JPS6338977B2 - - Google Patents

Info

Publication number
JPS6338977B2
JPS6338977B2 JP54153591A JP15359179A JPS6338977B2 JP S6338977 B2 JPS6338977 B2 JP S6338977B2 JP 54153591 A JP54153591 A JP 54153591A JP 15359179 A JP15359179 A JP 15359179A JP S6338977 B2 JPS6338977 B2 JP S6338977B2
Authority
JP
Japan
Prior art keywords
butanol
butyl methacrylate
reaction
catalyst
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153591A
Other languages
Japanese (ja)
Other versions
JPS5677242A (en
Inventor
Masato Horiuchi
Yuki Kizaki
Michihiko Nakaya
Toshuki Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15359179A priority Critical patent/JPS5677242A/en
Publication of JPS5677242A publication Critical patent/JPS5677242A/en
Publication of JPS6338977B2 publication Critical patent/JPS6338977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタクリル酸メチルとプタノールとを
エステル交換触媒および重合禁止剤の存在下にエ
ステル交換させることによつてメタクリル酸ブチ
ルを製造する方法に関する。 エステル交換法によりメタクリル酸ブチルを製
造する際に酸性又は塩基性触媒を使用することは
公知であり、酸性触媒の例としては硫酸、p―ト
ルエンスルホン酸等が挙げられる。一方塩基性触
媒の例としては各種アルカリ金属アルコラート及
び水酸化リチウム、水酸化バリウム等が挙げら
れ、アルカリ金属アルコラートの例としてはナト
リウム、カリウム、マグネシウム、カルシウム、
アルミニウム等の金属アルコラートが示されてお
り、この他にもチタンアルコラート、タリウムア
ルコラート等が知られている。 しかし乍ら、本発明者等の知見及び実験結果に
よれば、塩基性触媒、特にナトリウムメチラー
ト、チタンテトライソプロピラート等で代表され
る金属アルコラート触媒はメタクリル酸メチルの
二重結合部へ、エステル交換反応で生成するメタ
ノールが附加した副生物が出来やすい、といつた
重大な欠点を有しており、この他にもナトリウム
メチラートおよびチタンテトライソプロピラート
等を除いては、触媒活性が低く反応速度が遅い
上、一般的に高価であり殆ど実用性に乏しい。 これに対し、酸性触媒、特に硫酸は多少の副反
応を惹起するものの、その影響は小さく、価格の
低廉さと相まつて最も多用されているエステル交
換触媒である。 しかしながら、硫酸触媒の最大の欠点はその腐
蝕性にあり、反応装置の材質として、ハステロ
イ、ジルコニウム等の超高価な金属以外の他の金
属、例えば最も汎用的なSUS系ステンレス鋼を
用いることが不可能であり、通常ガラスライニン
グの装置が使用される。このため製造設備の建設
費はSUS系ステンレス鋼を用いた場合に較べか
なり割高にならざるを得ない。 さらに硫酸触媒の欠点として次の点が挙げられ
る。 すなわち、硫酸触媒は触媒活性が必ずしも高く
ないため必要使用量が多い。一方、本エステル交
換反応は(1)式で示され、平衡を 破り高収率下にメタクリル酸ブチルを得るために
は、反応を右へ進めなければならず、生成するメ
タノールをメタクリル酸メチルとの共沸蒸留によ
り留出させる必要がある。さらに、反応速度を上
げ、且つ重合物を抑制するため、ブタノールに対
し過剰量のメタクリル酸メチルを用いるが、これ
を留出せしめ、次いで粗メタクリル酸ブチルを蒸
留し精製メタクリル酸ブチルを得るプロセスが一
般的であり、このため製造形式は回分式が多く、
反応の進行および蒸留の進行と共に反応槽内の液
量が減少し硫酸濃度が高くなり、且つ、反応槽内
の温度も上昇するためメタクリル酸エステルの重
合が起り易すくなる。この重合を抑制する目的
で、反応終了時、即ちメタノールとメタクリル酸
メチルの共沸留分の留出終了時、又は、この後の
過剰に用いたメタクリル酸メチルの留出後に、水
酸化ナトリウムなどのアルカリ水溶液を用いて硫
酸を塩の形で水抽出除去する方法が採用される。
このため上述の各有機層とこれに溶解した水との
分離操作が必要となり、プロセスが複雑になると
いつた欠点を有する。 本発明者等は従来の塩基性触媒や酸性触媒の上
記の問題点を解決すべく鋭意検討を重ねた結果、
本発明を完成したものであり、その目的とすると
ころはメタクリル酸ブチルを製造するに当り、装
置材質としてSUS系ステンレス鋼が使用でき、
触媒活性が高く且つ副反応が少なく、さらに、触
媒コストの安価な触媒を開発することにある。 すなわち、本発明は「メタクリル酸メチルとブ
タノールをエステル交換触媒および重合禁止剤の
存在下にエステル交換させることによつてメタク
リル酸ブチルを製造するに当り、エステル交換触
媒として、水酸化ナトリウムおよび/又は水酸化
カリウムを使用することを特徴とするメタクリル
酸ブチルの製造法」である。 本発明の方法において、メタクリル酸メチルの
使用量はブタノール1モルに対して1.2〜10モル
倍、好ましくは1.5〜5モル倍の範囲である。重
合禁止剤としてはフエノチアジン、ハイドロキノ
ン、ハイドロキノンモノメチルエーテルなどを用
いることが出来、その添加量は反応液に対して
0.05〜1重量の範囲が好ましい。次に触媒として
は水酸化ナトリウムおよび/又は水酸化カリウム
を用いるが、その純度は工業薬品程度で十分であ
る。このうち水酸化カリウムの場合、JIS規格の
純度は85%程度で残りの大部分は水であるが、こ
の程度の水分の存在は反応上なんら影響をおよぼ
さない。この点において、従来の代表的な触媒で
ある金属アルコラート触媒を用いた場合水の存在
が許されないのとは好対照である。水酸化ナトリ
ウム、水酸化カリウムは各々単独で用いられる
が、これらを任意の割合で混用することも出来
る。該触媒の使用量は原料ブタノールに対して
0.1〜20モル%の範囲であり、より好ましくは0.5
〜10モル%の範囲である。0.1モル%以下では触
媒としての効果が少なく、20モル%以上使用して
も効果は実質的に変らない。該触媒は原料ブタノ
ールに予め溶かして用いられるが、ブタノールと
メタクリル酸メチルの混合系に固形状態のまゝ添
