JPS633928B2 - - Google Patents

Info

Publication number
JPS633928B2
JPS633928B2 JP54106390A JP10639079A JPS633928B2 JP S633928 B2 JPS633928 B2 JP S633928B2 JP 54106390 A JP54106390 A JP 54106390A JP 10639079 A JP10639079 A JP 10639079A JP S633928 B2 JPS633928 B2 JP S633928B2
Authority
JP
Japan
Prior art keywords
temperature
hot
steel
transformation point
hot forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106390A
Other languages
Japanese (ja)
Other versions
JPS5629625A (en
Inventor
Masaaki Ishikawa
Shuzo Ueda
Juji Kusuhara
Eiji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10639079A priority Critical patent/JPS5629625A/en
Publication of JPS5629625A publication Critical patent/JPS5629625A/en
Publication of JPS633928B2 publication Critical patent/JPS633928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的性質のすぐれたCr―Mo鋼の熱
間成形品の製造方法に関するものである。 Cr―Mo鋼は高温強さ、耐水素性すなわち高温
高圧水素下で使用された場合の水素の侵食による
靭性の劣化に対する抵抗性である耐水素侵食性な
どにおいて、すぐれた特性を有することから、石
油精製などの圧力容器用溶接構造材料として広く
使用されており、米国のASTM規格や我が国の
JIS規格にも制定されている低炭素低合金鋼であ
る。Cr―Mo鋼はCrおよびMo含有量により数種
類に分類されているが、なかでも約2.25%のCrと
約1%のMoを含有するCr―Mo鋼(ASTM規格
のA387―22鋼、JIS規格のSCMV4鋼)はCr―
Mo鋼を代表するものとして最もよく使用されて
おり本発明も該鋼種を対象としている。 圧力容器の製作に当たり、部材によつては熱間
での成形、すなわち簡単な曲げ加工をはじめ、鏡
板、パイプ、Tピース等の成形加工が熱間で行な
われることが多い。鋼材が熱間加工を受けること
は必然的に変態点以上に加熱されることを意味し
したがつて熱間加工前の素材が焼ならし、焼もど
しの均質化処理を受けて規格を満足する良好な機
械的性質を保持していたとしても変態点以上の加
熱によりその特性が失われるため、成形品につい
て素材と同等の機械的性質を保証するには成形後
再び焼ならし―焼もどし処理を行なう必要が生じ
実際作業工程でもそうすることが慣例になつてい
る。 しかし当業者間では、成形加工後に焼ならし処
理を施すということはその形状が素材より複雑と
なつていることから部位により冷却速度が異なる
ため、均一な機械的性質が得難くまた成形品の歪
が生じるなどの欠点が生じやすく、さらにもつと
も打撃的であるところの熱処理費用がかさむ点な
どにより非常に好ましくない工程であるとされて
いる。従つて成形加工後の熱処理の簡略化、とく
に焼ならし処理を省略し、Ac1変態点以下の温度
での再加熱処理のみを施して強度と靭性で代表さ
れる機械的性質のすぐれた熱間成形品を得ること
は当業者の切望するところであつた。 本発明の目的は、Cr―Mo鋼の熱間成形品の従
来の製造方法における欠点を克服し、成形加工後
の熱間処理工程を簡素化し、しかもすぐれた機械
的性質を付与し得る製造方法を提供するにある。 本発明らは、Cr―Mo鋼を含む種々の圧力容器
用鋼を対象として熱間成形品の機械的性質に及ぼ
す熱間成形条件と成形後の熱処理条件の影響につ
いて詳細な研究を進めた。すなわち熱間成形品の
機械的性質に及ぼす諸因子として、熱間成形時に
おいては熱間成形のための素材の加熱温度、加工
成形時の素材加工温度ならびに加工量、熱間成形
後においては、Ac3変態点以上に加熱して冷却す
る焼ならし、Ac1変態点以下の温度に加熱して冷
却する焼もどし、あるいは応力除去焼純等の各種
熱処理を取上げ、それら諸因子を種々に変化させ
た数多くの組合わせについて熱間成形品の機械的
性質との関係について冶金学的な観点からの考察
を加えながら研究を進めた結果、次の如き知見を
得た。 すなわち、2 1/4Cr―1Mo鋼(ASTM規格
A387―22鋼、JIS規格SCMV4鋼)の熱間成形品
の場合は熱間成形条件、すなわち加熱温度、加工
温度をそれぞれある特定範囲内に限定する制限を
与えるならば、熱間成形後改めて焼ならし処理を
行なう工程を省略し、単にAc1変態点以下の温度
に加熱して冷却する熱処理のみで焼ならし焼もど
し処理を受けた素材あるいは熱間成形後の焼なら
し処理を施し、さらにAc1変態点以下の温度に加
熱して冷却する熱処理を施した熱間成形品と同等
か、それ以上にすぐれた強度と靭性が得られると
いう画期的な現象を見い出すに至つたのである。
すなわち従来は、素材→熱間成形→焼ならし→
(焼もどし)→溶接組立→応力除去焼鈍→成品と
いう工程であるのに対し、本発明者らが見出した
条件で熱間成形を行なうことにより、素材→熱間
成形→(焼もどし)→溶接組立→応力除去焼鈍→
成品という工程、すなわち熱間成形後の焼ならし
工程を省略することが可能であり、熱処理費の削
減という経済的効果のみならず、焼ならしに伴な
う熱間成形品の歪の発生という危惧から開放さ
れ、しかも安定して機械的性質のすぐれた熱間成
形品を提供することが可能となつたのである。な
お、上記において従来工程および本発明工程にお
いて溶接組立前の焼もどしという処理を括孤を付
けて示したのは、場合によつては省略可能である
ことを示している。すなわち従来工程の熱間成形
→焼ならしの状態および本発明工程の熱間成形の
ままの状態はいずれも同程度に強度がかなり高く
低靭性を示すことから溶接組立時の割れ発生の危
険があるため溶接組立前に焼もどし処理を行なう
ことが望ましいが、場合によつては溶接組立作業
に対し細心の注意を払い、割れ発生に対しある程
度許容し得る場合には省略も可能である。 また、本発明工程における素材は通常の圧延又
は鍛造工程を経た鋼材で、全く熱処理を付与して
いないもの、通常の焼ならし―焼もどし処理を付
与したもの、焼もどし処理のみを付与したもの、
Ac3点以上で完全焼なましを行なつたものAc1
以下で焼なまし処理を付与したものなどのいずれ
の加工および熱処理を経たものにも適合できる。
成形時Ac3点以上950℃以下の温度での適切なオ
ーステナイト化がはかられるので、いずれの覆歴
の素材でも発明の効果を得ることが可能である。
但し、材質の均質性や成形時の加熱以前の運搬、
ガス切断、冷間加工時において割れなどの問題を
回避するには、少なくとも焼なまし処理を、好ま
しくは焼ならし―焼もどし処理を施すことが望ま
しい。 本発明の要旨とするところは次の如くである。
すなわち、重量%でC:0.15%以下、Si:0.50%
以下、Mn:0.27〜0.63%、P:0.035%以下、
S:0.035%以下、Cr:1.88〜2.62%、Mo:0.85
〜1.15%を含有し、残部はFeおよび不可避的不純
物よりなるCr―Mo鋼の熱間成形品を製造する方
法において、前記Cr―Mo鋼素材をAc3変態点以
上950℃以下の温度に加熱し、ついでAr3変態点
以下、Bs点以上の温度域で成形加工を施し、そ
の後500℃以上Ac1変態点以下の温度に加熱して
冷却することを特徴とする機械的性質のすぐれた
Cr―Mo鋼熱間成形品の製造方法である。 次に、本発明における成分範囲の限定理由につ
いて説明する。 Cは、溶接構造用鋼としての強度、靭性に加え
て溶接性の兼備を考慮するとき上限を0.15%とし
て含有させる必要がある。 Siは、精錬時の脱酸の効果、強度の付与、さら
にCr―Mo鋼において高温使用時の耐酸化性の付
与を目的として添加する必要があり、多ければ多
いほどそれらの効果も増大するが、一方、Siの増
加は400〜550℃の高温使用時の焼もどし脆化現象
に起因する使用中脆化やクリープ破断強度の低下
などをまねくので、上限を0.50%とする。 MnはCと同様に強度と靭性の付与のために
0.27%以上添加するが、Mnの増量はCr―Mo鋼の
場合はとくに高温における使用中脆化を助長させ
ることになるので、一般の溶接構造用鋼の場合に
比べて著しく低い値、すなわち0.63%を上限とす
る必要がある。 Moは400〜550℃におけるクリープ強度の付
与、高温短時間引張強さの付与などに有効な元素
であり、石油精製用圧力容器への適用を可能にす
るためには最低0.85%の添加が必要であり、さら
に増加とともに高温強度特性は改良されるが、
1.15%を起えるとその効果は飽和し、靭性の低下
をまねくうえ、経済性の点でも不利であるので上
限を1.15%とする。 Crは高温強度特性の付与に必須の成分であり、
そのうえ高温における耐酸化性の改良、さらに脱
酸リアクターなどの石油精製用圧力容器用鋼とし
て不可避の特性である耐水素侵食性の付与に有用
であり、それらを兼備し、本願発明の鋼の使用目
的に適合するには最低1.88%の含有が必要であ
り、Cr量の増加に伴い、耐酸化性、耐水素侵食
性はますます向上するが、2.62%を起えるとクリ
ープ強度が低下するので上限を2.62%とする。 PおよびSは溶接性、熱間加工性、使用中脆化
を考慮していずれも上限を0.035%とする。 本願発明では、上記鋼の組成と後述の加熱処理
とを組み合せることにより、熱間成形後の焼なら
し処理の省略できるとともに、機械的性質のすぐ
れた2 1/4Cr―1Mo鋼の熱間成形品を得ること
ができる。 また、本発明の熱間成形条件は次のとおりであ
る。 熱間成形のための加熱温度はAc3変態点以上
950℃以下とし、加工温度はAr3変態点以下Bs点
以上にそれぞれ限定する。ここにおいてAc3変態
点とは加熱時のA3変態点、すなわちその温度以
上では鋼組織全体がオーステナイト化する温度を
意味し、Ar3変態点はオーステナイト化温度から
の冷却時のA3変態点、すなわち初析フエライト
