JPS633944B2 - - Google Patents

Info

Publication number
JPS633944B2
JPS633944B2 JP55074934A JP7493480A JPS633944B2 JP S633944 B2 JPS633944 B2 JP S633944B2 JP 55074934 A JP55074934 A JP 55074934A JP 7493480 A JP7493480 A JP 7493480A JP S633944 B2 JPS633944 B2 JP S633944B2
Authority
JP
Japan
Prior art keywords
molybdenum
average particle
surface roughness
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074934A
Other languages
Japanese (ja)
Other versions
JPS572859A (en
Inventor
Kenichi Okamoto
Michihiro Horii
Ikuo Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP7493480A priority Critical patent/JPS572859A/en
Publication of JPS572859A publication Critical patent/JPS572859A/en
Publication of JPS633944B2 publication Critical patent/JPS633944B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明はセラミツクス製品を焼成するのに使用
されるモリブデン基板及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molybdenum substrate used for firing ceramic products and a method for manufacturing the same.

最近、セラミツクス製品を焼成するために、表
面を意図的に粗くしたモリブデン基板を使用する
ことが提案されている。このモリブデン基板を用
いた場合、その表面粗さのために、セラミツクス
製品焼成の際、セラミツクス製品とモリブデン基
板との焼付けを防止することができ、製品の歩留
りを上昇させることができる。
Recently, it has been proposed to use molybdenum substrates with intentionally roughened surfaces for firing ceramic products. When this molybdenum substrate is used, the surface roughness of the molybdenum substrate prevents the ceramic product and the molybdenum substrate from burning during firing of the ceramic product, thereby increasing the yield of the product.

従来、この種のモリブデン基板を製作する方法
として、焼結等によつて製作されたモリブデン板
にサンドブラストあるいは液体ホーニング等のホ
ーニング加工を施し、表面を粗くする方法が採用
されている。この方法では、ホーニング加工に使
用される砥粒の粒度を選択することによつて、表
面粗さを調整することができる。しかしながら、
このようにして得られたモリブデン基板の表面粗
さは最大高さ(Rnax:JIS B0601―1976参照)で
高々60ミクロンにすぎない。また、モリブデン基
板は約1100℃の高温で荷重をかけた状態で使用さ
れるため、その表面粗さは徐々に劣化していく。
通常、このような場合、モリブデン基板を再度ホ
ーニング加工している。しかし、この再処理は製
造コストにおいても、あるいは、再処理された基
板の品質の面においても、不都合な面が多い。
Conventionally, as a method for manufacturing this type of molybdenum substrate, a method has been adopted in which a molybdenum plate manufactured by sintering or the like is subjected to a honing process such as sandblasting or liquid honing to roughen the surface. In this method, the surface roughness can be adjusted by selecting the grain size of the abrasive grains used for honing. however,
The surface roughness of the molybdenum substrate thus obtained is only 60 microns at the maximum height (R nax : see JIS B0601-1976). Furthermore, because molybdenum substrates are used under load at high temperatures of approximately 1,100°C, their surface roughness gradually deteriorates.
Usually, in such cases, the molybdenum substrate is honed again. However, this reprocessing has many disadvantages in terms of manufacturing cost and quality of the reprocessed substrate.

本発明の目的は表面粗さを任意且つ大幅に変化
させ得るモリブデン基板の製造方法を提供するこ
とである。
An object of the present invention is to provide a method for manufacturing a molybdenum substrate in which the surface roughness can be varied arbitrarily and significantly.

本発明の他の目的は材料の強度が高く、表面粗
さの劣化が少ないモリブデン基板を提供すること
である。
Another object of the present invention is to provide a molybdenum substrate with high material strength and less deterioration in surface roughness.

本発明によれば、予め定められた平均粒子径を
有するAl2O3を重量で1〜10%含むモリブデン材
料によつて構成され、平均粒子径に依存した表面
粗さを有しているモリブデン基板が得られる。
According to the present invention, the molybdenum material is composed of a molybdenum material containing 1 to 10% by weight of Al 2 O 3 having a predetermined average particle size, and has a surface roughness depending on the average particle size. A substrate is obtained.