加して用いてもなんらさしつかえない。 本発明の方法において、エステル交換反応は通
常常圧下で実施されるが、場合により減圧下での
反応も有効な方法であり、200トール〜760トール
の範囲が好ましい。減圧下の反応の場合は反応槽
の温度が下がるため反応速度は幾分低下するが、
重合の抑制の点から好ましい態様である。反応槽
温度は常圧法においては95〜120℃程度であり、
減圧法では多少低下する。反応形式は、(1)式で示
されるとおり平衡を破り反応を完結させる必要上
回分式が好ましい。ここで回分操作を採用した場
合の、反応操作の一態様を示すと、反応槽として
は、蒸留塔付き反応槽を使用し蒸留塔頂の温度は
66〜70℃程度の範囲が好ましい。塔頂からの留出
ガスをメタノールとメタクリル酸メチルの共沸組
成に近ずけ、又、ブタノールの留出を最少限に押
えるため、前記塔頂温度を保つと同時に適当な比
率での還流を実施する必要があり、還流比は2〜
10程度の範囲が好ましい。反応の進行に伴ないメ
タノールの生成が減少するため、塔頂温度は上昇
する。この温度を監視することにより反応の進行
状態を把握できる。 次いで目的物の分離・精製を行うがこの工程は
回分式・連続式のいずれでも行いうる。まず過剰
のメタクリル酸メチルを留出せしめるが、本工程
はメタクリル酸エステルの重合を抑制するため、
50〜300トールの範囲の蒸留条件が好ましい。本
工程で回収されたメタクリル酸メチルは次回の反
応時の原料として用いることが出来る。本工程は
回分式、連続式のいずれの方法においても問題な
く実施出来るが、通常は反応槽内で、メタノール
とメタクリル酸メチルの共沸留分の留出後引続い
て留出させるのが好ましい。 次いでメタクリル酸メチル留出後の粗メタクリ
ル酸ブチル層から製品メタクリル酸ブチルを留出
せしめる。本工程においてもメタクリル酸ブチル
の重合を抑制するため減圧下での蒸留が必須であ
り、数トール〜100トールの範囲での減圧蒸留が
好ましい。 而して、本工程は、メタクリル酸メチルの留出
後反応槽内で引続いて実施出来るが、メタクリル
酸ブチルの留出に伴ない液量が減少し最後には液
量が殆ど零となるため、装置効率は極端に低下す
る。このためメタクリル酸ブチルの蒸留は別途小
容量の蒸留缶を用いて実施するのが実際的であ
り、とくに薄膜蒸発器を用いる蒸留が好ましい実
施態様である。 而して、上記一連の操作におけるメタクリル酸
ブチルの収率は、概ね、ブタノールの反応率(反
応ブタノールモル/原料ブタノールモル)として
は96〜98モル%、メタクリル酸ブチルの収率(生
成メタクリル酸ブチルモル/原料ブタノールモ
ル)は94〜96モル%でありその純度は99.3〜99.7
%に達する。尚、ブタノールのメタクリル酸ブチ
ルへの選択率(生成メタクリル酸ブチルモル/反
応ブタノールモル)は概ね98.0%であり、残りの
殆どが重合物でメタクリル酸ブチル留出後の釜残
として廃棄されるが取扱い上それほど問題のある
性状ではない。 本発明の方法によれば、反応槽、ポンプ、配管
等の装置材質としてSUS系ステンレス鋼、特に、
SUS316に較べ割安なSUS304鋼が十分に使用で
き建設費の低減化が可能となる。さらに、触媒活
性の点においても他の触媒に較べ十分満足出来る
ものであり副反応の惹起に伴なう収率の低下も微
少で、他の触媒に比較して高収率、且つ高純度の
メタクリル酸ブチルを得ることが出来る。又、触
媒コストの点でも明らかに他の触媒より圧倒的に
安い。以上総括して本発明の方法を採用すること
により、従来法に比較してかなり安価にメタクリ
ル酸ブチルを製造することが可能となる。 以下、実施例を挙げて本発明をさらに具体的に
説明する。 ただし、本実施例は本発明を限定するものでは
ない。 実施例 1 外径5mm、長さ5mmのガラス管を50cm充填した
内径50mm、長さ55cmのガラスカラムをそなえた撹
拌機付2フラスコをオイルバスに設置した。ガ
ラスカラムは外側をリボンヒーターで加熱出来る
ようにしカラム塔頂にはスプリツター形式の還流
分配器を取り付けた。 上記フラスコにノルマルブタノール74.1g、メ
タクリル酸メチル400.4g、試薬一級苛性ソーダ
1.2gおよび重合禁止剤としてフエノチアジン1g、
ハイドロキノンモノメチルエーテル1gを入れ、
撹拌下にオイルバス温度を110℃とした。塔頂温
度が65.5〜66℃に下がるまで全還流し、前記温度
に到達後該温度を保つべく適当に還流比を変えな
がら、反応により生成したメタノールをメタクリ
ル酸メチルとの共沸で留出せしめた。この間の還
流比は概ね2〜6の範囲であり、塔頂温度が70
℃、還流比が10に達した時点で反応を打ち切つ
た。メタノール留分を留出せしめてからここまで
の反応時間はほゞ4時間であつた。次いで系内を
真空ポンプを用いて100mmHg(100トール)とし、
0.5〜1の範囲の還流比下に、塔頂温度45〜50℃
でメタクリル酸メチルを留出せしめた。本留分中
には2.0gの未反応ノルマブタノールが含まれてい
た。次いで同じく系内を5mmHg(5トール)と
し、メタクリル酸ブチルを還流なしで留出せしめ
た。この間の塔頂温度は40〜43℃であつた。本留
分の液量は136.1gであり、メタクリル酸ブチルの
純度は99.5%であつた。分析の結果、ノルマルブ
タノールの反応率は96.8%、メタクリル酸ブチル
の収率は95.2%でノルマルブタノールからメタク
リル酸ブチルへの選択率は98.3%であつた。一連
の操作の終了後フラスコの重量測定をし、重合禁
止剤および触媒を差し引いたところの釜残量は
1.5gであつた。 実施例 2〜3 比較例 1〜4 実施例1において、各々一部の組成等を変えた
他は実施例1と全く同様の実験を行なつた。その
結果を第1表に示す。
The present invention relates to a method for producing butyl methacrylate by transesterifying methyl methacrylate and butanol in the presence of a transesterification catalyst and a polymerization inhibitor. It is known to use an acidic or basic catalyst when producing butyl methacrylate by a transesterification method, and examples of acidic catalysts include sulfuric acid, p-toluenesulfonic acid, and the like. On the other hand, examples of basic catalysts include various alkali metal alcoholates, lithium hydroxide, barium hydroxide, etc. Examples of alkali metal alcoholates include sodium, potassium, magnesium, calcium,