が析出しはじめる温度を意味し、Bs点はオース
テナイト化温度からの冷却時において初析フエラ
イトの析出完了後に起こるベナイト変態の開始温
度を意味する。 熱間成形条件を上述の如く限定した理由は次の
とおりである。まづ熱間成形のための加熱温度を
950℃以下と限定したのは950℃以上の加熱ではス
ケールの発生が著しくなり、熱間成形品の表面性
状が劣悪となり、しかも加熱に要する費用と時間
が増大するのみで何らの利益も得られないからで
ある。 また加熱温度をAc3変態点以上に限定したのは
Ac3変態点以下Ac1変態点以上の場合は、その温
度域がフエライトとオーステナイトの2相共存域
となり、従つて熱間成形後の組織に占めるフエラ
イト占積率の増大を招き、熱間成形後Ac1変態点
以下の温度に加熱して冷却する熱処理のみでは強
度の低下が大きく、熱間成形後の焼ならし処理を
省略することができなくなる。また加熱温度がさ
らに低くてAc1変態点以下の場合は、加工時の変
形抵抗が著しく増大し事実上成形加工ができなく
なる。上記理由により加熱温度の下限をAc3変態
点とした。 熱間成形における加工温度をAr3変態点以下と
したのは次の理由による。すなわちAr3変態点以
上の温度域で加工する場合は、加工によるフエラ
イト変態の促進効果により熱間成形品の組織中の
フエライト占積率が増加し、熱間成形後Ac1変態
点以下の温度に加熱して冷却する熱処理のみでは
強度とくに降伏強度が低くなり、熱間成形後の焼
ならし処理を省略することができないからで、そ
のため加工温度の上限をAr3変態点とした。 また加工温度をBs点未満にした場合は、変形
抵抗の増大による加工成形の困難さは増すことな
らびに熱間成形後Ac1変態点以下の温度に加熱し
て冷却した状態において加工温度をBs点以上Ar3
変態点以上とした場合に比較し靭性が劣ることか
ら加工温度の下限をBs点とした。従つて加工温
度はBs点以上Ar3変態点以下に限定されるべきで
ある。 加工量は本発明においては特に限定しないが、
一般に熱間成形は3%〜30%の範囲内で行なわれ
ることが普通であり、本発明の効果はその範囲内
のいずれの加工量においても十分発揮される。こ
こにおいて加工量とは任意方向において、加工前
の長さをl0、加工後の長さをlとした場合に(l
−l0)/l0×100(単位:%)で表わされる歪量の
絶対値を意味する。 本発明においては熱間成形における加熱温度を
Ac3変態点以上950℃以下とし、加工温度をAr3
態点以下Bs点以上とするという2条件を満足さ
せる熱間成形を行なうことにより始めて熱間成形
後の焼ならし処理を省略し、Ac1変態点以下の加
熱冷却処理のみですぐれた強度と靭性を兼ね備え
た熱間成形品を提供することができるのである。 この熱間成形条件の中でも熱間成形の加工温度
を限定した点が最も重要である。すなわち従来行
なわれている熱間成形では素材をAc3変態点以上
に加熱した後、冷却過程における成形加工は高温
ほど変形抵抗が小さいため成形加工が容易である
ことおよび組織全体が均一なオーステナイトを示
すAr3変態点以上の方が素材温度がAr3変態点末
満となりフエライトとオーステナイトの2相混合
組織となる場合より成形品の材質にとつては好ま
しいという推測から素材温度がAr3変態点に下が
る以前に成形加工を行なうことが常識となつてい
たのに対し、本発明ではその常識を打ち破り、素
材温度がAr3変態点以下に下がるのを待つて素材
温度がAr3変態点〜Bs点間にある時点で熱間成形
を行なうのである。それゆえ、本発明では素材温
度がAr3変態点以下に下がる間の待ち時間のため
従来より熱間成形に要する時間が多少多くなりま
た加工温度が従来より低いので素材の変形抵抗が
やや高く成形加工に要するエネルギーが多少増加
するなどの若干の不利が生ずるが、成形加工後の
焼ならしが省略できるという多大の効果を考慮す
るならばその程度の不利は償つて余りあるものと
いえる。 次に熱間成形後の熱処理として本発明において
は500℃以上Ac1変態点以下に加熱して冷却する
熱処理を必要とする。すなわち本発明法に従つた
条件で熱間成形を行なつても熱間成形のままでは
高強度低靭性を示し、熱間成形後500℃以上Ac1
変態点以下に加熱して冷却する熱処理を与えて始
めて強度と靭性にすぐれた熱間成形品を得ること
ができるのである。500℃以上Ac1変態点以下に
加熱して冷却する熱処理とは加熱温度から空却す
る焼もどし処理あるいは溶接組立後に行なわれる
溶接部の応力除去および溶接部の軟質化を目的と
したAc1変態点以下の温度に徐熱し、徐冷する応
力除去焼純を意味する。また本発明においては熱
間成形後に必要とする500℃以上Ac1変態点以下
に加熱して冷却する熱処理は1回のみでも、また
2回以上くり返してもよい。 すなわち、熱間成形後の焼もどしを省略して溶
接組立を行ないその後に行なう応力除去焼純のみ
与える場合も熱間成形後焼もどしを行つて溶接組
立を行いその後応力除去焼純を与える場合も、い
ずれにおいても強度と靭性のすぐれた熱間成形品
を得ることが可能である。 次に本発明において限定した鋼の化学組成は、
本発明が対象としているのはASTM規格のA387
―22鋼、JIS規格ではG4105のSCMV4鋼であると
ころから規格に定められた化学組成、すなわち重
量%で、C:0.15%以下、Si:0.50%以下、
Mn:0.27〜0.63%、P:0.035%以下、S:0.035
%以下、Cr:1.88〜2.62%、Mo:0.85〜1.15%と
し残りはFeおよび不可避的不純物からなるCr―
Mo鋼としたものである。ここにおいて不可避的
不純物とはCr―Mo鋼溶製上不可避的に混入して
くる合金元素あるいは非金属介在物を示しCr―
Mo鋼として基本的特性を損なわない程度の量は
許容される。例えば0.20%以下のNiおよびCu、
0.05%以下のVおよびNbなどの不純物元素の混
入は許容される。また、Alについては規格には
定められていないが一般に0.060%以下の添加は
許されている。 なお本発明は圧力容器の部材として使用される
2 1/4Cr―1Mo鋼の熱間成形品の製造に主眼を
おいているが、圧力容器以外の鋼製品に対し2
1/4Cr―1Mo鋼の熱間成形品が使用される場合に
ついてもその熱間成形品の製造に当つて本発明が
適用できることはいうまでもない。 本発明の実施例を添付図面を参照して説明す
る。 第1表に示す化学組成の鋼は2 1/4Cr―1Mo
鋼を代表する組成の鋼であり、電気炉―取鍋精錬
炉工程で溶製し、板厚45mmに熱間圧延したもので
ある。第2表にこの鋼の変態点を測定した結果を
示す。Ac1およびAc3変態点は昇熱速度が5℃/
mmの条件で測定し、Ar3およびBs点は板厚45mmの
空冷に相当する冷却速度である12℃/mmの条件で
測定した。 第3表には2 1/4Cr―1Mo鋼、すなわち
ASTM規格のA387―22鋼およびJIS規格G4105の
SCMV4鋼の焼ならし焼もどし処理材に要求され
る機械的性質の規格値を示す。
The present invention relates to a method for producing hot-formed Cr--Mo steel products with excellent mechanical properties. Cr-Mo steel has excellent properties such as high temperature strength and hydrogen resistance, that is, resistance to deterioration of toughness due to hydrogen attack when used under high temperature and high pressure hydrogen. It is widely used as a welded structural material for pressure vessels such as refining vessels, and it complies with the US ASTM standard and Japan's
It is a low-carbon, low-alloy steel that has been established in JIS standards. Cr-Mo steel is classified into several types depending on the Cr and Mo content, but among them, Cr-Mo steel containing about 2.25% Cr and about 1% Mo (ASTM standard A387-22 steel, JIS standard SCMV4 steel) is Cr—
It is most commonly used as a representative of Mo steel, and the present invention is also directed to this steel type. In manufacturing a pressure vessel, some members are often hot formed, ie, simple bending, as well as head plates, pipes, T-pieces, etc., are hot formed. When a steel material undergoes hot working, it inevitably means that it is heated above its transformation point. Therefore, the material before hot working undergoes homogenization treatment by normalizing and tempering to meet specifications. Even if good mechanical properties are maintained, those properties are lost when heated above the transformation point, so in order to guarantee the same mechanical properties as the raw material for molded products, it is necessary to re-normalize and temper them after