更に、本発明では、Al2O3を酸化物材料として
用意する段階と、モリブデン材料を用意する段階
と、酸化物材料及びモリブデン材料を予め定めら
れた混合比で混合する段階と、混合された材料を
焼成する段階とを有するモリブデン基板の製造方
法が得られる。このようにして得られた焼結体は
酸化物材料とモリブデン材料との混合比及び酸化
物材料の平均粒子径に依存した表面粗さを有して
いる。
Furthermore, the present invention includes a step of preparing Al 2 O 3 as an oxide material, a step of preparing a molybdenum material, a step of mixing the oxide material and the molybdenum material at a predetermined mixing ratio, and a step of preparing Al 2 O 3 as an oxide material. A method for manufacturing a molybdenum substrate is obtained, comprising the step of firing the material. The sintered body thus obtained has a surface roughness that depends on the mixing ratio of the oxide material and the molybdenum material and the average particle size of the oxide material.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

まず、種々の平均粒子径を有するAl2O3粉末を
用意し、各Al2O3粉末を平均粒子径4.5ミクロンの
モリブデン粉末と混合した。より具体的に述べる
と、1、4、20、50、及び100ミクロンの平均粒
子径を有するAl2O3粉末を母相となるモリブデン
に混合すると共に、各粒度のAl2O3粉末とモリブ
デン粉末との混合比を変化させた。ここでは、前
述した各平均粒子径のAl2O3粉末を重量比で1、
5、10、30、及び50%だけモリブデン材料に加
え、25個の試料を用意した。
First, Al 2 O 3 powders having various average particle sizes were prepared, and each Al 2 O 3 powder was mixed with molybdenum powder having an average particle size of 4.5 microns. More specifically, Al 2 O 3 powder with average particle diameters of 1, 4, 20, 50, and 100 microns is mixed with molybdenum as a matrix, and Al 2 O 3 powder of each particle size and molybdenum are mixed. The mixing ratio with powder was varied. Here, the weight ratio of Al 2 O 3 powder with each average particle size mentioned above was 1,
Twenty-five samples were prepared with 5, 10, 30, and 50% additions to the molybdenum material.

次に、各試料をボールミル中で超硬ボールと共
に10時間混合した。この混合によつて、Al2O3
びモリブデン粉末における粒度の変化は実質上観
測されなかつた。混合した後、混合物を圧縮成形
し、1850℃で焼成させモリブデン基板を作つた。
この場合、焼結されたモリブデン基板は2〜8mm
の厚さを有し、50〜100ミリ平方の大きさを有し
ていた。各モリブデン基板をX線結晶学的に調査
した結果、モリブデンとAl2O3粒子との間には、
何等、反応の形跡が認められず、モリブデン材料
内にAl2O3粒子が封じ込められており、モリブデ
ン材料表面には、Al2O3の粒子が配列されている
ことが判明した。このため表面に配列された
Al2O3の粒子によつて、モリブデン基板の表面粗
さを規定することができる。
Each sample was then mixed in a ball mill with carbide balls for 10 hours. Due to this mixing, virtually no particle size changes were observed in the Al 2 O 3 and molybdenum powders. After mixing, the mixture was compression molded and fired at 1850°C to produce a molybdenum substrate.
In this case, the sintered molybdenum substrate is 2-8 mm
, and had a size of 50 to 100 mm square. As a result of X-ray crystallographic investigation of each molybdenum substrate, it was found that there is a relationship between molybdenum and Al 2 O 3 particles.
No evidence of reaction was observed, and it was found that Al 2 O 3 particles were confined within the molybdenum material, and that Al 2 O 3 particles were arranged on the surface of the molybdenum material. For this reason, they were arranged on the surface.
The Al 2 O 3 particles can define the surface roughness of the molybdenum substrate.

本発明者等の実験によれば、焼結体の表面粗さ
はAl2O3の粒度と混合比に依存することが確認さ
れた。このことから、Al2O3の粒度と混合比を選
択することによつて、任意の表面粗さを有するモ
リブデン基板を製作できることがわかる。
According to experiments conducted by the present inventors, it was confirmed that the surface roughness of the sintered body depends on the particle size and mixing ratio of Al 2 O 3 . This shows that a molybdenum substrate with any desired surface roughness can be manufactured by selecting the particle size and mixing ratio of Al 2 O 3 .

