JPS6339541B2 - - Google Patents

Info

Publication number
JPS6339541B2
JPS6339541B2 JP59270943A JP27094384A JPS6339541B2 JP S6339541 B2 JPS6339541 B2 JP S6339541B2 JP 59270943 A JP59270943 A JP 59270943A JP 27094384 A JP27094384 A JP 27094384A JP S6339541 B2 JPS6339541 B2 JP S6339541B2
Authority
JP
Japan
Prior art keywords
powder
titanium carbonitride
titanium
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59270943A
Other languages
Japanese (ja)
Other versions
JPS61151065A (en
Inventor
Tadahiko Watanabe
Kazuhisa Shobu
Hiroko Tsuya
Suketsugu Enomoto
Junshiro Hayakawa
Tadashi Yagishita
Hideki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59270943A priority Critical patent/JPS61151065A/en
Priority to AU51594/85A priority patent/AU5159485A/en
Priority to EP85309511A priority patent/EP0189677A3/en
Publication of JPS61151065A publication Critical patent/JPS61151065A/en
Priority to US07/068,740 priority patent/US4808557A/en
Publication of JPS6339541B2 publication Critical patent/JPS6339541B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は炭窒化チタン系セラミツクス材料、さ
らに詳しくいえば、切削工具材料や耐摩耗性機械
部品材料として好適な、高密度で、かつ高硬度及
び高強度を有し、優れた抗折力を示す新規な炭窒
化チタン系セラミツクス材料に関するものであ
る。 従来の技術 これまで切削工具材料としては、主としてタン
グステンカーバイドが用いられてきたが、最近資
源的に原料不足の傾向があるため、これに代わる
べき材料として、炭窒化チタン焼結体や二ホウ化
チタン焼結体などが注目を浴びるようになつてき
た。 ところで、炭窒化チタンTiCNはTiNとTiCと
の固溶体として存在し、その中の炭素と窒素との
比率を自由に配分できるものであつて、一般に融
点、硬度、じん性が高く、また耐酸化性もよいた
め、切削工具材料や耐摩耗性機械部品材料などと
して注目されているが、炭窒化チタン単味焼結体
は抗折強度が低く、もろいことから、この単味焼
結体は工業的に前記用途に利用することができな
いという欠点を有している。 発明が解決しようとする問題点 本発明の目的は、切削工具や耐摩耗性機械部品
材料として好適な、高密度で、かつ高硬度及び高
強度を有し、優れた抗折力を示す炭窒化チタン系
セラミツクス材料を提供することにある。 問題点を解決するための手段 本発明者らは、このような目的に適合する材料
として、既に窒化チタン−ホウ化金属系セラミツ
クス材料を提案したが(特公昭59−18349号公
報)、さらに研究を進めた結果、炭窒化チタン−
炭化クロム系セラミツクス材料及び炭窒化チタン
−炭化クロム−ホウ化金属系セラミツクス材料も
前記目的に適合しうることを見出し、この知見に
基づいて本発明を完成するに至つた。 すなわち、本発明は、(A)炭素と窒素とのモル比
が1:9ないし9:1の範囲にある炭窒化チタン
の中から選ばれた少なくとも1種の炭窒化チタン
粉末に、(B)炭化クロム粉末を全量当り1〜90重量
%添加した混合粉末を焼結して成る炭窒化チタン
系セラミツクス材料、及び前記の(A)成分に、(B)成
分を全量当り1〜90重量%添加したものを基本成
分とし、これにさらに(C)TiB2、CrB2、TaB2
MnB2、MoB2、VB2、NbB2、HfB2、AlB2
ZrB2、TiB、CrB、TaB、MnB、MoB、VB、
NbB、HfB、ZrB、W2B5及びMo2B5の中から選
ばれた少なくとも1種のホウ化金属粉末を全量当
り95重量%未満の量で添加した混合粉末を焼結し
て成る炭窒化チタン系セラミツクス材料を提供す
るものである。 本発明の主成分である(A)成分の炭窒化チタンと
しては、その中の炭素と窒素との割合がモル比
で、1:9ないし9:1の範囲にあるものが用い
られ、前記範囲を逸脱するものでは、じん性の優
れたセラミツクス材料が得られない。この炭窒化
チタンは単独で用いてもよいし、2種以上の混合
物で用いてもよい。また炭窒化チタン粉末の平均
粒径は2μm以下が望ましく、さらに好ましくは
1μm以下である。 本発明において(B)成分として用いられる炭化ク
ロムには、Cr3C2、Cr4C、Cr7C3などの化合物が
あり、これらは単独で用いてもよいし、2種以上
組み合わせて用いてもよい。この炭化クロム粉末
の平均粒径は2μm以下が望ましく、さらに好ま
しくは1μm以下である。 本発明においては、前記炭化クロム粉末の添加
量は、混合粉末全量当り1〜90重量%の範囲で選
ばれる。この量が1重量%未満又は90重量%より
多い場合は、所定の物性を有するセラミツクス材
料が得られない。 また、本発明においては、セラミツクス材料の
物性をより向上させるために、前記の(A)成分と(B)
成分とから成る基本成分に対し、さらに(C)成分と
して、TiB2、CrB2、TaB2、MnB2、MoB2
VB2、NbB2、HfB2、AlB2、ZrB2の二ホウ化金
属、TiB、CrB、TaB、MnB、MoB、VB、
NbB、HfB、ZrBの一ホウ化金属及びW2B5
Mo2B5の五二ホウ化金属の中から選ばれたホウ
化金属の粉末を添加することができる。これらの
ホウ化金属粉末はそれぞれ単独で用いてもよい
し、2種以上組み合わせて用いてもよく、またそ
の平均粒径が2μm以下、好ましくは1μm以下の
ものが望ましい。 前記ホウ化金属粉末は、混合粉末全量当り95重
量%末満の割合で用いられる。特にその配合量が
20〜70重量%の範囲において、高い強度、密度及
び硬度を有する優れたセラミツクス材料が得られ
る。 本発明のセラミツクス材料は、前記各成分を混
合し、これまで知られているセラミツクス材料の
場合と同じような方法によつて製造することがで
きる。 例えば、原料粉末混合物を金型に充てんして、
0.5〜10ton/cm2程度のプレス圧により冷間圧縮
し、次いでラバープレスによりさらに0.5〜
10ton/cm2程度の静水圧で成形する。もちろんど
ちらか一方で成形してもよいし、また泥漿法によ
り成形してもよい。次にこのようにして得られた
圧粉体を真空中又はアルゴン、水素などの非酸化
性雰囲気中において、1400〜2000℃の温度で30〜
300分間焼結する。さらに必要であれば、熱間静
水圧焼成法によりアルゴンガスなどによる2ton/
cm2以下程度の圧力のもとで、1300〜1900℃で5〜
300分焼結する。 また、別の方法によると、原料粉末混合物を例
えば黒鉛型などの型に充てんしたのち、真空中又
はアルゴン、水素などの非酸化性雰囲気中におい
て、ダイ圧力50〜300Kg/cm2、温度1300〜2000℃
の条件で、10〜200分間加熱焼結する、いわゆる
ホツトプレス法を用いて焼結できる。 このようにして、切削工具などとして好適なセ
ラミツクス材料が得られる。 発明の効果 本発明によると、切削工具として好適な高密
度、高硬度及び高強度を有する炭窒化チタン系材
料が得られる。また、本発明の材料は、大気中に
おいて600℃以上の温度で使用すると、Cr2O3
生成して摩擦係数が小さくなるので、高温摺動材
としても有用である。 実施例 次に実施例によつて本発明をさらに詳細に説明
する。 例 1 Ti(C0.5N0.5)粉末に、Cr3C2粉末を種々の割合
で添加して混合粉末にしたのち、このものを金型
によつて圧粉体とし、さらにラバープレスにより
3ton/cm2の圧力でち密化する。 このようにして得られた圧粉体を真空中におい
て、1850℃で90分間加熱焼結した。 得られたセラミツクス材料は高密度で抗折力及