molding. It has become necessary to do this in the actual work process, and it has become customary to do so in the actual work process. However, those skilled in the art believe that normalizing treatment after molding makes it difficult to obtain uniform mechanical properties because the shape of the molded product is more complex than the material, and the cooling rate varies depending on the part. It is said to be a very undesirable process because it tends to cause defects such as distortion, and it also increases the cost of heat treatment, which is extremely costly. Therefore, it is possible to simplify the heat treatment after forming, in particular omit the normalizing treatment, and perform only reheating at a temperature below the Ac 1 transformation point, resulting in heat treatment with excellent mechanical properties represented by strength and toughness. It has been a desire of those skilled in the art to obtain preformed products. The purpose of the present invention is to overcome the drawbacks of the conventional manufacturing method for hot-formed products of Cr-Mo steel, simplify the hot treatment process after forming, and provide a manufacturing method that can provide excellent mechanical properties. is to provide. The present inventors conducted detailed research on the effects of hot forming conditions and post-forming heat treatment conditions on the mechanical properties of hot-formed products for various pressure vessel steels including Cr-Mo steel. In other words, the various factors that affect the mechanical properties of hot-formed products include the heating temperature of the material for hot forming during hot forming, the material processing temperature and processing amount during processing forming, and after hot forming, We will discuss various heat treatments such as normalizing, which involves heating above the Ac 3 transformation point and then cooling, tempering, which involves heating and cooling below the Ac 1 transformation point, and stress relief annealing, and variously changing these factors. As a result of conducting research on the relationship between the mechanical properties of hot-formed products and the mechanical properties of the hot-formed products from a metallurgical perspective, the following findings were obtained. That is, 2 1/4Cr-1Mo steel (ASTM standard
In the case of hot-formed products made of A387-22 steel (JIS standard SCMV4 steel), if the hot-forming conditions, that is, the heating temperature and processing temperature, are limited to a certain range, then the product must be baked again after hot-forming. By omitting the step of normalizing and simply heating to a temperature below the Ac 1 transformation point and cooling, the material is subjected to normalizing and tempering, or the material is subjected to normalizing after hot forming. Furthermore, they discovered an epoch-making phenomenon in which strength and toughness are equal to or superior to hot-formed products that are heat-treated by heating to a temperature below the Ac 1 transformation point and then cooling. .
In other words, conventionally, material → hot forming → normalizing →
The process is (tempering) → welding assembly → stress relief annealing → finished product, but by performing hot forming under the conditions discovered by the inventors, material → hot forming → (tempering) → welding Assembly → Stress relief annealing →
It is possible to omit the normalizing process after hot forming, which not only has the economical effect of reducing heat treatment costs, but also eliminates distortion of hot formed products due to normalizing. It has now become possible to provide hot-formed products that are stable and have excellent mechanical properties without having to worry about such concerns. In the above, the process of tempering before welding and assembly in the conventional process and the process of the present invention is shown in parentheses to indicate that it can be omitted in some cases. In other words, both the hot-formed and normalized state in the conventional process and the as-hot-formed state in the inventive process have the same fairly high strength and low toughness, so there is a risk of cracking during welding assembly. Therefore, it is desirable to perform a tempering treatment before welding and assembly, but in some cases, it may be omitted if careful attention is paid to the welding and assembly work and a certain degree of cracking can be tolerated. In addition, the materials used in the process of the present invention are steel materials that have undergone a normal rolling or forging process, and are not subjected to any heat treatment, those that have been subjected to ordinary normalizing/tempering treatment, and those that have been subjected to only tempering treatment. ,