第1図を参照すると、Al2O3の平均粒子径(ミ
クロン)と表面粗さ(Rnax:最大高さ)との関
係が示されている。図において、曲線Aはモリブ
デン材料に重量で1%のAl2O3粒子を混合した試
料の平均粒子径と表面粗さとの関係を示し、以
下、同様に、曲線B,C,D、及びEはそれぞれ
重量で5%、10%、30%、及び50%のAl2O3粒子
を混合した試料の平均粒子径と表面粗さとの関係
を示している。各曲線A,B,C,D、及びEか
らも明らかな通り、Al2O3の平均粒子径が大きく
なるほど、また、Al2O3の混合比が高いほど、表
面は粗くなることがわかる。更に、Al2O3粒子の
平均粒子径が4ミクロン以上になると、Al2O3
重量で1%混合した曲線Aの試料でさえも、その
表面粗さは約15ミクロン(Rnax:最大高さ)以
上であり、且つ、曲線Eの試料では、90ミクロン
(Rnax:最大高さ)の表面粗さが得られている。
Referring to FIG. 1, the relationship between the average particle size (microns) of Al 2 O 3 and the surface roughness (R nax : maximum height) is shown. In the figure, curve A shows the relationship between the average particle diameter and surface roughness of a sample in which 1% by weight of Al 2 O 3 particles are mixed with a molybdenum material. show the relationship between the average particle diameter and surface roughness of samples in which 5%, 10%, 30%, and 50% by weight of Al 2 O 3 particles were mixed, respectively. As is clear from each curve A, B, C, D, and E, it can be seen that the larger the average particle diameter of Al 2 O 3 and the higher the mixing ratio of Al 2 O 3 , the rougher the surface becomes. . Furthermore, when the average particle diameter of Al 2 O 3 particles becomes 4 microns or more, even the sample of curve A containing 1% Al 2 O 3 by weight has a surface roughness of about 15 microns (R nax : maximum In the sample of curve E, a surface roughness of 90 microns (R nax : maximum height) was obtained.

従来、この種のモリブデン基板では、最大高さ
で約20ミクロンの表面粗さをもつものが最適であ
り、且つ、約60ミクロン以上の最大高さをもつも
のは得難いことが指摘されている。
Conventionally, it has been pointed out that for this type of molybdenum substrate, one having a surface roughness of approximately 20 microns at the maximum height is optimal, and one having a maximum height of approximately 60 microns or more is difficult to obtain.

本発明においては、約4ミクロン以上の平均粒
子径を有するAl2O3粒子をモリブデン材料に重量
で約1%以上混合するだけで、セラミツク製品を
焼成するのに十分使用できるモリブデン基板を得
ることができると共に、Al2O3粒子の粒度及び混
合比を選択することによつて、著しく高い表面粗
さを有するモリブデン基板を容易に製作できる。
In the present invention, it is possible to obtain a molybdenum substrate that can be sufficiently used for firing ceramic products by simply mixing approximately 1% or more by weight of Al 2 O 3 particles having an average particle diameter of approximately 4 microns or more into a molybdenum material. In addition, by selecting the particle size and mixing ratio of Al 2 O 3 particles, a molybdenum substrate with extremely high surface roughness can be easily manufactured.

本発明のように、モリブデン粒子内に異種粒子
を混入させると、材料強度は低下すると考えられ
る。しかし、実際には、ある範囲までのAl2O3
添加によつて、材料の強度は逆に強化され、分散
強化型の特性を示すことが確認された。
It is thought that when foreign particles are mixed into molybdenum particles as in the present invention, the material strength decreases. However, in reality, it was confirmed that by adding Al 2 O 3 up to a certain range, the strength of the material was strengthened, and the material exhibited dispersion-strengthened characteristics.