Metal alcoholates such as aluminum are shown, and titanium alcoholates, thallium alcoholates, and the like are also known. However, according to the findings and experimental results of the present inventors, basic catalysts, especially metal alcoholate catalysts represented by sodium methylate, titanium tetraisopropylate, etc. It has serious drawbacks such as the tendency to produce by-products such as methanol produced in the exchange reaction.Other than this, with the exception of sodium methylate and titanium tetraisopropylate, catalytic activity is low and the reaction is difficult. In addition to being slow, they are generally expensive and have little practical use. On the other hand, although acidic catalysts, especially sulfuric acid, cause some side reactions, the effect is small, and because of their low cost, they are the most commonly used transesterification catalysts. However, the biggest drawback of the sulfuric acid catalyst is its corrosivity, and it is therefore impossible to use other metals other than ultra-expensive metals such as Hastelloy and zirconium, such as the most commonly used SUS stainless steel, as the material for the reactor. Yes, glass-lined equipment is usually used. For this reason, the construction cost of manufacturing equipment is inevitably much higher than when SUS stainless steel is used. Furthermore, the following points can be mentioned as disadvantages of the sulfuric acid catalyst. That is, since the sulfuric acid catalyst does not necessarily have high catalytic activity, a large amount is required to be used. On the other hand, this transesterification reaction is shown by equation (1), and the equilibrium is In order to obtain butyl methacrylate in high yield, the reaction must proceed to the right, and the methanol produced must be distilled off by azeotropic distillation with methyl methacrylate. Furthermore, in order to increase the reaction rate and suppress the polymerization, an excess amount of methyl methacrylate relative to butanol is used, but this is distilled off, and then the crude butyl methacrylate is distilled to obtain purified butyl methacrylate. It is common, and for this reason, the manufacturing format is often batch-wise.
As the reaction progresses and the distillation progresses, the amount of liquid in the reaction tank decreases, the concentration of sulfuric acid increases, and the temperature in the reaction tank increases, making it easier for methacrylic acid ester to polymerize. In order to suppress this polymerization, sodium hydroxide, etc. A method is adopted in which sulfuric acid is removed in the form of a salt by water extraction using an alkaline aqueous solution.
For this reason, it is necessary to perform a separation operation between each of the above-mentioned organic layers and the water dissolved therein, resulting in a disadvantage that the process becomes complicated. The present inventors have conducted extensive studies to solve the above-mentioned problems with conventional basic catalysts and acidic catalysts, and as a result,
