75.0℃) の
5重量%テトラヒドロフラン溶液をコートした。次にこ
の膜を、常圧下85℃で1時間乾燥して複合膜とした (コ
ート層厚み5μm ) 。浸透気化法によって水/イソプロ
パノール混合液からの脱水性能 (評価液90重量%イソプ
ロパノール、70℃) を5mmHgで測定した結果、分離係数
(α) = 1,600、透過速度= 0.55kg/m2・hrを得た。
DUY-L flat membrane (manufactured by Daicel Chemical Industries, Ltd.), which is a polyacrylonitrile-based asymmetric ultrafiltration membrane, was washed with water and then air-dried, and the copolymer previously polymerized on this membrane (weight average molecular weight 30,000, A 5 wt% tetrahydrofuran solution of vinyl chloride / vinyl acetate / maleic acid = 81/17/2 (wt%), glass transition point 75.0 ° C.) was coated. Next, this film was dried at 85 ° C. for 1 hour under normal pressure to form a composite film (coat layer thickness 5 μm). The dewatering performance (evaluation liquid 90% by weight isopropanol, 70 ° C) from water / isopropanol mixture was measured at 5 mmHg by the pervaporation method.
(α) = 1,600 and permeation rate = 0.55 kg / m 2 · hr were obtained.

【0023】比較例1 ポリアクリロニトリル系非対称限外濾過膜である DUY-L
平膜 (ダイセル化学工業株式会社製) を水洗した後風乾
し、この膜上に重量平均分子量50,000のポリ塩化ビニル
の5重量%テトラヒドロフラン溶液をコートした。次に
この膜を、常圧下85℃で1時間乾燥して複合膜とした
(コート層厚み5μm ) 。浸透気化法によって水/イソ
プロパノール混合液からの脱水性能 (評価液90重量%イ
ソプロパノール、70℃) を5mmHgで測定した結果、分離
係数 (α) = 137、透過速度= 0.06kg/m2・hrを得た。
Comparative Example 1 DUY-L, which is a polyacrylonitrile-based asymmetric ultrafiltration membrane
A flat membrane (manufactured by Daicel Chemical Industries, Ltd.) was washed with water and air-dried, and a 5 wt% tetrahydrofuran solution of polyvinyl chloride having a weight average molecular weight of 50,000 was coated on the membrane. Next, this membrane was dried at 85 ° C. under normal pressure for 1 hour to obtain a composite membrane.
(Coat layer thickness 5 μm). The dehydration performance (evaluation liquid 90 wt% isopropanol, 70 ° C) from water / isopropanol mixture was measured at 5 mmHg by the pervaporation method. As a result, the separation coefficient (α) = 137 and the permeation rate = 0.06 kg / m 2 · hr Obtained.

【0024】比較例2 ポリアクリロニトリル系非対称限外濾過膜である DUY-L
平膜 (ダイセル化学工業株式会社製) を水洗した後風乾
し、この膜上に重量平均分子量30,000の塩化ビニル/酢
酸ビニル共重合体 (塩化ビニル90重量%、酢酸ビニル10
重量%) の5重量%テトラヒドロフラン溶液をコートし
た。次にこの膜を、常圧下85℃で1時間乾燥して複合膜
とした (コート層厚み5μm ) 。浸透気化法によって水
/イソプロパノール混合液からの脱水性能 (評価液90重
量%イソプロパノール、70℃) を5mmHgで測定した結
果、分離係数 (α) = 1,020、透過速度= 0.09kg/m2
hrを得た。
Comparative Example 2 DUY-L, which is a polyacrylonitrile-based asymmetric ultrafiltration membrane
A flat membrane (manufactured by Daicel Chemical Industries, Ltd.) was washed with water and air-dried, and a vinyl chloride / vinyl acetate copolymer having a weight average molecular weight of 30,000 (90% by weight vinyl chloride, 10% vinyl acetate) was formed on the membrane.
Wt%) in a 5 wt% tetrahydrofuran solution. Next, this film was dried at 85 ° C. for 1 hour under normal pressure to form a composite film (coat layer thickness 5 μm). As a result of measuring the dehydration performance (evaluation liquid 90% by weight isopropanol, 70 ° C) at 5 mmHg from the water / isopropanol mixture by pervaporation, the separation coefficient (α) = 1,020, permeation rate = 0.09 kg / m 2 ·
got hr.