Applicable to products that have undergone any processing and heat treatment, including those that have been completely annealed at an Ac of 3 or more points or those that have been annealed at an Ac of 1 or less.
Appropriate austenitization is achieved at a temperature of Ac 3 or higher and 950°C or lower during molding, so it is possible to obtain the effects of the invention with materials of any coating history.
However, due to the homogeneity of the material and the transportation before heating during molding,
In order to avoid problems such as cracking during gas cutting and cold working, it is desirable to perform at least an annealing treatment, preferably a normalizing-tempering treatment. The gist of the present invention is as follows.
That is, C: 0.15% or less, Si: 0.50% by weight
Below, Mn: 0.27 to 0.63%, P: 0.035% or less,
S: 0.035% or less, Cr: 1.88-2.62%, Mo: 0.85
~1.15%, with the remainder consisting of Fe and unavoidable impurities, in a method for producing a hot-formed product of Cr-Mo steel, in which the Cr-Mo steel material is heated to a temperature above the Ac 3 transformation point and below 950°C. Then, it is molded in a temperature range below the Ar 3 transformation point and above the Bs point, and then heated to a temperature above 500℃ and below the Ac 1 transformation point, and then cooled.
This is a method for manufacturing Cr-Mo steel hot-formed products. Next, the reason for limiting the range of components in the present invention will be explained. When considering the combination of strength and toughness as well as weldability as a welded structural steel, it is necessary to include C at an upper limit of 0.15%. Si needs to be added for the purpose of deoxidizing during refining, imparting strength, and oxidation resistance during high-temperature use in Cr-Mo steel. On the other hand, an increase in Si causes embrittlement during use and a decrease in creep rupture strength due to the tempering embrittlement phenomenon during high-temperature use of 400 to 550°C, so the upper limit is set to 0.50%. Like C, Mn is used to impart strength and toughness.
Although 0.27% or more of Mn is added, increasing the amount of Mn will promote embrittlement during use at high temperatures especially in the case of Cr-Mo steel, so the value is significantly lower than that of general welded structural steel, that is, 0.63 % must be the upper limit. Mo is an effective element for imparting creep strength at 400 to 550°C and high-temperature short-time tensile strength, and must be added at a minimum of 0.85% to enable application to oil refining pressure vessels. , and the high-temperature strength properties improve with further increase, but
If the content is 1.15%, the effect will be saturated, leading to a decrease in toughness and also being disadvantageous from an economic point of view, so the upper limit is set at 1.15%. Cr is an essential component for imparting high-temperature strength properties.
Furthermore, the steel of the present invention is useful for improving oxidation resistance at high temperatures and for imparting hydrogen corrosion resistance, which is an unavoidable characteristic for steels for pressure vessels for petroleum refining such as deoxidation reactors. A minimum content of 1.88% is required to meet the purpose, and as the Cr content increases, the oxidation resistance and hydrogen attack resistance will improve, but if it exceeds 2.62%, the creep strength will decrease. The upper limit is set at 2.62%. The upper limits of P and S are set at 0.035% in consideration of weldability, hot workability, and embrittlement during use. In the present invention, by combining the above steel composition and the heat treatment described below, it is possible to omit the normalizing treatment after hot forming, and the hot forming of 2 1/4Cr-1Mo steel with excellent mechanical properties is possible. Molded products can be obtained. Moreover, the hot forming conditions of the present invention are as follows. Heating temperature for hot forming is above Ac 3 transformation point