The present invention has been completed, and its purpose is to make it possible to use SUS stainless steel as the equipment material for producing butyl methacrylate.
The object of the present invention is to develop a catalyst that has high catalytic activity, causes few side reactions, and is inexpensive. That is, the present invention provides ``In producing butyl methacrylate by transesterifying methyl methacrylate and butanol in the presence of a transesterification catalyst and a polymerization inhibitor, sodium hydroxide and/or A method for producing butyl methacrylate characterized by using potassium hydroxide. In the method of the present invention, the amount of methyl methacrylate used is in the range of 1.2 to 10 moles, preferably 1.5 to 5 moles, per mole of butanol. As a polymerization inhibitor, phenothiazine, hydroquinone, hydroquinone monomethyl ether, etc. can be used, and the amount added is determined based on the reaction solution.
A range of 0.05 to 1 weight is preferred. Next, sodium hydroxide and/or potassium hydroxide is used as a catalyst, but its purity is sufficient to be equivalent to that of an industrial chemical. Among these, in the case of potassium hydroxide, the purity according to JIS standards is about 85%, with most of the remainder being water, but the presence of this amount of water does not affect the reaction in any way. This point is in sharp contrast to the case where the presence of water is not allowed when a metal alcoholate catalyst, which is a typical conventional catalyst, is used. Sodium hydroxide and potassium hydroxide can be used alone, but they can also be used in combination in any proportion. The amount of catalyst used is based on the raw material butanol.
In the range of 0.1 to 20 mol%, more preferably 0.5
~10 mol% range. If it is less than 0.1 mol %, the effect as a catalyst is small, and even if it is used more than 20 mol %, the effect remains unchanged. The catalyst is used by being dissolved in the raw material butanol in advance, but it may also be used by adding it in a solid state to a mixed system of butanol and methyl methacrylate. In the method of the present invention, the transesterification reaction is usually carried out under normal pressure, but in some cases, reaction under reduced pressure is also an effective method, and a range of 200 Torr to 760 Torr is preferred. In the case of a reaction under reduced pressure, the reaction rate decreases somewhat because the temperature of the reaction tank decreases, but
This is a preferred embodiment from the viewpoint of suppressing polymerization. The reaction tank temperature is about 95 to 120℃ in the normal pressure method.
In the reduced pressure method, it decreases somewhat. The reaction format is preferably a super-necessary partial type where the reaction is completed by breaking the equilibrium as shown in equation (1). Here, one aspect of the reaction operation when batch operation is adopted is that a reaction tank with a distillation column is used as the reaction tank, and the temperature at the top of the distillation column is