び硬度の高いものであつた。この結果を第1表に
示す。なお比較のために、Cr3C2粉末を加えない
場合の結果も併記した。
Industrial Application Field The present invention relates to a titanium carbonitride ceramic material, more specifically, a titanium carbonitride ceramic material, which has high density, high hardness, and high strength, and is suitable for cutting tool materials and wear-resistant machine parts materials. This invention relates to a new titanium carbonitride ceramic material that exhibits transverse rupture strength. Conventional technology Until now, tungsten carbide has been mainly used as a material for cutting tools, but due to the recent trend of raw material shortages, alternative materials such as sintered titanium carbonitride and diboride Titanium sintered bodies are beginning to attract attention. By the way, titanium carbonitride TiCN exists as a solid solution of TiN and TiC, and the ratio of carbon and nitrogen in it can be freely distributed, and it generally has a high melting point, hardness, and toughness, and also has high oxidation resistance. Because of its good properties, it is attracting attention as a material for cutting tools and wear-resistant mechanical parts. However, since the single sintered body of titanium carbonitride has low flexural strength and is brittle, this single sintered body is not suitable for industrial use. However, it has the disadvantage that it cannot be used for the above-mentioned purposes. Problems to be Solved by the Invention The purpose of the present invention is to provide carbonitrided carbonitrides that have high density, high hardness, high strength, and exhibit excellent transverse rupture strength, suitable as materials for cutting tools and wear-resistant mechanical parts. The purpose of the present invention is to provide titanium-based ceramic materials. Means for Solving the Problems The present inventors have already proposed a titanium nitride-metal boride ceramic material as a material suitable for such purposes (Japanese Patent Publication No. 18349/1983), but further research is required. As a result of progressing with the development of titanium carbonitride
It has been discovered that chromium carbide ceramic materials and titanium carbonitride-chromium carbide-metal boride ceramic materials can also be adapted to the above object, and based on this knowledge, the present invention has been completed. That is, the present invention provides (A) at least one titanium carbonitride powder selected from titanium carbonitride having a molar ratio of carbon to nitrogen in the range of 1:9 to 9:1; A titanium carbonitride ceramic material made by sintering a mixed powder to which 1 to 90% by weight of chromium carbide powder is added, and 1 to 90% by weight of component (B) to the above component (A). The basic component is (C)TiB 2 , CrB 2 , TaB 2 ,
MnB 2 , MoB 2 , VB 2 , NbB 2 , HfB 2 , AlB 2 ,
ZrB2 , TiB, CrB, TaB, MnB, MoB, VB,
Carbon made by sintering a mixed powder to which at least one metal boride powder selected from NbB, HfB, ZrB, W 2 B 5 and Mo 2 B 5 is added in an amount less than 95% by weight based on the total amount. The present invention provides a titanium nitride ceramic material. As the titanium carbonitride of component (A) which is the main component of the present invention, one in which the molar ratio of carbon to nitrogen is in the range of 1:9 to 9:1 is used. If it deviates from this, it will not be possible to obtain a ceramic material with excellent toughness. This titanium carbonitride may be used alone or in a mixture of two or more. In addition, the average particle size of the titanium carbonitride powder is preferably 2 μm or less, more preferably