The temperature shall be 950℃ or less, and the processing temperature shall be limited to below the Ar 3 transformation point and above the Bs point. Here, the Ac 3 transformation point refers to the A 3 transformation point during heating, that is, the temperature above which the entire steel structure becomes austenitic, and the Ar 3 transformation point refers to the A 3 transformation point during cooling from the austenitizing temperature. That is, it means the temperature at which pro-eutectoid ferrite begins to precipitate, and the Bs point means the temperature at which benite transformation occurs after completion of precipitation of pro-eutectoid ferrite during cooling from the austenitizing temperature. The reason why the hot forming conditions were limited as described above is as follows. First, determine the heating temperature for hot forming.
The reason for limiting the temperature to 950°C or lower is that heating above 950°C will cause significant scale formation and deteriorate the surface quality of the hot-formed product, and will only increase the cost and time required for heating without providing any benefit. That's because there isn't. In addition, the heating temperature was limited to the Ac 3 transformation point or higher.
If the temperature is below Ac 3 transformation point or above Ac 1 transformation point, the temperature range becomes a two-phase coexistence region of ferrite and austenite, which leads to an increase in the space factor of ferrite in the structure after hot forming. If only heat treatment is performed by heating to a temperature below the post-Ac 1 transformation point and then cooling, the strength will decrease significantly, and the normalizing treatment after hot forming cannot be omitted. Furthermore, if the heating temperature is lower than the Ac 1 transformation point, the deformation resistance during processing increases significantly, making molding virtually impossible. For the above reasons, the lower limit of the heating temperature was set as the Ac 3 transformation point. The reason why the processing temperature during hot forming was set below the Ar 3 transformation point is as follows. In other words, when processing in a temperature range above the Ar 3 transformation point, the ferrite space factor in the structure of the hot-formed product increases due to the accelerating effect of ferrite transformation during processing, and the temperature below the Ac 1 transformation point after hot forming increases. This is because the strength, especially the yield strength, decreases if only heat treatment is performed by heating to and cooling, and the normalizing treatment after hot forming cannot be omitted. Therefore, the upper limit of the processing temperature was set at the Ar 3 transformation point. Furthermore, if the processing temperature is lower than the Bs point, the difficulty of processing and forming will increase due to an increase in deformation resistance, and after hot forming, the processing temperature will be lowered to the Bs point after being heated to a temperature below the Ac 1 transformation point and then cooled. More than Ar 3
The lower limit of the processing temperature was set as the Bs point because the toughness was inferior to that obtained when the temperature was higher than the transformation point. Therefore, the processing temperature should be limited to above the Bs point and below the Ar3 transformation point. Although the amount of processing is not particularly limited in the present invention,
Generally, hot forming is carried out within the range of 3% to 30%, and the effects of the present invention are fully exhibited at any processing amount within this range. Here, the amount of machining is defined as (l
−l 0 )/l 0 ×100 (unit: %) means the absolute value of the amount of distortion. In the present invention, the heating temperature during hot forming is
By performing hot forming that satisfies two conditions: Ac 3 transformation point or higher and 950℃ or lower, and processing temperature lower than Ar 3 transformation point or higher than Bs point, the normalizing treatment after hot forming can be omitted. It is possible to provide hot-formed products with excellent strength and toughness only by heating and cooling treatments below the Ac 1 transformation point. Among these hot forming conditions, the most important point is that the hot forming processing temperature is limited. In other words, in conventional hot forming, the material is heated above the Ac 3 transformation point and then formed during the cooling process.The higher the temperature, the lower the deformation resistance, making the forming process easier, and the overall structure is uniform austenite. It is assumed that the material temperature is higher than the Ar 3 transformation point shown above, which is better for the material of the molded product than when the material temperature reaches the end of the Ar 3 transformation point and forms