A range of about 66 to 70°C is preferable. In order to bring the distillate gas from the top of the column close to the azeotropic composition of methanol and methyl methacrylate, and to minimize the distillation of butanol, the temperature at the top of the column is maintained and reflux is carried out at an appropriate ratio. It is necessary to carry out, and the reflux ratio is 2~
A range of about 10 is preferable. As the reaction progresses, the production of methanol decreases, so the temperature at the top of the column increases. By monitoring this temperature, the progress of the reaction can be grasped. Next, the target product is separated and purified, and this step can be performed either batchwise or continuously. First, excess methyl methacrylate is distilled off, but this step suppresses the polymerization of methacrylate ester.
Distillation conditions in the range of 50 to 300 torr are preferred. Methyl methacrylate recovered in this step can be used as a raw material for the next reaction. This step can be carried out without any problems in either a batch or continuous method, but it is usually preferable to distill the azeotropic fraction of methanol and methyl methacrylate in a reaction tank, followed by subsequent distillation. . Next, the butyl methacrylate product is distilled out from the crude butyl methacrylate layer after distilling off the methyl methacrylate. In this step as well, distillation under reduced pressure is essential to suppress polymerization of butyl methacrylate, and vacuum distillation in the range of several torr to 100 torr is preferred. Therefore, this step can be carried out continuously in the reaction tank after the distillation of methyl methacrylate, but as the butyl methacrylate is distilled off, the liquid volume decreases and eventually reaches almost zero. Therefore, the efficiency of the device is extremely reduced. For this reason, it is practical to carry out distillation of butyl methacrylate using a separate small-capacity distillation vessel, and distillation using a thin film evaporator is a particularly preferred embodiment. Therefore, the yield of butyl methacrylate in the above series of operations is approximately 96 to 98 mol% as the reaction rate of butanol (mol of reacted butanol/mol of raw material butanol), and the yield of butyl methacrylate (produced methacrylic acid Butyl mol/raw material butanol mol) is 94-96 mol% and its purity is 99.3-99.7
reach %. The selectivity of butanol to butyl methacrylate (produced butyl methacrylate moles/reacted butanol moles) is approximately 98.0%, and most of the remainder is a polymer and is discarded as a residue after distilling butyl methacrylate, but it is not handled properly. The above characteristics are not so problematic. According to the method of the present invention, SUS stainless steel is used as the material for equipment such as reaction vessels, pumps, and piping.
