JPH0432032B2 - - Google Patents

Info

Publication number
JPH0432032B2
JPH0432032B2 JP62214906A JP21490687A JPH0432032B2 JP H0432032 B2 JPH0432032 B2 JP H0432032B2 JP 62214906 A JP62214906 A JP 62214906A JP 21490687 A JP21490687 A JP 21490687A JP H0432032 B2 JPH0432032 B2 JP H0432032B2
Authority
JP
Japan
Prior art keywords
zirconium
weight
chromium carbide
present
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62214906A
Other languages
Japanese (ja)
Other versions
JPS6456367A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62214906A priority Critical patent/JPS6456367A/en
Publication of JPS6456367A publication Critical patent/JPS6456367A/en
Publication of JPH0432032B2 publication Critical patent/JPH0432032B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、高強度、高硬度、高耐摩耗性でかつ
高密度を有する新規なセラミツクスに関するもの
であり、切削工具材料や高耐摩耗性機械部品用材
料等多くの用途に使用出来るものである。 <従来の技術> 現在、切削工具や耐摩工具のような分野におけ
る材料として超硬合金、サーメツト、あるいは本
発明者らが提案した「炭窒化チタン−硼化金属系
セラミツクス」(特公昭59−89749号公報)、「炭窒
化チタン系セラミツクス材料」(特開昭61−
151065号公報)がある。 <発明が解決しようとする問題点> 前記「特公昭59−89749号公報」で示されるセ
ラミツクは超硬合金、サーメツトなどの問題点で
ある耐摩耗性、高温での硬度低下等をかなり解決
した材料ではあるが、実用において高温での耐酸
化性、それに起因する耐摩耗性、又耐食性等でな
お十分とはいえず、工業的に広範囲な利用を妨げ
る要因となつている。本発明は、このような問題
点を解決することを目的とするものである。 <問題点を解決する為の手段> 炭窒化ジルコニウム粉末(Zr(CN))はZrCや
ZrNとは全く違う物質であることがX線回折法等
により確認でき、一般に融点、硬度、靭性が高い
が、その単味焼結体を得ることは難しい。また
Cr3C2、Cr7C2及びCr4Cの炭化クロム粉末は、高
融点で耐熱衝撃性、高温特性、耐酸化性、耐摩耗
性、溶融金属に対する耐食性及び加工性等、優れ
た特性を持ち、最近、エンジニアリングセラミツ
クスなどの利用に期待されている材料であるが、
やはり、難焼結性であり、高強度、高密度単味焼
結体を得るのは難しい。そこで、本発明者らは、
炭窒化ジルコニウムと炭化クロムの複合化を検討
し、種々の焼結実験を行つた結果、この両者によ
る複合効果の著しいことを見出し、この知見に基
づいて本発明をなすに至つた。 即ち本発明は、炭窒化ジルコニウム粉末に対
し、Cr3C2、Cr7C2及びCr4Cの炭化クロム粉末1
種以上を全量当り20〜99重量%添加してなるジル
コニウム−炭化クロム系セラミツクス複合材料に
係るものである。 本発明に於いて、炭窒化ジルコニウムZr(C〓
N〓)とは炭化ジルコニウムに窒素が固溶したも
のか、窒化ジルコニウムに炭素が固溶したもので
あり、炭素と窒素との割合(α:β)は10:90〜
90:10までの範囲のものである。なおα/α+β
が0.1以下若しくは0.9以上の場合はZrCやZrNと
殆ど同じになるので、その様な範囲は避けるべき
である。この炭窒化ジルコニウム粉末は平均粒径
2μm以下、望ましくは1μm以下が好ましい。ま
た本発明に用いる炭化クロム粉末も平均粒径2μ
m以下、望ましくは1μm以下が好ましい。炭窒
化ジルコニウム粉末に対しこのような炭化クロム
粉末を、全量に対し20〜99重量%添加すれば、高
強度、高硬度かつ高密度で高耐摩耗性を有する焼
結体が得られる。ここで炭化クロムの添加量を20
〜99重量%にしたのは、5重量%<添加量<2重
量%では、炭窒化ジルコニウムの粒成長が著し
く、また5重量%未満、あるいは99重量%を超え
る範囲では添加による高強度化や高硬度化の効
果、即ち両者を併用する事の複合効果は見られな
いからである。 本発明のセラミツクスは、原料混合粉末を例え
ば黒鉛型のような型に充填し、真空中又は窒素、
アルゴン、水素のような中性若しくは還元性雰囲
気に於いて、ダイ圧力50〜300Kg/cm2の下に1300
〜1700℃で10〜200分間加熱焼結することにより
得られる。また通常知られた普通焼結法、HIP法
等を使用して焼結することもできる。 <実施例> 以下実施例により本発明を更に詳細に説明す
る。 炭素と窒素の比率が60:40の炭窒化ジルコニウ
ム粉末20重量%と炭化クロム80重量%とを十分に
混合し、この混合粉末を黒鉛型に充填した。この
黒鉛型を1400℃、60分間ダイ圧力200Kg/cm2で加
圧しながら真空中で焼結した。得られた焼結体
は、抗折力80Kg/mm2、ビツカース硬度1750Kg/mm2
を有していた。この焼結体の走査型電気顕微鏡に
よる組織観察では空孔はみられなかつた。この結
果も含め第1表に炭化クロムの添加量をかえた
種々の焼結体の特性及び比較例として他の焼結体
の特性を示す。
<Industrial Application Field> The present invention relates to a novel ceramic having high strength, high hardness, high wear resistance, and high density, and can be used in many applications such as cutting tool materials and highly wear-resistant mechanical parts materials. It can be used for any purpose. <Prior art> Currently, cemented carbide, cermet, or "titanium carbonitride-metal boride ceramics" proposed by the present inventors (Japanese Patent Publication No. 59-89749) are used as materials for cutting tools and wear-resistant tools. ``Titanium Carbonitride Ceramics Materials'' (Unexamined Japanese Patent Publication No. 1983-
151065). <Problems to be solved by the invention> The ceramic disclosed in the above-mentioned Japanese Patent Publication No. 59-89749 significantly solves the problems of cemented carbide and cermet, such as wear resistance and hardness reduction at high temperatures. Although it is a material, in practical use, it cannot be said that its oxidation resistance at high temperatures, its wear resistance, corrosion resistance, etc. are sufficient, and this is a factor that hinders its widespread industrial use. The present invention aims to solve these problems. <Means to solve the problem> Zirconium carbonitride powder (Zr(CN)) is