【0025】実施例3 実施例1に示した方法と同様に調整し、性能評価した複
合膜 (α=1,000 、透過速度= 0.81kg/m2・hr) の透過
側圧力を、5mmHgから常圧へ急激に解圧した (5mmHgか
ら常圧まで3秒) 。その結果、コート層に割れが生じ、
再び透過側を減圧状態 (8mmHg) とした後も、膜性能は
α=495 、透過速度= 0.93kg/m2・hrであった。この状
態で、供給液温度を70℃から83℃まで昇温し、1時間こ
の温度を維持した。その後、再び供給液温度を70℃に戻
し膜性能を測定すると、分離係数(α) = 2,500、透過
速度= 0.80kg/m2・hrであった。
Example 3 The composite membrane (α = 1,000, permeation rate = 0.81 kg / m 2 · hr) prepared and evaluated in the same manner as in Example 1 had a permeation side pressure of 5 mmHg to normal pressure. The pressure was rapidly released to (5 mmHg to normal pressure for 3 seconds). As a result, the coat layer cracks,
The membrane performance was α = 495 and the permeation rate = 0.93 kg / m 2 · hr even after the permeation side was decompressed again (8 mmHg). In this state, the temperature of the supply liquid was raised from 70 ° C to 83 ° C and maintained at this temperature for 1 hour. Thereafter, when the temperature of the supply liquid was returned to 70 ° C. again and the membrane performance was measured, the separation coefficient (α) was 2,500 and the permeation rate was 0.80 kg / m 2 · hr.

【0026】実施例4 実施例2に示した方法と同様に調整し、性能評価した複
合膜 (α=1,600 、透過速度= 0.55kg/m2・hr) の透過
側圧力を、5mmHgから常圧へ急激に解圧した (5mmHgか
ら常圧まで3秒) 。その結果、コート層に割れが生じ、
再び透過側を減圧状態 (15mmHg) とした後も、膜性能は
α=9、透過速度= 1.51kg/m2・hrであった。この膜を
評価セルよりとり外し、常圧下85℃で1時間加熱した
後、再び同一のセルにセットして性能を測定した結果、
分離係数 (α) = 2,200、透過速度= 0.50kg/m2・hrで
あった。
Example 4 The composite membrane (α = 1,600, permeation rate = 0.55 kg / m 2 · hr) prepared and evaluated in the same manner as in Example 2 had a permeation side pressure of 5 mmHg to normal pressure. The pressure was rapidly released to (5 mmHg to normal pressure for 3 seconds). As a result, the coat layer cracks,
The membrane performance was α = 9 and the permeation rate = 1.51 kg / m 2 · hr even after the permeation side was evacuated again (15 mmHg). The film was removed from the evaluation cell, heated at 85 ° C under normal pressure for 1 hour, and then set in the same cell again to measure the performance.
The separation coefficient (α) was 2,200 and the permeation rate was 0.50 kg / m 2 · hr.

【0027】比較例3 実施例1に示した方法と同様に調整し、性能評価した複
合膜 (α=1,000 、透過速度= 0.81kg/m2・hr) の透過
側圧力を、5mmHgから常圧へ急激に解圧した (5mmHgか
ら常圧まで3秒) 。その結果、コート層に割れが生じ、
再び透過側を減圧状態 (8mmHg) とした後も、膜性能は
α=432 、透過速度= 0.95kg/m2・hrであった。この状
態で、供給温度70℃を1時間維持した。その後、膜性能
を測定すると、分離係数 (α) = 440、透過速度= 0.9
5kg/m2・hrであった。
Comparative Example 3 A composite membrane (α = 1,000, permeation rate = 0.81 kg / m 2 · hr) prepared by the same method as in Example 1 and evaluated for performance had a permeation side pressure of 5 mmHg to normal pressure. The pressure was rapidly released to (5 mmHg to normal pressure for 3 seconds). As a result, the coat layer cracks,
Even after the permeation side was decompressed again (8 mmHg), the membrane performance was α = 432 and the permeation rate = 0.95 kg / m 2 · hr. In this state, the supply temperature of 70 ° C. was maintained for 1 hour. After that, when the membrane performance was measured, the separation coefficient (α) = 440, the permeation rate = 0.9
It was 5 kg / m 2 · hr.