SUS304 steel, which is cheaper than SUS316, can be fully used and construction costs can be reduced. Furthermore, its catalytic activity is quite satisfactory compared to other catalysts, and there is only a slight decrease in yield due to side reactions, resulting in higher yields and higher purity than other catalysts. Butyl methacrylate can be obtained. Also, in terms of catalyst cost, it is clearly overwhelmingly cheaper than other catalysts. In summary, by employing the method of the present invention, it becomes possible to produce butyl methacrylate at a considerably lower cost than conventional methods. Hereinafter, the present invention will be explained in more detail with reference to Examples. However, this example does not limit the present invention. Example 1 Two flasks equipped with a stirrer and equipped with a glass column having an inner diameter of 50 mm and a length of 55 cm filled with 50 cm of glass tubes having an outer diameter of 5 mm and a length of 5 mm were placed in an oil bath. The outside of the glass column could be heated with a ribbon heater, and a splitter-type reflux distributor was attached to the top of the column. In the above flask, 74.1 g of n-butanol, 400.4 g of methyl methacrylate, and first-class caustic soda as a reagent.
1.2g and 1g of phenothiazine as polymerization inhibitor,
Add 1g of hydroquinone monomethyl ether,
The oil bath temperature was set at 110°C while stirring. Total reflux was carried out until the top temperature fell to 65.5 to 66°C, and after reaching the above temperature, the methanol produced by the reaction was distilled off by azeotropic distillation with methyl methacrylate while appropriately changing the reflux ratio to maintain the temperature. Ta. The reflux ratio during this period is generally in the range of 2 to 6, and the tower top temperature is 70
The reaction was terminated when the temperature and reflux ratio reached 10°C. The reaction time from distillation of the methanol fraction to this point was approximately 4 hours. Next, the inside of the system was set to 100 mmHg (100 Torr) using a vacuum pump.
At a reflux ratio in the range of 0.5 to 1, the top temperature is 45 to 50°C.
Methyl methacrylate was distilled out. This distillate contained 2.0g of unreacted norbutanol. Then, the pressure in the system was set at 5 mmHg (5 torr), and butyl methacrylate was distilled out without reflux. The top temperature during this period was 40-43°C. The liquid volume of this distillate was 136.1 g, and the purity of butyl methacrylate was 99.5%. As a result of analysis, the reaction rate of n-butanol was 96.8%, the yield of butyl methacrylate was 95.2%, and the selectivity from n-butanol to butyl methacrylate was 98.3%. After completing a series of operations, weigh the flask and subtract the polymerization inhibitor and catalyst to find out the amount remaining in the flask.
It was 1.5g. Examples 2 to 3 Comparative Examples 1 to 4 In Example 1, experiments were conducted in exactly the same manner as in Example 1, except that some of the compositions and the like were changed. The results are shown in Table 1.