It is 1 μm or less. The chromium carbide used as component (B) in the present invention includes compounds such as Cr 3 C 2 , Cr 4 C, and Cr 7 C 3 , and these may be used alone or in combination of two or more. It's okay. The average particle size of this chromium carbide powder is preferably 2 μm or less, more preferably 1 μm or less. In the present invention, the amount of the chromium carbide powder added is selected within the range of 1 to 90% by weight based on the total amount of the mixed powder. If this amount is less than 1% by weight or more than 90% by weight, a ceramic material with desired physical properties cannot be obtained. In addition, in the present invention, in order to further improve the physical properties of the ceramic material, the above-mentioned (A) component and (B) are combined.
Furthermore, as the (C) component, TiB 2 , CrB 2 , TaB 2 , MnB 2 , MoB 2 ,
VB 2 , NbB 2 , HfB 2 , AlB 2 , ZrB 2 metal diboride, TiB, CrB, TaB, MnB, MoB, VB,
NbB, HfB, ZrB metal monoboride and W 2 B 5 ,
A metal boride powder selected from among the metal pentaborides of Mo 2 B 5 can be added. These metal boride powders may be used alone or in combination of two or more, and those having an average particle size of 2 μm or less, preferably 1 μm or less are desirable. The metal boride powder is used in an amount of less than 95% by weight based on the total amount of the mixed powder. Especially the amount
In the range of 20 to 70% by weight, excellent ceramic materials with high strength, density and hardness are obtained. The ceramic material of the present invention can be produced by mixing the above-mentioned components and using a method similar to that used for conventionally known ceramic materials. For example, by filling a mold with a raw material powder mixture,
Cold compressed using a press pressure of about 0.5 to 10 ton/ cm2 , then further compressed by a rubber press to 0.5 to 100 ton/cm2.
Molding is done using hydrostatic pressure of about 10ton/cm2. Of course, it may be molded using either one, or may be molded by a slurry method. Next, the green compact obtained in this way is placed in a vacuum or in a non-oxidizing atmosphere such as argon or hydrogen at a temperature of 1400 to 2000°C for 30 to 30 minutes.
Sinter for 300 minutes. Furthermore, if necessary, hot isostatic sintering can be used to produce 2 tons/2 tons using argon gas, etc.
5~1300~1900℃ under pressure below cm2
Sinter for 300 minutes. According to another method, after filling a mold such as a graphite mold with a raw material powder mixture, the mixture is placed in vacuum or in a non-oxidizing atmosphere such as argon or hydrogen at a die pressure of 50 to 300 Kg/cm 2 and a temperature of 1300 to 1,300 kg/cm 2 . 2000℃
It can be sintered using the so-called hot press method, which involves heating and sintering for 10 to 200 minutes under the following conditions. In this way, a ceramic material suitable for cutting tools and the like is obtained. Effects of the Invention According to the present invention, a titanium carbonitride material having high density, high hardness, and high strength suitable for a cutting tool can be obtained. Furthermore, when the material of the present invention is used in the atmosphere at a temperature of 600° C. or higher, Cr 2 O 3 is generated and the coefficient of friction is reduced, so it is useful as a high-temperature sliding material. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Example 1 Cr 3 C 2 powder is added to Ti (C 0.5 N 0.5 ) powder in various proportions to make a mixed powder, which is then made into a green compact using a mold and further pressed using a rubber press.
Densify at a pressure of 3ton/ cm2 . The green compact thus obtained was heated and sintered at 1850° C. for 90 minutes in a vacuum. The obtained ceramic material had high density, transverse rupture strength, and hardness. The results are shown in Table 1. For comparison, the results obtained without adding Cr 3 C 2 powder are also shown.