a two-phase mixed structure of ferrite and austenite. While it has been common knowledge to carry out the forming process before the temperature drops to Ar3, the present invention breaks this common sense and waits for the material temperature to drop below the Ar3 transformation point. Hot forming is performed at certain points between the points. Therefore, in the present invention, the time required for hot forming is slightly longer than before due to the waiting time for the material temperature to drop below the Ar 3 transformation point, and since the processing temperature is lower than conventionally, the deformation resistance of the material is slightly higher. Although there are some disadvantages such as a slight increase in the energy required for processing, this disadvantage can be said to be more than compensated for by the great effect that normalizing after forming can be omitted. Next, as a heat treatment after hot forming, the present invention requires heat treatment of heating to 500° C. or higher and lower than Ac 1 transformation point, and then cooling. In other words, even if hot forming is performed under the conditions according to the method of the present invention, the hot forming as it is will show high strength and low toughness, and after hot forming, it will not exceed 500℃ Ac 1
A hot-formed product with excellent strength and toughness can only be obtained by applying a heat treatment that involves heating the material below its transformation point and cooling it. Heat treatment that involves heating to a temperature above 500°C and below the Ac 1 transformation point and cooling is an tempering process in which air is evacuated from the heating temperature, or an Ac 1 transformation that is performed after welding assembly to relieve stress in the weld and soften the weld. This refers to stress-relief annealing, which involves slow heating to a temperature below a point, and then slow cooling. Further, in the present invention, the heat treatment required after hot forming, which involves heating to a temperature of 500° C. or more and below the Ac 1 transformation point and then cooling, may be performed only once or may be repeated two or more times. That is, there are cases in which tempering after hot forming is omitted and welding assembly is performed and only stress relief annealing is applied after that, and cases where tempering is performed after hot forming, welding assembly is performed, and stress relief annealing is then applied. In either case, it is possible to obtain a hot-formed product with excellent strength and toughness. Next, the chemical composition of the steel limited in the present invention is:
The subject of this invention is ASTM standard A387.
-22 steel, which is G4105 SCMV4 steel according to the JIS standard, has a chemical composition specified by the standard, that is, in weight%, C: 0.15% or less, Si: 0.50% or less,
Mn: 0.27-0.63%, P: 0.035% or less, S: 0.035
% or less, Cr: 1.88 to 2.62%, Mo: 0.85 to 1.15%, and the rest is Cr consisting of Fe and inevitable impurities.
It is made of Mo steel. In this case, unavoidable impurities refer to alloying elements or non-metallic inclusions that are unavoidably mixed in during Cr-Mo steel melting.
An amount that does not impair the basic properties of Mo steel is permissible. For example, 0.20% or less Ni and Cu,
Incorporation of impurity elements such as V and Nb in an amount of 0.05% or less is allowed. Furthermore, although Al is not specified in the standards, it is generally allowed to add 0.060% or less. The main focus of the present invention is on the production of hot-formed products of 2 1/4Cr-1Mo steel used as members of pressure vessels;
It goes without saying that the present invention can also be applied to the production of hot-formed products made of 1/4Cr-1Mo steel. Embodiments of the present invention will be described with reference to the accompanying drawings. The steel with the chemical composition shown in Table 1 is 2 1/4Cr-1Mo
It has a typical composition of steel, and is melted in an electric furnace-ladle refining furnace process and hot-rolled to a thickness of 45 mm. Table 2 shows the results of measuring the transformation point of this steel. For Ac 1 and Ac 3 transformation points, the heating rate is 5℃/
The Ar 3 and Bs points were measured at a cooling rate of 12° C./mm, which is equivalent to air cooling a plate thickness of 45 mm. Table 3 shows 2 1/4Cr-1Mo steel, i.e.
ASTM standard A387-22 steel and JIS standard G4105
The standard values of mechanical properties required for normalized and tempered SCMV4 steel are shown.