第2図を参照すると、各試料の強度を抗折力値
によつて示している。第2図には図示されていな
いが、従来の純モリブデン基板は約50Kg/mm2の抗
折力値を持つている。第2図において、曲線A′,
B′,C′,D′、及びE′はそれぞれAl2O3粒子を重量
で1%、5%、10%、30%、及び50%添加した試
料の抗折力値の変化を示している。1ミクロンの
平均粒子径を有するAl2O3を使用した場合、曲線
D′で示すように、Al2O3粒子を重量で約30%以下
添加しておけば、従来の純モリブデン基板以上の
抗折力値が得られる。また、4ミクロン〜50ミク
ロンの平均粒子径を有するAl2O3粒子を使用した
場合、Al2O3粒子を重量で10%添加しても、抗折
力値は50Kg/mm2以上であることがわかる。100ミ
クロンの平均粒子径を有するAl2O3を用いた場合
にも、曲線A′及びB′からも明らかな通り、その
添加量即ち混合量が重量で約1〜5%程度であれ
ば、約50Kg/mm2の抗折力値が得られ、且つ、10%
程度添加したものでも、十分使用に耐え得る。図
から明らかな通り、抗折力値はAl2O3粒子の平均
粒子径が大きくなればなるほど、減少する傾向を
持ち、且つ、Al2O3粒子の混合量が多くなるほど
小さくなる。本発明によれば、Al2O3粒子の混合
量が重量で1〜10%程度であれば、平均粒子径1
〜100ミクロンの広範囲にわたつて、従来のもの
と実質上同等乃至はそれ以上の抗折力値を有する
モリブデン基板を製作できる。
Referring to FIG. 2, the strength of each sample is shown by transverse rupture strength value. Although not shown in FIG. 2, a conventional pure molybdenum substrate has a transverse rupture strength value of approximately 50 kg/mm 2 . In Figure 2, curves A',
B', C', D', and E' indicate the changes in transverse rupture strength values of samples with 1%, 5%, 10%, 30%, and 50% Al 2 O 3 particles added by weight, respectively. There is. When using Al 2 O 3 with an average particle size of 1 micron, the curve
As shown by D', if approximately 30% or less of Al 2 O 3 particles by weight are added, a transverse rupture strength value higher than that of a conventional pure molybdenum substrate can be obtained. Furthermore, when using Al 2 O 3 particles with an average particle diameter of 4 microns to 50 microns, even if 10% by weight of Al 2 O 3 particles is added, the transverse rupture strength value is 50 Kg/mm 2 or more. I understand that. Even when Al 2 O 3 with an average particle size of 100 microns is used, as is clear from curves A' and B', if the amount added, that is, the amount mixed is about 1 to 5% by weight, A transverse rupture strength value of approximately 50Kg/mm 2 is obtained and 10%
Even if a certain amount is added, it can withstand use. As is clear from the figure, the transverse rupture strength value tends to decrease as the average particle diameter of the Al 2 O 3 particles increases, and also decreases as the amount of Al 2 O 3 particles mixed increases. According to the present invention, if the mixed amount of Al 2 O 3 particles is about 1 to 10% by weight, the average particle diameter is 1.
It is possible to produce a molybdenum substrate having transverse rupture strength values substantially equal to or higher than conventional ones over a wide range of ~100 microns.

第3図は平均粒子径20ミクロンのAl2O3を重量
で10%混合した焼結体のX線マイクロアナライザ
ーによる観察像である。図に示す通り、Al2O3
子がMo間に介在しているため、Mo単独の場合
より急峻な凹凸が出来ていることがわかる。
FIG. 3 is an image observed by an X-ray microanalyzer of a sintered body containing 10% by weight of Al 2 O 3 with an average particle diameter of 20 microns. As shown in the figure, it can be seen that because Al 2 O 3 particles are interposed between Mo, steeper unevenness is created than in the case of Mo alone.

上に述べた通り、本発明によれば、所定の酸化
物粒子群から選ばれた少くとも一種類の酸化物材
料の平均粒子径及び混合比率を変化させることに
よつて、材料強度を極度に損うことなく、良好な
表面粗さを有するモリブデン基板が得られる。
As described above, according to the present invention, material strength can be maximized by changing the average particle diameter and mixing ratio of at least one type of oxide material selected from a predetermined oxide particle group. A molybdenum substrate with good surface roughness can be obtained without damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るモリブデン基板
に含まれるAl2O3粒子の平均粒子径と表面粗さと
の関係を示す図、第2図は本発明の実施例に係る
モリブデン基板に含まれるAl2O3粒子の平均粒子
径と抗折力値との関係を示す図、第3図は本発明
の一実施例に係るモリブデン基板の表面状態(×
50)を示す顕微鏡写真である。
FIG. 1 is a diagram showing the relationship between the average particle diameter of Al 2 O 3 particles contained in the molybdenum substrate according to the example of the present invention and the surface roughness, and FIG. Figure 3 shows the relationship between the average particle diameter of Al 2 O 3 particles and the transverse rupture strength value.
50).

