JPS6339546B2 - - Google Patents

Info

Publication number
JPS6339546B2
JPS6339546B2 JP57098492A JP9849282A JPS6339546B2 JP S6339546 B2 JPS6339546 B2 JP S6339546B2 JP 57098492 A JP57098492 A JP 57098492A JP 9849282 A JP9849282 A JP 9849282A JP S6339546 B2 JPS6339546 B2 JP S6339546B2
Authority
JP
Japan
Prior art keywords
porous body
magnesia
forsterite
coating layer
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098492A
Other languages
Japanese (ja)
Other versions
JPS58217480A (en
Inventor
Migiwa Ando
Takashi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP57098492A priority Critical patent/JPS58217480A/en
Publication of JPS58217480A publication Critical patent/JPS58217480A/en
Publication of JPS6339546B2 publication Critical patent/JPS6339546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐水和性の改良されたマグネシア磁器
及びその製造法に関する。 マグネシア磁器は一般に熱伝導率が他の磁器と
比べて高く、また高周波電気絶縁抵抗が大であ
り、マイクロ波用その他の集積回路基板材料とし
て最適なものの一つである。マグネシア磁器は、
しかし基板材料として要求される要件たる耐水和
性に劣るという大きな欠点があり、そのためにな
お実用には供されていないのが現状である。 従来このマグネシア磁器の耐水和性改良のため
に種々の試みが報告されており、例えば種々の添
加物(リン酸カルシウムマグネシウム、リン酸マ
グネシウム等)を焼結助剤として焼結する方法が
あるが、なお十分な耐水和性が達成されていな
い。 本発明は、上述の如き従来法の現状に鑑み、耐
水和性の改良されたマグネシア磁器及びその製造
法を提供せんとするものである。 即ち本発明によれば、フオルステライトを主体
とするセラミツク被覆層を形成することにより耐
水和性マグネシア磁器が得られる。この耐水和性
マグネシア磁器は、下記(a)〜(c)の工程により製造
される。 (a) 予成形したマグネシア成形体を予備焼成して
多孔質体とする工程、 (b) 該多孔質体に有機硅素化合物液又はその希釈
液を含浸し該多孔質体表面で燃焼させて表面に
微粒子二酸化硅素被覆層を形成する工程、 (c) 該二酸化硅素被覆多孔質体を焼結し表面にフ
オルステライトを主体とするセラミツク被覆層
を形成する工程。 以下、本発明について詳述する。 本発明は、フオルステライトに富んだセラミツ
ク被覆層を表面に形成したマグネシア焼結体とす
ることにより、その耐水和性を改良した。フオル
ステライト(2MgO・SiO2)は、マグネシア成形
体の焼結に際し、その表面に形成された微粒子二
酸化硅素被覆層中の二酸化硅素と酸化マグネシウ
ムとの反応により、生成する。 マグネシア成形体を公知の方法で予成形し予備
焼結(ないし仮焼)によりまず多孔質体とする。
このマグネシア多孔質体表面に二酸化硅素被覆層
を、次の通り形成する。即ち、有機硅素化合物液
(エチルシリケート、トリメチル・エチル・シラ
ン、フエニル・トリエトキシシラン、又はその希
釈液)を多孔質体に含浸させた後、含浸多孔質体
表面にて含浸液を燃焼させる。この燃焼により有
機成分は消失(もしくは炭化)し、表面に二酸化
硅素微粒子が付着堆積する。多孔質体内の含浸液
は、毛細管現象により表面に移動して燃焼が続
き、さらに二酸化硅素を生成し表面に堆積する。
最後には、内部の含浸液は、多孔質体の温度上昇
(通例100〜250℃程度に達すると解される)も相
俟つて蒸発して表面に至り燃焼する。このように
して、含浸液は、消失し、多孔質体表面に二酸化
硅素の微粒子から成る被覆層が薄く形成される。 有機硅素化合物は、その分子の中に硅素−炭素
結合を持つ有機化合物であり、有機硅素化合物液
としては好ましくはエチルシリケート、トリメチ
ル・エチル・シラン、フエニル・トリエトキシシ
ランを用い、必要に応じ適宜含浸に適した粘度に
なるようエチルアルコール、メチルエチルケトン
等の希釈剤により希釈する。これらの有機硅素化
合物は揮発性であり、多孔質体表面での燃焼の継
続、それによる二酸化硅素の微粒子被覆層の積着
に寄与する。 多孔質体は、含浸液の含浸が可能な程度に、か
つ後の焼結において十分緻密化できるような範囲
において多孔質化し、約10容量%以上の気孔率が
あれば充足される。通例この条件は、0.1〜0.5μ
のマグネシア原料をドクターブレード法等の常法
により成形し、900〜1100℃の範囲で予備焼結す
ることにより得られる。成形助剤としてエチルセ
ルロース等の有機バインダーを用いた場合には、
昇温過程で消失させる。含浸後の含浸液の燃焼は
通例大気中でできるが酸素濃度5vol%以上の不活
性ガス雰囲気中でも可能となる。 このように形成された二酸化硅素被覆層を有す
るマグネシア多孔質体は、次いで焼成して焼結さ
れる。即ち温度1350〜1450℃、大気雰囲気中で焼
成することにより、併せて表面に緻密質フオルス
テライトを生成させる。フオルステライト生成の
ために、焼成温度と保持時間、使用するマグネシ
アの反応性を考慮しなければならない。 それは、フオルステライトが約1370℃で液相を
生成し始めるため、この液相とマグネシアとの反
応、液相の拡散等を制御するためである。 本発明でマグネシア磁器とは、酸化マグネシウ
ムを主体としたもので、例えばMgO 90重量%以
上のもの、或いはこれに製造上不可避の不純物と
してBeO、CaO、SiO2、Al2O3、Fe2O3、Cr2O3
又は粘度、滑石等の単独あるいは組合せを10重量
%まで含有するものを包含する。 被覆層としてのフオルステライトは、その緻密
質焼結体が耐水和性が大であること、基体のマグ
ネシア磁器よりも熱膨張係数が小さく、かつその
差が僅かであることと、マグネシア磁器同様高周
波電気絶縁特性が優れていること、マグネシアと
焼結温度範囲が一致していること等の理由から最
適のものであり、フオルステライト被覆層の存在
によりマグネシア磁器の耐水和性が従来のものよ
りも大きく改良された。 良好な耐水和性の達成のために必要なフオルス
テライト被覆層の厚さは、通例2〜100μのオー
ダーであるが、但し、基材たるマグネシア磁器の
性質により変化しうる。焼結後のみかけ密度3.3
〜3.5程度のマグネシア磁器に対しては、上記オ
ーダーの厚さをもつて足りる。 耐水和性の指標として、実施例に示す如きテス