【表】 第1表より明らかなごとく、本発明の触媒を使
用した場合は、従来のアルコラート触媒の場合に
比較して製品BMAの収率が高いほか、特に純度
が高いという効果を有する。 この原因について種々検討した結果、アルコラ
ート触媒を使用した場合は、MMA(3)の二重結合
部へCH3OHが付加した次の分子式(2)で表わされ
る物質(以下(A)と称する)が、 BMAに対し、0.5〜1%副生し、これが製品中に
混入するためであることが判明した。すなわち、
Mgメチラート、Naメチラート、Tiイソプロピ
ラートなどの金属アルコラート触媒を用いた場合
は(A)の生成物が副生することは避けられず、(A)の
沸点がブタノールとBMAとの間にあるため、こ
の一部はMMA/BuOH層へ回収されるが、残り
はn―BMA層へ留出し製品純度を下げる結果と
なるのである。 又MMA/BuOH層へ留出した(A)についても、
本留分を繰り返し使用する為、(A)は蓄積され、平
衡濃度に達し、最終的には製品純度をより下げる
ことは避けられない。 これに対し、本発明の触媒を使用した場合は、
(A)は実質的に生成しないので上記問題は生じな
い。 比較例 5 実施例1において、各々一部の組成等を変えた
他は実施例1と全く同様の実験を行つた。 その結果を第2表に示す。 第2表から明らかなごとく、触媒としてLiOH
を使用した場合は、KOH/NaOHを使用する本
発明に比較して、ブタノール反応率、製品である
BMA収率、BMA純度、釜残量の何れの観点か
らも遥かに劣る結果しか与えないことがわかる。
[Table] As is clear from Table 1, when the catalyst of the present invention is used, the yield of product BMA is higher than in the case of conventional alcoholate catalysts, and the product has the effect of particularly high purity. As a result of various studies on the cause of this, we found that when an alcoholate catalyst is used, a substance represented by the following molecular formula (2) in which CH 3 OH is added to the double bond of MMA (3) (hereinafter referred to as (A)) but, It was found that 0.5 to 1% of BMA was produced as a by-product, and this was mixed into the product. That is,
When using a metal alcoholate catalyst such as Mg methylate, Na methylate, or Ti isopropylate, it is inevitable that the product (A) will be produced as a by-product, and the boiling point of (A) is between that of butanol and BMA. A part of this is recovered to the MMA/BuOH layer, but the rest is distilled to the n-BMA layer, resulting in a decrease in product purity. Also, regarding (A) distilled into the MMA/BuOH layer,
Since this fraction is used repeatedly, (A) accumulates and reaches an equilibrium concentration, which inevitably lowers the purity of the product. On the other hand, when using the catalyst of the present invention,
Since (A) is not substantially produced, the above problem does not occur. Comparative Example 5 In Example 1, an experiment was conducted in exactly the same manner as in Example 1, except that some of the compositions were changed. The results are shown in Table 2. As is clear from Table 2, LiOH as a catalyst
When using KOH/NaOH, the butanol reaction rate and product are
It can be seen that the results are far inferior in terms of BMA yield, BMA purity, and amount remaining in the pot.