It has been confirmed by X-ray diffraction methods that it is a completely different substance from ZrN, and it generally has a high melting point, hardness, and toughness, but it is difficult to obtain a simple sintered body of it. Also
Cr 3 C 2 , Cr 7 C 2 and Cr 4 C chromium carbide powders have high melting points and excellent properties such as thermal shock resistance, high temperature properties, oxidation resistance, abrasion resistance, corrosion resistance against molten metal, and workability. It is a material that has recently been expected to be used in engineering ceramics, etc.
After all, it is difficult to sinter, and it is difficult to obtain a high-strength, high-density single sintered body. Therefore, the present inventors
As a result of studying the composite of zirconium carbonitride and chromium carbide and conducting various sintering experiments, it was discovered that the combined effect of the two was remarkable, and the present invention was made based on this knowledge. That is, in the present invention, chromium carbide powder 1 of Cr 3 C 2 , Cr 7 C 2 and Cr 4 C is used for zirconium carbonitride powder.
The present invention relates to a zirconium-chromium carbide ceramic composite material in which 20 to 99% by weight of zirconium carbide or more is added based on the total amount. In the present invention, zirconium carbonitride Zr (C〓
N〓) is a solid solution of nitrogen in zirconium carbide or a solid solution of carbon in zirconium nitride, and the ratio of carbon to nitrogen (α:β) is 10:90 ~
The range is up to 90:10. Note that α/α+β
If it is less than 0.1 or more than 0.9, it will be almost the same as ZrC or ZrN, so such a range should be avoided. This zirconium carbonitride powder has an average particle size of
The thickness is preferably 2 μm or less, preferably 1 μm or less. Furthermore, the average particle size of the chromium carbide powder used in the present invention is 2μ.
m or less, preferably 1 μm or less. If such chromium carbide powder is added in an amount of 20 to 99% by weight based on the total amount of zirconium carbonitride powder, a sintered body having high strength, high hardness, high density, and high wear resistance can be obtained. Here, the amount of chromium carbide added is 20
~99% by weight was chosen because if 5% by weight<addition amount<2% by weight, the grain growth of zirconium carbonitride would be significant, and if it was less than 5% by weight or more than 99% by weight, the addition would not increase the strength. This is because the effect of increasing hardness, that is, the combined effect of using both together cannot be seen. The ceramics of the present invention can be produced by filling a raw material mixed powder into a mold such as a graphite mold, and
1300 under a die pressure of 50-300Kg/ cm2 in a neutral or reducing atmosphere such as argon, hydrogen.
Obtained by heating and sintering at ~1700°C for 10 to 200 minutes. Further, the sintering can also be performed using a commonly known ordinary sintering method, HIP method, or the like. <Example> The present invention will be explained in more detail with reference to Examples below. 20% by weight of zirconium carbonitride powder with a carbon to nitrogen ratio of 60:40 and 80% by weight of chromium carbide were thoroughly mixed, and this mixed powder was filled into a graphite mold. This graphite mold was sintered in vacuum at 1400° C. for 60 minutes at a die pressure of 200 kg/cm 2 . The obtained sintered body has a transverse rupture strength of 80 Kg/mm 2 and a Bitkers hardness of 1750 Kg/mm 2
It had No pores were observed when the structure of this sintered body was observed using a scanning electric microscope. Table 1, including these results, shows the characteristics of various sintered bodies with different amounts of chromium carbide added, and the properties of other sintered bodies as comparative examples.