【表】 例 2 Cr3C2粉末を全量当り10重量%、20重量%用
い、焼結温度を1550〜1800℃の範囲で変える以外
は、実施例1と同様にして焼結し、空隙の全くな
いち密な材料を得た。これらの物性を第2表に示
す。
[Table] Example 2 Sintering was carried out in the same manner as in Example 1 except that 10% by weight and 20% by weight of Cr3C2 powder were used based on the total amount, and the sintering temperature was varied in the range of 1550 to 1800°C. I got absolutely no dense material. These physical properties are shown in Table 2.

【表】 例 3 炭窒化チタン粉末として炭素と窒素との比率が
異なる各種のものを用い、これにCr3C2粉末を全
量当り10重量%添加し、第3表に示すような温度
で焼結する以外は、実施例1と同様にして、空隙
の全くないち密な材料を得た。これらの物性を第
3表に示す。 なお、比較のために炭窒化チタンの代りに、窒
化チタン、炭化チタンを用いた場合の結果も併記
する。
[Table] Example 3 Various titanium carbonitride powders with different ratios of carbon and nitrogen were used, 10% by weight of Cr 3 C 2 powder was added to the powder, and the mixture was sintered at the temperature shown in Table 3. A dense material with no voids was obtained in the same manner as in Example 1, except for binding. These physical properties are shown in Table 3. For comparison, results obtained when titanium nitride and titanium carbide were used instead of titanium carbonitride are also shown.

【表】 例 4 Ti(C0.5N0.5)粉末に、第4表に示すような割
合でCr3C2粉末及びTiB2粉末を添加し、得られた
混合粉末を実施例1と同様な方法で処理し、空隙
のないち密な材料を得た。この物性を第4表に示
す。 なお、No.31は比較例である。
[Table] Example 4 Cr 3 C 2 powder and TiB 2 powder were added to Ti (C 0.5 N 0.5 ) powder in the proportions shown in Table 4, and the resulting mixed powder was prepared in the same manner as in Example 1. A dense material with no voids was obtained. The physical properties are shown in Table 4. Note that No. 31 is a comparative example.