トによる水和重量増をとる場合、その好ましい下
限は約0.04mg/cm2hrであり、フオルステライト層
厚約2μ以上で達成可能である。また、最も好ま
しい0.01mg/cm2hr以下の値はフオルステライト層
厚約10μ程度で達成される。 以下本発明の実施例を示す。 下記の原料調合物を内容積3のアルミナ製ボ
ールミールにて15時間混合して泥漿とした。 水酸化マグネシウム(純度98重量%、富田製
薬、タイプMS) 500g 水溶性アクリル樹脂(中央理化工業、リカボン
ドESZ−1311) 50g ポリエチレンオキサイド樹脂(製鉄化学工業、
PEO−1) 5g 水 800g 炭酸カルシウム 9g 次にこの泥漿を、10分間真空脱泡してからアセ
テートフイルムの上にドクターブレード法にてキ
ヤステイングし、15時間自然乾燥させ、厚さ1
mm、幅320mmのグリーンシートを得た。これをサ
イズ150×187.5mmに切り取り、電気炉にて、1150
℃で1時間仮焼し開気孔率約20%のマグネシア仮
焼体基板を得た。次にケイ酸エチル〔Si
(OC2H54〕(米山薬品試薬1級)を用意し、これ
に前記仮焼体を10秒間浸して含浸させた。 この含浸体に点火し、全面でケイ酸エチルの燃
焼を行い、約0.1μの二酸化硅素粒子を生成させ
た。この粒子の一部は空間へ放出されたが、大部
分が基板の表面に付着堆積し、基板表面に厚さ約
20μの二酸化硅素微粒子層が形成された。 これを電気炉にて1450℃、1時間焼成して得ら
れた基板は、表面において、MgOとSiO2との反
応でフオルステライトに富んだ厚さ約3〜5μの
層が形成されていた。焼結品のサイズは100×125
×0.67tmmであつた。 この焼結品の熱伝導度、耐水和性、抗折力、誘
電率、誘電正接について従来法による焼結体と比
較して測定し第1表に示す結果を得た。
The present invention relates to magnesia porcelain with improved hydration resistance and a method for producing the same. Magnesia porcelain generally has higher thermal conductivity than other porcelains, and also has high high-frequency electrical insulation resistance, making it one of the most suitable materials for microwave and other integrated circuit boards. Magnesia porcelain is
However, it has the major drawback of being inferior in hydration resistance, which is a requirement for substrate materials, and for this reason it is currently not in practical use. Various attempts have been reported to improve the hydration resistance of magnesia porcelain. For example, there is a method of sintering using various additives (calcium magnesium phosphate, magnesium phosphate, etc.) as a sintering aid. Sufficient hydration resistance is not achieved. In view of the current state of the conventional methods as described above, the present invention aims to provide magnesia porcelain with improved hydration resistance and a method for producing the same. That is, according to the present invention, hydration-resistant magnesia porcelain can be obtained by forming a ceramic coating layer mainly composed of forsterite. This hydration-resistant magnesia porcelain is manufactured by the following steps (a) to (c). (a) Preliminary firing of a preformed magnesia molded body to form a porous body; (b) Impregnation of the porous body with an organosilicon compound liquid or its diluted liquid and burning it on the surface of the porous body to form a porous body. (c) sintering the silicon dioxide-coated porous body to form a ceramic coating layer mainly composed of forsterite on the surface. The present invention will be explained in detail below. The present invention improves the hydration resistance of a magnesia sintered body by forming a ceramic coating layer rich in forsterite on its surface. Forsterite (2MgO.SiO 2 ) is generated by the reaction between silicon dioxide and magnesium oxide in the fine-particle silicon dioxide coating layer formed on the surface of the magnesia molded body during sintering. The magnesia molded body is preformed by a known method and first made into a porous body by preliminary sintering (or calcination).