【表】【table】

【表】【table】

【表】 第4表は第1表に示す化学組成の板厚45mmの鋼
を焼ならし焼もどし処理をしたのがNo.1でありNo.
1の鋼についてさらに690℃×15hrの応力除去焼
純を行なつたのがNo.2鋼であり、No.1鋼を素材と
して本発明を含む種々の方法で熱間成形品を製造
した場合の機械的性質を測定した結果をNo.3〜No.
8に示す。第4表中の記載で例えば「925℃×45
mm加熱→750℃10%加工→690℃×15hrF.C.」は
925℃に45分間加熱し、空冷中750℃の温度で10%
の加工(この実施例において加工はすべて圧延ロ
ールにて圧下を行ない、加工量は板厚減少率で表
示した。)
[Table] Table 4 shows that the steel with the chemical composition shown in Table 1 and having a thickness of 45 mm has been normalized and tempered.
No. 2 steel is obtained by further stress-relieving annealing at 690°C for 15 hours on steel No. 1, and when hot-formed products are manufactured using No. 1 steel by various methods including the present invention. The results of measuring the mechanical properties of No. 3 to No.
8. For example, in the description in Table 4, “925℃×45
mm heating → 750℃ 10% processing → 690℃×15hrF.C."
Heat to 925℃ for 45 minutes and 10% at a temperature of 750℃ in air cooling
Processing (In this example, all processing was performed by rolling down with a rolling roll, and the processing amount was expressed as the plate thickness reduction rate.)

【表】【table】

【表】 を行ない、その後空冷した後、690℃に15時間加
熱して炉冷する応力除去焼純を施したことを意味
する。 第4表中No.3、No.4およびNo.5鋼はいずれも本
発明法に従つて製造した成形後の焼ならし処理を
省略した熱間成形品であり、No.1鋼を素材として
熱間成形を行なわず、応力除去焼純のみを行なつ
たNo.2の鋼板あるいは熱間成形後あらたに焼なら
し処理を行なう工程を含む従来法による熱間成形
品No.8と比較し、強度はほぼ同等であり、靭性は
むしろすぐれており、第3表の規格値と比べても
2 1/4Cr―1Mo鋼として十分に満足しうる熱間
成形品であることがわかる。比較法によるNo.6お
よびNo.7は本発明の諸条件のいずれかに合致しな
いものでありNo.6鋼は熱間成形における加熱温度
が本発明範囲を下廻つた場合であり、加工温度も
本発明のAr3〜Bs点を外れるものであつて、この
場合は強度とくにY.S.(降伏強さ)の低下が大き
く、規格値の下限近傍の値を示し、好ましくな
い。No.7は加工温度が本発明の限定範囲の上限を
上廻つた場合であるが、上限を上廻つた場合は強
度とくにY.S.の低下が大きく好ましくない。 第1図、第2図は第4表のNo.1鋼を素材として
熱間成形時の加熱温度を925℃とし、加工温度を
種々に変形させた場合の熱間成形加工→690℃×
15hr→F.C.の応力除去焼純を施した熱間成形品の
機械的性質中Y.S.、T.S.、vTrsを図示したもの
である。なお図中の数字は第4表のNo.に対応す
る。第1図、第2図から明らかなように加工温度
がAr3変態点以上の場合はAr3〜Bs点間加工に比
較し強度特に降伏強さが低く、vTrsで示される
靭性も劣ることがわかる。また加工温度がBs点
以下の場合はAr3〜Bs点間加工に比べ強度はほぼ
同じであるが靭性が次第に劣化する傾向にあるこ
とを示している。 上記実施例からも明らかなように本発明法によ
れば熱間成形後の焼ならし処理の省略という多大
の経済効果を得て、しかも機械的性質のすぐれた
2 1/4Cr―1Mo鋼の熱間成形品を得ることがで
きるという効果をあげることができた。
[Table], followed by air cooling, followed by stress relief annealing by heating to 690°C for 15 hours and furnace cooling. In Table 4, No. 3, No. 4, and No. 5 steels are all hot-formed products manufactured according to the method of the present invention that omit the normalizing treatment after forming, and No. 1 steel is used as the raw material. Comparison with steel plate No. 2, which was not hot-formed and only subjected to stress relief annealing, and hot-formed product No. 8, which was made using a conventional method that included a new normalizing process after hot forming. However, the strength is almost the same and the toughness is actually superior, and even when compared with the standard values in Table 3, it can be seen that the hot-formed products are fully satisfactory as 2 1/4Cr-1Mo steel. Steels No. 6 and No. 7 obtained by the comparative method do not meet any of the conditions of the present invention, and No. 6 steel is obtained when the heating temperature during hot forming is below the range of the present invention, and the processing temperature is lower than the range of the present invention. Also, it is outside the Ar 3 -Bs point of the present invention, and in this case, the strength, especially YS (yield strength), decreases greatly and shows a value near the lower limit of the standard value, which is not preferable. No. 7 is a case where the processing temperature exceeds the upper limit of the limited range of the present invention, but when the processing temperature exceeds the upper limit, the strength, especially YS, decreases greatly, which is not preferable. Figures 1 and 2 show the hot forming process using No. 1 steel in Table 4 as a material, with the heating temperature during hot forming being 925°C, and the processing temperature being varied in various ways → 690°C
This figure shows the mechanical properties of YS, TS, and vTrs of a hot-formed product that was subjected to stress relief annealing for 15 hours → FC. The numbers in the figure correspond to the numbers in Table 4. As is clear from Figures 1 and 2, when the processing temperature is higher than the Ar 3 transformation point, the strength, particularly the yield strength, is lower than when processing between Ar 3 and Bs points, and the toughness shown by vTrs is also inferior. Recognize. Furthermore, when the processing temperature is below the Bs point, the strength is almost the same compared to processing between Ar 3 and Bs points, but the toughness tends to gradually deteriorate. As is clear from the above examples, the method of the present invention has a great economical effect of omitting the normalizing treatment after hot forming, and also produces 2 1/4Cr-1Mo steel with excellent mechanical properties. We were able to achieve the effect of being able to obtain hot-formed products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は第4表のNo.1鋼を素材として
熱間成形時の加熱温度を925℃とし加工度を5〜
10%と変え、加工温度を種々変化させた後690℃
×15hr加熱後炉冷する応力除去焼純を施した熱間
成形品の機械的性質と加工温度の関係を示し、そ
れぞれ第1図A線は加工温度と降伏強さ(Y.S.)
との関係、B線は加工温度と引張強さ(T.S.)と
の関係、第2図C線は加工温度と遷移温度
(vTrs)との関係を示す線図である。
Figures 1 and 2 are made of No. 1 steel in Table 4, with a heating temperature of 925°C during hot forming and a working degree of 5 to 5.
690℃ after changing the processing temperature to 10% and variously changing the processing temperature.
The relationship between the mechanical properties and processing temperature of a hot-formed product subjected to stress-relieving annealing (furnace cooling after heating for ×15 hours) is shown. Line A in Figure 1 shows the processing temperature and yield strength (YS).
Line B is a diagram showing the relationship between processing temperature and tensile strength (TS), and line C in FIG. 2 is a diagram showing the relationship between processing temperature and transition temperature (vTrs).