【表】 * 比較例
例 5 Ti(C0.5N0.5)粉末にCr3C2粉末を全量当り10重
量%添加して成る混合粉末、及びTi(C0.5N0.5
粉末に全量当りCr3C2粉末5重量%とTiB2粉末30
重量%とを添加して成る混合粉末それぞれを、黒
鉛型に充てんしたのち、ダイ圧力200Kg/cm2をか
け、真空中で前者は1600℃、後者は1700℃におい
て60分間加圧焼結した。得られた焼結体はいずれ
も空隙が全くないち密なもので、高い抗折力及び
硬度を有していた。 これらの物性を第5表に示す。
[Table] * Comparative Example 5 Mixed powder made by adding 10% by weight of Cr 3 C 2 powder to Ti (C 0.5 N 0.5 ) powder, and Ti (C 0.5 N 0.5 ) powder.
5% by weight of Cr 3 C 2 powder and 30% TiB 2 powder per total amount of powder
After filling a graphite mold with each of the mixed powders obtained by adding % by weight, a die pressure of 200 kg/cm 2 was applied, and the former was pressure sintered at 1600°C and the latter at 1700°C for 60 minutes in a vacuum. All of the obtained sintered bodies were dense with no voids and had high transverse rupture strength and hardness. These physical properties are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)炭素と窒素とのモル比が1:9ないし9:
1の範囲にある炭窒化チタンの中から選ばれた少
なくとも1種の炭窒化チタン粉末に、(B)炭化クロ
ム粉末を全量当り1〜90重量%添加した混合粉末
を焼結して成る炭窒化チタン系セラミツクス材
料。 2 (A)炭素と窒素とのモル比が1:9ないし9:
1の範囲にある炭窒化チタンの中から選ばれた少
なくとも1種の炭窒化チタン粉末に、(B)炭化クロ
ム粉末を全量当り1〜90重量%添加したものを基
本成分とし、これにさらに(C)TiB2、CrB2
TaB2、MnB2、MoB2、VB2、NbB2、HfB2
AlB2、ZrB2、TiB、CrB、TaB、MnB、MoB、
VB、NbB、HfB、ZrB、W2B5及びMo2B5の中
から選ばれた少なくとも1種のホウ化金属粉末を
全量当り95重量%未満の量で添加した混合粉末を
焼結して成る炭窒化チタン系セラミツクス材料。
[Claims] 1 (A) The molar ratio of carbon to nitrogen is 1:9 to 9:
Carbonitrided carbonitride produced by sintering a mixed powder in which (B) chromium carbide powder is added in an amount of 1 to 90% by weight based on the total amount of at least one type of titanium carbonitride powder selected from titanium carbonitride in the range of 1. Titanium ceramic material. 2 (A) The molar ratio of carbon to nitrogen is 1:9 to 9:
The basic component is at least one type of titanium carbonitride powder selected from titanium carbonitride in the range of 1, to which (B) chromium carbide powder is added in an amount of 1 to 90% by weight based on the total amount, and further ( C) TiB 2 , CrB 2 ,
TaB 2 , MnB 2 , MoB 2 , VB 2 , NbB 2 , HfB 2 ,
AlB2 , ZrB2 , TiB, CrB, TaB, MnB, MoB,
A mixed powder to which at least one metal boride powder selected from VB, NbB, HfB, ZrB, W 2 B 5 and Mo 2 B 5 is added in an amount of less than 95% by weight based on the total amount is sintered. Titanium carbonitride ceramic material.
JP59270943A 1984-12-24 1984-12-24 Titanium carbonitride ceramic material Granted JPS61151065A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59270943A JPS61151065A (en) 1984-12-24 1984-12-24 Titanium carbonitride ceramic material
AU51594/85A AU5159485A (en) 1984-12-24 1985-12-23 Sintered titanium carbo-nitride-chromium carbide ceramics
EP85309511A EP0189677A3 (en) 1984-12-24 1985-12-24 Sintered titanium carbo-nitride ceramics
US07/068,740 US4808557A (en) 1984-12-24 1987-06-30 Sintered titanium carbo-nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270943A JPS61151065A (en) 1984-12-24 1984-12-24 Titanium carbonitride ceramic material

Publications (2)

Publication Number Publication Date
JPS61151065A JPS61151065A (en) 1986-07-09
JPS6339541B2 true JPS6339541B2 (en) 1988-08-05

Family

ID=17493167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270943A Granted JPS61151065A (en) 1984-12-24 1984-12-24 Titanium carbonitride ceramic material

Country Status (1)

Country Link
JP (1) JPS61151065A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779190B2 (en) * 1988-12-19 1998-07-23 ヤマハ発動機株式会社 Motorcycle cooling system

Also Published As

Publication number Publication date
JPS61151065A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
JPS5837274B2 (en) High strength composite sintered material
EP0349740B1 (en) Complex boride cermets
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH0583514B2 (en)
US4808557A (en) Sintered titanium carbo-nitride ceramics
JPH02217359A (en) Titanium carbon nitride based toughened ceramics
JPS6339541B2 (en)
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JPH0579627B2 (en)
US5036028A (en) High density metal boride-based ceramic sintered body
JPH0122233B2 (en)
JPS6332750B2 (en)
JP3051603B2 (en) Titanium compound sintered body
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
Cutler Pressureless-Sintered Al sub 2 O sub 3--TiC Composites
JPH0362666B2 (en)
JPS63282166A (en) High-density metal boride-base sintered ceramics body
JPS62260775A (en) Titanium carbide-hafnium-boride metal base ceramic material(2)
JPS6359990B2 (en)
JP2840696B2 (en) Method for producing alumina fiber reinforced ceramics
JPH02307862A (en) Production of high-hardness al2o3-base composite
JPH0336780B2 (en)
JPH0432032B2 (en)
JPH0687655A (en) Tantalum carbide-based sintered compact and its production
JPS6353150B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term