【表】【table】

Claims (1)

【特許請求の範囲】 1 メタクリル酸メチルとブタノールとをエステ
ル交換触媒および重合禁止剤の存在下にエステル
交換させることによつてメタクリル酸ブチルを製
造するに当り、エステル交換触媒として、水酸化
ナトリウムおよび/又は水酸化カリウムを使用す
ることを特徴とするメタクリル酸ブチルの製造
法。 2 ブタノールがノルマルブタノールである特許
請求の範囲第1項に記載のメタクリル酸ブチルの
製造法。 3 ブタノールがイソブタノールである特許請求
の範囲第1項に記載のメタクリル酸ブチルの製造
法。 4 水酸化ナトリウムを原料ブタノールに対して
0.5〜10モル%使用する特許請求の範囲第1項な
いし第3項のいずれかに記載の方法。 5 水酸化カリウムを原料ブタノールに対して
0.5〜10モル%使用する特許請求の範囲第1項な
いし第3項のいずれかに記載の方法。
[Claims] 1. In producing butyl methacrylate by transesterifying methyl methacrylate and butanol in the presence of a transesterification catalyst and a polymerization inhibitor, sodium hydroxide and A method for producing butyl methacrylate, characterized in that / or potassium hydroxide is used. 2. The method for producing butyl methacrylate according to claim 1, wherein the butanol is normal butanol. 3. The method for producing butyl methacrylate according to claim 1, wherein the butanol is isobutanol. 4 Sodium hydroxide to raw material butanol
The method according to any one of claims 1 to 3, wherein 0.5 to 10 mol% is used. 5 Potassium hydroxide to raw material butanol
The method according to any one of claims 1 to 3, wherein 0.5 to 10 mol% is used.
JP15359179A 1979-11-29 1979-11-29 Production of butyl methacrylate Granted JPS5677242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15359179A JPS5677242A (en) 1979-11-29 1979-11-29 Production of butyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15359179A JPS5677242A (en) 1979-11-29 1979-11-29 Production of butyl methacrylate

Publications (2)

Publication Number Publication Date
JPS5677242A JPS5677242A (en) 1981-06-25
JPS6338977B2 true JPS6338977B2 (en) 1988-08-03

Family

ID=15565832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15359179A Granted JPS5677242A (en) 1979-11-29 1979-11-29 Production of butyl methacrylate

Country Status (1)

Country Link
JP (1) JPS5677242A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348364A (en) * 2000-06-06 2001-12-18 Mitsubishi Gas Chem Co Inc Method for producing aromatic carbonate
GB201619827D0 (en) 2016-11-23 2017-01-04 Lucite Int Uk Ltd Process for the production of methyl methacrylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461117A (en) * 1977-10-04 1979-05-17 Degussa Manufacture of methacrylic acid seter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461117A (en) * 1977-10-04 1979-05-17 Degussa Manufacture of methacrylic acid seter

Also Published As

Publication number Publication date
JPS5677242A (en) 1981-06-25

Similar Documents

Publication Publication Date Title
CA2692578C (en) Method for producing ethylene glycol dimethacrylate
JP5448830B2 (en) Manufacturing method and storage method of (meth) acrylic anhydride, and manufacturing method of (meth) acrylic acid ester
RU2749072C1 (en) Method for synthesis of dimethylaminoalkyl(meth)acrylates
JP4324569B2 (en) Process for producing fluorine-containing 2,4-diols and derivatives thereof
WO2009154154A1 (en) Process for production of benzaldehyde compound
CA2692583C (en) Process for preparing allyl methacrylate
JP2005239710A5 (en)
EP0118639B1 (en) Synthesis of acrylic or methacrylic acid esters
US4824997A (en) Method for preparation of alkyl glycolates
US8097757B2 (en) Method for preparing (meth)acrylic anhydride
JP2019500362A (en) Process for producing hydroxybenzophenone polyglycol ether (meth) acrylate
JP2014513048A (en) Method for producing divinyl ethers
US6013842A (en) Preparation of glyoxal monoacetals
JPS6338977B2 (en)
JP2002241341A (en) Method for producing high purity (meth)acrylic ester
US3021373A (en) Preparation of 1-alkenyl, alkenyl ethers
US6281392B1 (en) Preparation of orthoesters
NL192039C (en) Process for preparing glycidyl acrylate or glycidyl methacrylate.
US20230174456A1 (en) Process for producing hydroxyalkyl (meth)acrylate esters by oxidative cleavage of methacrolein acetals
JPS6320415B2 (en)
JPS6023101B2 (en) Method for producing methacrylic acid dimethylaminoethyl ester
JP7434289B2 (en) Method of producing monovinyl ether
WO2021182144A1 (en) Manufacturing method and manufacturing device for organic esters
JP2002030021A (en) Method for producing alkyl- or aryloxyacetaldehyde
JP3247783B2 (en) Purification method of glycidyl methacrylate