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でC:0.15%以下、Si:0.50%以下、
Mn:0.27〜0.63%、P:0.035%以下、S:0.035
%以下、Cr:1.88〜2.62%、Mo:0.85〜1.15%を
含有し、残部はFeおよび不可避的不純物よりな
るCr―Mo鋼の熱間成形品を製造する方法におい
て、前記Cr―Mo鋼素材をAc3変態点以上950℃以
下の温度に加熱し、ついでAr3変態点以下、Bs点
以上の温度域で成形加工を施し、その後500℃以
上Ac1変態点以下の温度に加熱して冷却すること
を特徴とする機械的性質のすぐれたCr―Mo鋼熱
間成形品の製造方法。
1% by weight: C: 0.15% or less, Si: 0.50% or less,
Mn: 0.27-0.63%, P: 0.035% or less, S: 0.035
% or less, Cr: 1.88 to 2.62%, Mo: 0.85 to 1.15%, and the remainder is Fe and unavoidable impurities. is heated to a temperature above the Ac 3 transformation point and below 950°C, then subjected to molding at a temperature range below the Ar 3 transformation point and above the Bs point, and then heated to a temperature above 500°C and below the Ac 1 transformation point and cooled. A method for producing a hot-formed Cr-Mo steel product with excellent mechanical properties.
JP10639079A 1979-08-20 1979-08-20 Manufacture of cr-mo steel hot molded product having excellent mechanical strength Granted JPS5629625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639079A JPS5629625A (en) 1979-08-20 1979-08-20 Manufacture of cr-mo steel hot molded product having excellent mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639079A JPS5629625A (en) 1979-08-20 1979-08-20 Manufacture of cr-mo steel hot molded product having excellent mechanical strength

Publications (2)

Publication Number Publication Date
JPS5629625A JPS5629625A (en) 1981-03-25
JPS633928B2 true JPS633928B2 (en) 1988-01-26

Family

ID=14432359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639079A Granted JPS5629625A (en) 1979-08-20 1979-08-20 Manufacture of cr-mo steel hot molded product having excellent mechanical strength

Country Status (1)

Country Link
JP (1) JPS5629625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719130U (en) * 1991-03-18 1995-04-07 恒雄 田中 Beverage storage paper box

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162724A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Manufacture of high strength cr-mo steel pipe having superior corrosion resistance and weldability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552749A (en) * 1978-06-20 1980-01-10 Kawasaki Steel Corp Manufacture of hot formed product of high toughness low alloy steel containing mo

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552749A (en) * 1978-06-20 1980-01-10 Kawasaki Steel Corp Manufacture of hot formed product of high toughness low alloy steel containing mo

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719130U (en) * 1991-03-18 1995-04-07 恒雄 田中 Beverage storage paper box

Also Published As

Publication number Publication date
JPS5629625A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
CN115181911B (en) Super-thick Q500qE bridge steel plate and production method thereof
US4830686A (en) Low yield ratio high-strength annealed steel sheet having good ductility and resistance to secondary cold-work embrittlement
EP0322463B1 (en) Heat treatment hardenable hot rolled steel sheet having excellent cold workability and process for its production
TW202210637A (en) Method of manufacturing high strength steel tubing from a steel composition and components thereof
EP0319590A1 (en) HIGH-STRENGTH, COLD-ROLLED STEEL SHEET HAVING HIGH r VALUE AND PROCESS FOR ITS PRODUCTION
CN115261746B (en) Super-thick Q420qE bridge steel plate and production method thereof
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
JPH0559187B2 (en)
CN110983197A (en) 800MPa grade high cold-bending cold-rolling dual-phase steel plate and preparation method thereof
RU2677426C1 (en) Hot-rolled products from the structural steel manufacturing method
JP7549123B2 (en) Steel plate for torsion beam and manufacturing method thereof, torsion beam and manufacturing method thereof
CA3157822C (en) Normalized uoe welded pipe and manufacturing method thereof
JPS633928B2 (en)
US4375377A (en) Steels which are useful in fabricating pressure vessels
JP4677914B2 (en) Steel plate for soft can and method for producing the same
CN114381662A (en) Low-cost steel for pressure vessel and preparation method thereof
JP2023507639A (en) HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JPS5927376B2 (en) Cr-Mo steel materials used in oil refining equipment, coal liquefaction equipment, coal gasification equipment, and other pressure vessels with a plate thickness of 75 mm or more
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS6145687B2 (en)
JPS63213620A (en) Manufacture of high strength steel pipe joint
JP2732885B2 (en) High strength hot rolled steel sheet excellent in cold workability and surface quality and method for producing the same