A silicon dioxide coating layer is formed on the surface of this porous magnesia body as follows. That is, after a porous body is impregnated with an organic silicon compound liquid (ethyl silicate, trimethyl ethyl silane, phenyl triethoxysilane, or a diluted solution thereof), the impregnating liquid is burned on the surface of the impregnated porous body. This combustion causes the organic components to disappear (or carbonize), and silicon dioxide fine particles are deposited on the surface. The impregnating liquid inside the porous body moves to the surface by capillary action and combustion continues, producing silicon dioxide which is deposited on the surface.
Finally, the internal impregnating liquid evaporates together with the rise in temperature of the porous body (usually understood to reach about 100 to 250°C), reaches the surface, and burns. In this way, the impregnating liquid disappears, and a thin coating layer made of fine particles of silicon dioxide is formed on the surface of the porous body. An organosilicon compound is an organic compound having a silicon-carbon bond in its molecule, and as the organosilicon compound liquid, preferably ethyl silicate, trimethyl ethyl silane, or phenyl triethoxysilane is used, and if necessary, Dilute with a diluent such as ethyl alcohol or methyl ethyl ketone to obtain a viscosity suitable for impregnation. These organosilicon compounds are volatile and contribute to the continuation of combustion on the surface of the porous material, thereby contributing to the deposition of a fine particle coating layer of silicon dioxide. The porous body should be made porous to the extent that it can be impregnated with the impregnating liquid and can be sufficiently densified in the subsequent sintering, and it is sufficient if the porous body has a porosity of about 10% by volume or more. Usually this condition is 0.1~0.5μ
It is obtained by molding the magnesia raw material by a conventional method such as a doctor blade method and pre-sintering it at a temperature in the range of 900 to 1100°C. When using an organic binder such as ethyl cellulose as a molding aid,
It disappears during the heating process. Combustion of the impregnating liquid after impregnation is usually possible in the atmosphere, but it is also possible in an inert gas atmosphere with an oxygen concentration of 5 vol% or more. The magnesia porous body having the silicon dioxide coating layer thus formed is then fired and sintered. That is, by firing in an air atmosphere at a temperature of 1350 to 1450°C, dense forsterite is also generated on the surface. For the production of forsterite, the firing temperature, holding time, and reactivity of the magnesia used must be considered. This is because forsterite begins to generate a liquid phase at about 1370°C, so the reaction between this liquid phase and magnesia, the diffusion of the liquid phase, etc. are controlled. In the present invention, magnesia porcelain is mainly composed of magnesium oxide, for example, MgO of 90% by weight or more, or BeO, CaO, SiO 2 , Al 2 O 3 , Fe 2 O as unavoidable impurities during manufacturing. 3 , Cr2O3 ,