【0028】[0028]

【発明の効果】本発明の複合膜を使用することにより、
工業的に長期間の使用において、高く安定した分離係数
と大きな透過速度による精密な分離を提供することがで
きる。また、本発明による膜の特性を活かして、蒸気透
過、透析および空気の除湿といった広範囲な用途に適用
することも可能である。
By using the composite membrane of the present invention,
In the industrial long-term use, it is possible to provide a highly stable separation coefficient and a precise separation with a large permeation rate. Further, by utilizing the characteristics of the membrane according to the present invention, it can be applied to a wide range of applications such as vapor permeation, dialysis and dehumidification of air.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔性膜の少なくとも一方の表層部に、
塩化ビニル、酢酸ビニル及びビニルアルコールよりなる
共重合体、または、塩化ビニル、酢酸ビニル及びマレイ
ン酸よりなる共重合体をコートした複合膜。
1. A surface layer portion of at least one of the porous membranes,
A composite film coated with a copolymer of vinyl chloride, vinyl acetate and vinyl alcohol, or a copolymer of vinyl chloride, vinyl acetate and maleic acid.
【請求項2】 塩化ビニル、酢酸ビニル及びビニルアル
コールよりなる共重合体の組成割合が、塩化ビニル2〜
95重量%、酢酸ビニル1〜97重量%、ビニルアルコール
1〜97重量%の範囲であり、かつ該共重合体の重量平均
分子量が 1,000〜500,000 の範囲である請求項1記載の
複合膜。
2. The composition ratio of the copolymer composed of vinyl chloride, vinyl acetate and vinyl alcohol is from 2 to 2 vinyl chloride.
The composite membrane according to claim 1, wherein the weight average molecular weight of the copolymer is in the range of 1,000 to 500,000, and the weight average molecular weight of the copolymer is in the range of 95% by weight, 1 to 97% by weight of vinyl acetate and 1 to 97% by weight of vinyl alcohol.
【請求項3】 塩化ビニル、酢酸ビニル及びマレイン酸
よりなる共重合体の組成割合が、塩化ビニル2〜95重量
%、酢酸ビニル1〜95重量%、マレイン酸1〜20重量%
の範囲であり、かつ該共重合体の重量平均分子量が 1,0
00〜500,000の範囲である請求項1記載の複合膜。
3. The composition ratio of the copolymer composed of vinyl chloride, vinyl acetate and maleic acid is such that vinyl chloride is 2 to 95% by weight, vinyl acetate is 1 to 95% by weight, and maleic acid is 1 to 20% by weight.
And the weight average molecular weight of the copolymer is 1,0
The composite membrane according to claim 1, which is in the range of 00 to 500,000.
【請求項4】 浸透気化分離、蒸気透過分離または浸透
抽出用である請求項1〜3の何れか1項記載の複合膜。
4. The composite membrane according to claim 1, which is for pervaporation separation, vapor permeation separation or permeation extraction.
【請求項5】 コート層に割れ、傷等の欠陥が生じた請
求項1〜3の何れか1項記載の複合膜を、乾式または湿
式のいずれかの環境中で、コート層素材である共重合体
のガラス転移点以上の温度まで加熱して膜性能を回復さ
せることを特徴とする複合膜の性能回復方法。
5. The composite film according to any one of claims 1 to 3 in which defects such as cracks and scratches have occurred in the coat layer, which are used as a coat layer material in either a dry or wet environment. A method for recovering the performance of a composite film, comprising recovering the film performance by heating to a temperature not lower than the glass transition point of the polymer.
JP1220493A 1993-01-28 1993-01-28 Composite film and performance-recovering method therefor Pending JPH06218254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220493A JPH06218254A (en) 1993-01-28 1993-01-28 Composite film and performance-recovering method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220493A JPH06218254A (en) 1993-01-28 1993-01-28 Composite film and performance-recovering method therefor