Claims (1)

【特許請求の範囲】 1 予め定められた平均粒子径を有するAl2O3
重量で1〜10%含むモリブデン材料によつて構成
され、平均粒子径に応じた表面粗さを有している
ことを特徴とするモリブデン基板。 2 予め定められた平均粒子径を有するAl2O3
用意する段階と、モリブデン材料を用意する段階
と、前記Al2O3を重量で1〜10%、前記モリブデ
ン材料に混合して、混合物を形成する段階と、前
記混合物を焼結し、前記Al2O3の混合割合と平均
粒子径に応じた表面粗さを有するモリブデン基板
を形成する段階とを有することを特徴とするモリ
ブデン基板の製造方法。
[Claims] 1. Constructed of a molybdenum material containing 1 to 10% by weight of Al 2 O 3 having a predetermined average particle diameter, and having a surface roughness according to the average particle diameter. A molybdenum substrate characterized by: 2. A step of preparing Al 2 O 3 having a predetermined average particle size, a step of preparing a molybdenum material, and mixing 1 to 10% by weight of the Al 2 O 3 with the molybdenum material to form a mixture. and sintering the mixture to form a molybdenum substrate having a surface roughness according to the mixing ratio of Al 2 O 3 and the average particle size. Production method.
JP7493480A 1980-06-05 1980-06-05 Molybdenum substrate and its manufacture Granted JPS572859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7493480A JPS572859A (en) 1980-06-05 1980-06-05 Molybdenum substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493480A JPS572859A (en) 1980-06-05 1980-06-05 Molybdenum substrate and its manufacture

Publications (2)

Publication Number Publication Date
JPS572859A JPS572859A (en) 1982-01-08
JPS633944B2 true JPS633944B2 (en) 1988-01-26

Family

ID=13561668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493480A Granted JPS572859A (en) 1980-06-05 1980-06-05 Molybdenum substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPS572859A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197839A (en) * 1984-03-22 1985-10-07 Toshiba Corp Jig for sintering ceramics and its production
JPS63199843A (en) * 1987-02-13 1988-08-18 Natl Res Inst For Metals Composite molded body of molybdenum or its alloy and zirconia and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139608A (en) * 1976-05-18 1977-11-21 Toho Kinzoku Kk Molybdenummzirconia composite alloy and protecting tube for temperatureemeasuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139608A (en) * 1976-05-18 1977-11-21 Toho Kinzoku Kk Molybdenummzirconia composite alloy and protecting tube for temperatureemeasuring device

Also Published As

Publication number Publication date
JPS572859A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
KR101274097B1 (en) Tungsten alloy particles, machining process with the same, and process for production thereof
TW448135B (en) Wear resistant aluminous ceramics and its production
JP3092800B2 (en) Dense silicon nitride ceramics containing fine-grained carbides
EP1153899B1 (en) Alumina ceramic products
KR100433482B1 (en) Sputtering target using high-density sintered ITO compact and manufacturing method
JP3693191B2 (en) Indium oxide-based sintered body, method for producing the same, and indium oxide-based target
JP4331825B2 (en) Method for producing high strength alumina sintered body
US5358685A (en) Monolithic, fully dense silicon carbide mirror and method of manufacturing
JPS633944B2 (en)
TWI809066B (en) High porosity CBN vitrified grinding stone with homogeneous structure
US6953538B2 (en) Electroconductive low thermal expansion ceramic sintered body
JP2001068754A (en) Actuator piezoelectric member and its manufacture
JP3974952B2 (en) Method for manufacturing piezoelectric body
JP3910310B2 (en) Manufacturing method of ceramic material, manufacturing method of rolling bearing member, and manufacturing method of cutting tool
JP4406120B2 (en) Tungsten carbide powder
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
KR100729542B1 (en) Alumina sintered body and process for producing the same
JPH07206514A (en) Abrasion-resistant alumina ceramic
JP2002154877A (en) Silicon nitride sintered compact, and sliding member and bearing ball using the same
JPH042648A (en) Production of ceramics
JPH07133157A (en) Electrically conductive ceramics and its production
JPH0987027A (en) Silicon carbide sintered compact excellent in toughness and its production
JPS605073A (en) Silicon carbide sintered body and manufacture
JPH083736A (en) Strontium titanate sputtering target
JPH0827571A (en) Production of storontium titanate target