It also includes those containing up to 10% by weight of viscosity, talc, etc., singly or in combination. Forsterite used as a coating layer has the following characteristics: its dense sintered body has high hydration resistance, its coefficient of thermal expansion is smaller than that of the base magnesia porcelain, and the difference is slight, and like magnesia porcelain it can be used at high frequencies. It is optimal because it has excellent electrical insulation properties and the same sintering temperature range as magnesia, and the presence of the forsterite coating layer makes magnesia porcelain more hydration resistant than conventional porcelain. greatly improved. The thickness of the forsterite coating layer required to achieve good hydration resistance is typically on the order of 2 to 100 microns, but may vary depending on the nature of the base magnesia porcelain. Apparent density after sintering 3.3
For magnesia porcelain of ~3.5 mm, a thickness of the above order is sufficient. When taking the hydration weight increase by the test shown in the Examples as an index of hydration resistance, the preferable lower limit is about 0.04 mg/cm 2 hr, which can be achieved with a forsterite layer thickness of about 2 μm or more. Further, the most preferable value of 0.01 mg/cm 2 hr or less is achieved with a forsterite layer thickness of about 10 μm. Examples of the present invention will be shown below. The following raw material mixture was mixed for 15 hours in an alumina ball meal with an internal volume of 3 to form a slurry. Magnesium hydroxide (purity 98% by weight, Tomita Pharmaceutical, Type MS) 500g Water-soluble acrylic resin (Chuo Rika Kogyo, Rikabond ESZ-1311) 50g Polyethylene oxide resin (Steel Chemical Industries, Ltd.,
PEO-1) 5g Water 800g Calcium carbonate 9g Next, this slurry was degassed under vacuum for 10 minutes, then casted onto an acetate film using a doctor blade method, air-dried for 15 hours, and a thickness of 1
A green sheet with a width of 320 mm was obtained. Cut this into a size of 150 x 187.5 mm, and heat it in an electric furnace to a size of 1150 mm.
A magnesia calcined substrate with an open porosity of about 20% was obtained by calcining at ℃ for 1 hour. Next, ethyl silicate [Si
(OC 2 H 5 ) 4 ] (Yoneyama Pharmaceutical Reagent Grade 1) was prepared, and the calcined body was immersed in it for 10 seconds to impregnate it. This impregnated body was ignited and ethyl silicate was burned over the entire surface, producing silicon dioxide particles of approximately 0.1μ. Some of these particles were released into space, but most of them adhered and deposited on the surface of the substrate, leaving a thickness of approximately
A silicon dioxide fine particle layer of 20μ was formed. The substrate obtained by firing this in an electric furnace at 1450° C. for 1 hour had a layer with a thickness of about 3 to 5 μm rich in forsterite formed by the reaction between MgO and SiO 2 on the surface. The size of the sintered product is 100 x 125
×0.67tmm. The thermal conductivity, hydration resistance, transverse rupture strength, dielectric constant, and dielectric loss tangent of this sintered product were measured in comparison with those of a sintered product made by a conventional method, and the results shown in Table 1 were obtained.