Publications (1)

Publication Number Publication Date
JPH06218254A true JPH06218254A (en) 1994-08-09

Family

ID=11798871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220493A Pending JPH06218254A (en) 1993-01-28 1993-01-28 Composite film and performance-recovering method therefor

Country Status (1)

Country Link
JP (1) JPH06218254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254697A3 (en) * 2001-05-03 2003-10-15 Air Products And Chemicals, Inc. Composite membranes
JP2010201303A (en) * 2009-03-02 2010-09-16 Toray Ind Inc Composite semipermeable membrane
WO2011108580A1 (en) * 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane and manufacturing method therefor
JP2013000655A (en) * 2011-06-16 2013-01-07 Sekisui Chem Co Ltd Polymeric water treatment membrane and water treatment method
CN114616046A (en) * 2019-10-31 2022-06-10 东丽株式会社 Composite semipermeable membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254697A3 (en) * 2001-05-03 2003-10-15 Air Products And Chemicals, Inc. Composite membranes
JP2010201303A (en) * 2009-03-02 2010-09-16 Toray Ind Inc Composite semipermeable membrane
WO2011108580A1 (en) * 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane and manufacturing method therefor
US9193815B2 (en) 2010-03-04 2015-11-24 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same
JP2013000655A (en) * 2011-06-16 2013-01-07 Sekisui Chem Co Ltd Polymeric water treatment membrane and water treatment method
CN114616046A (en) * 2019-10-31 2022-06-10 东丽株式会社 Composite semipermeable membrane
CN114616046B (en) * 2019-10-31 2024-06-25 东丽株式会社 Composite semipermeable membrane

Similar Documents

Publication Publication Date Title
US4915834A (en) Multi-layer membrane and the use thereof for the separation of liquid mixtures according to the pervaporation process
Aminabhavi et al. Pervaporation separation of organic-aqueous and organic-organic binary mixtures
EP0394193B1 (en) Coated membranes
US5066403A (en) Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture
US5156740A (en) Multi-layer membrane and the use thereof for the separation of liquid mixtures according to the pervaporation process
Xu et al. Microporous polypropylene hollow fiber membranes: Part II. Pervaporation separation of water/ethanol mixtures by the poly (acrylic acid) grafted membranes
US4265959A (en) Process for producing semipermeable membranes
JPH01130707A (en) Polyamide reverse osmosis membrane
JPH04506766A (en) Composite membrane for separating water from fluid mixtures containing organic components by means of pervaporation
US5151182A (en) Polyphenylene oxide-derived membranes for separation in organic solvents
Ruckenstein et al. Poly (acrylic acid)–poly (vinyl alcohol) semi‐and interpenetrating polymer network pervaporation membranes
KR101035717B1 (en) A preparation of asymmetric porous PEBA membrane for composite membrane
CA2644153A1 (en) Membrane and process for recovery of acid
Schwarz et al. Membranes based on polyelectrolyte–surfactant complexes for methanol separation
JPH03174231A (en) Polyether ketone semi- permeable membrane
US8518263B2 (en) Method for fabrication of elastomeric asymmetric membranes from hydrophobic polymers
JPH0312224A (en) Permselective membrane
JPH06218254A (en) Composite film and performance-recovering method therefor
Wang et al. Pervaporation properties of novel alginate composite membranes for dehydration of organic solvents
Naylor Polymer membranes: materials, structures and separation performance
EP3820597A1 (en) Method of producing a polymeric membrane
Chang et al. Performance enhancement of silicone/PVDF composite membranes for pervaporation by reducing cross-linking density of the active silicone layer
JP3447416B2 (en) Separation method of alcohol using membrane
JPH0760078A (en) Production of plasma treated membrane for carbon dioxide separation
Okuno et al. Permeation and separation characteristics of aqueous alcohol solutions through poly (vinyl p-tert-butyl benzoate) membrane