【表】【table】

【表】 (注) *は比較例である。
<発明の効果> 以上述べて来た如く、本発明によれば第1表で
明らかな様に、炭窒化ジルコニウム系単味、ある
いは炭化クロム単味の焼結体が相当に高い焼結温
度で焼結したにも拘らず、空孔が多く、小さな抵
抗折力しか有さないのに比し、それと同程度ある
いは低温で焼結しても緻密で強靭な焼結体が得ら
れる。 又、この焼結体の酸化試験を行つてみたとこ
ろ、TiCN−Cr3C2、TiCN−TiB2系等より酸化
開始温度は高くなることが判つた。 従つて切削工具材料をはじめ各種機械用部材と
して広範な用途に使用出来るものである。
[Table] (Note) * is a comparative example.
<Effects of the Invention> As described above, according to the present invention, as shown in Table 1, a sintered body of zirconium carbonitride or chromium carbide can be sintered at a considerably high sintering temperature. Even though it is sintered, it has many pores and has only a small resistance rupture strength, but even if it is sintered at the same temperature or at a lower temperature, a dense and strong sintered body can be obtained. Further, when an oxidation test was conducted on this sintered body, it was found that the oxidation starting temperature was higher than that of TiCN-Cr 3 C 2 , TiCN-TiB 2 , etc. Therefore, it can be used in a wide range of applications, including cutting tool materials and various mechanical parts.

Claims (1)

【特許請求の範囲】[Claims] 1 Cr3C2、Cr7C2、Cr4Cの中の1種以上を20〜
99重量%、残部炭窒化ジルコニウムなる組成を特
徴とする炭窒化ジルコニウム−炭化クロム系セラ
ミツクス焼結体。
1 Cr 3 C 2 , Cr 7 C 2 , Cr 4 C at least 20%
A zirconium carbonitride-chromium carbide ceramic sintered body characterized by a composition of 99% by weight and the balance being zirconium carbonitride.
JP62214906A 1987-08-27 1987-08-27 Zirconium carbonitride-based ceramic sintered body Granted JPS6456367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62214906A JPS6456367A (en) 1987-08-27 1987-08-27 Zirconium carbonitride-based ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62214906A JPS6456367A (en) 1987-08-27 1987-08-27 Zirconium carbonitride-based ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS6456367A JPS6456367A (en) 1989-03-03
JPH0432032B2 true JPH0432032B2 (en) 1992-05-28

Family

ID=16663522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62214906A Granted JPS6456367A (en) 1987-08-27 1987-08-27 Zirconium carbonitride-based ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS6456367A (en)

Also Published As

Publication number Publication date
JPS6456367A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
Pastor Metallic borides: preparation of solid bodies—sintering methods and properties of solid bodies
US5045512A (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
US4292081A (en) Boride-based refractory bodies
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH0583514B2 (en)
US4808557A (en) Sintered titanium carbo-nitride ceramics
EP0593591B1 (en) Boron carbide-copper cermets and method for making same
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
US5036028A (en) High density metal boride-based ceramic sintered body
JPH0432032B2 (en)
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
US5120684A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JPS6332750B2 (en)
JPH0122233B2 (en)
JPH02307862A (en) Production of high-hardness al2o3-base composite
JPS597668B2 (en) High-strength heat-resistant metal boride/zirconium oxide composite ceramics
JPH0432034B2 (en)
US5264401A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
JPS63303860A (en) Zirconium carbonitride-metal boride-based ceramic sintered body
JPS6339541B2 (en)
JPH0331668B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term