【表】 以上の如く本発明によるマグネシア磁器は耐水
和性において著しい向上が認められており、その
他の特性も満足できるものである。 本発明は複雑な形状品にも利用でき、又、シー
ト成形品に限らず流し込みプレス成形、押出し成
形等の製品に対しても有効であり、その利すると
ころ大である。 また、本発明のマグネシア磁器は、単に集積回
路基板材料のみならずその他耐水和性、耐水性を
要するその他の目的にも利用できる。
[Table] As described above, the magnesia porcelain according to the present invention has been recognized to have significantly improved hydration resistance, and other properties are also satisfactory. The present invention can be used for products with complex shapes, and is also effective not only for sheet molded products but also for products made by pouring press molding, extrusion molding, etc., and has great advantages. Furthermore, the magnesia porcelain of the present invention can be used not only as a material for integrated circuit boards, but also for other purposes requiring hydration resistance and water resistance.

Claims (1)

【特許請求の範囲】 1 表面にフオルステライトを主体とするセラミ
ツク被覆層を有する耐水和性マグネシア磁器。 2 下記(a)〜(c)の工程から成る表面にフオルステ
ライトを主体とするセラミツク被覆層を有するマ
グネシア磁器の製造法。 (a) 予成形したマグネシア成形体を予備焼成して
多孔質体とする工程、 (b) 該多孔質体に有機硅素化合物液又はその希釈
液を含浸し該多孔質体表面で燃焼させて表面に
微粒子二酸化硅素被覆層を形成する工程、 (c) 該二酸化硅素被覆多孔質体を焼結し表面にフ
オルステライトを主体とするセラミツク被覆層
を形成する工程。
[Claims] 1. Hydration-resistant magnesia porcelain having a ceramic coating layer mainly composed of forsterite on its surface. 2. A method for producing magnesia porcelain having a ceramic coating layer mainly composed of forsterite on its surface, which comprises the following steps (a) to (c). (a) Preliminary firing of a preformed magnesia molded body to form a porous body; (b) Impregnation of the porous body with an organosilicon compound liquid or its diluted liquid and burning it on the surface of the porous body to form a porous body. (c) sintering the silicon dioxide-coated porous body to form a ceramic coating layer mainly composed of forsterite on the surface.
JP57098492A 1982-06-10 1982-06-10 Magnesia ceramic and manufacture Granted JPS58217480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098492A JPS58217480A (en) 1982-06-10 1982-06-10 Magnesia ceramic and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098492A JPS58217480A (en) 1982-06-10 1982-06-10 Magnesia ceramic and manufacture

Publications (2)

Publication Number Publication Date
JPS58217480A JPS58217480A (en) 1983-12-17
JPS6339546B2 true JPS6339546B2 (en) 1988-08-05

Family

ID=14221142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098492A Granted JPS58217480A (en) 1982-06-10 1982-06-10 Magnesia ceramic and manufacture

Country Status (1)

Country Link
JP (1) JPS58217480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147866A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Printing device
JPH04163068A (en) * 1990-10-01 1992-06-08 Matsushita Electric Ind Co Ltd Printer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623065A (en) * 1985-06-26 1987-01-09 日本特殊陶業株式会社 Manufacture of magnesia ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147866A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Printing device
JPH04163068A (en) * 1990-10-01 1992-06-08 Matsushita Electric Ind Co Ltd Printer

Also Published As

Publication number Publication date
JPS58217480A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
US4301324A (en) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
US5714112A (en) Process for producing a silica sintered product for a multi-layer wiring substrate
JP2010524816A (en) Ceramic material having composition adjusted to thermal expansion coefficient defined by metal material
JPH0776126B2 (en) Method for manufacturing magnesia sintered body
JPS6339546B2 (en)
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
US2108513A (en) Ceramic insulator and method of
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
KR0173234B1 (en) Manufacturing method of multi-layer ceramic circuit board
JPS60500496A (en) Low temperature firing ceramic dielectric for temperature compensation capacitors
JPH07245482A (en) Ceramic circuit board and its manufacture
JP2002316877A (en) Burning tool for electronic parts
JPH07502245A (en) Low dielectric constant substrate
JPS6049149B2 (en) Manufacturing method of white alumina/ceramic for electronic parts
US4963514A (en) Ceramic mullite-silica glass composite
JP2666744B2 (en) Alumina multilayer wiring board, method of manufacturing the same, and method of manufacturing alumina sintered body
JPH03126658A (en) Production of alumina base plate
JPH10194846A (en) Production of substrate fired at low temperature
JP3117535B2 (en) Manufacturing method of alumina substrate
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JPS63319256A (en) Ceramic, circuit substrate and electronic circuit substrate using the ceramic and production of the ceramic
JP2992380B2 (en) Method for manufacturing ceramic sintered body having via hole metallization
JP3359513B2 (en) Glass ceramic sintered body and method for producing the same