JPS6023101B2 - Method for producing methacrylic acid dimethylaminoethyl ester - Google Patents

Method for producing methacrylic acid dimethylaminoethyl ester

Info

Publication number
JPS6023101B2
JPS6023101B2 JP55145720A JP14572080A JPS6023101B2 JP S6023101 B2 JPS6023101 B2 JP S6023101B2 JP 55145720 A JP55145720 A JP 55145720A JP 14572080 A JP14572080 A JP 14572080A JP S6023101 B2 JPS6023101 B2 JP S6023101B2
Authority
JP
Japan
Prior art keywords
reaction
methyl methacrylate
dimethylaminoethanol
catalyst
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55145720A
Other languages
Japanese (ja)
Other versions
JPS5770845A (en
Inventor
正人 堀内
由記 籏崎
哲佳 内倉
兼光 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP55145720A priority Critical patent/JPS6023101B2/en
Publication of JPS5770845A publication Critical patent/JPS5770845A/en
Publication of JPS6023101B2 publication Critical patent/JPS6023101B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 【1ー 本発明はメタクリル酸メチルとジメチルアミノ
ヱタノールとをェステル交換触媒の存在下にェステル交
換させることによってメタクリル酸ジメチルアミノヱチ
ルェステルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [1-] The present invention relates to a method for producing dimethylaminoethyl methacrylate ester by transesterifying methyl methacrylate and dimethylaminoethyl alcohol in the presence of a transesterification catalyst.

メタクリル酸メチルとジメチルアミノェタノールとをェ
ステル交換反応させてメタクリル酸ジメチルアミノェチ
ルェステルを製造することは公知であり、従来、ェステ
ル交換触媒としてナトリウムメチラートのようなアルカ
リ金属アルコラートを用いることが知られている。
It is known that dimethylaminoethyl methacrylate is produced by transesterifying methyl methacrylate and dimethylaminoethanol, and conventionally, an alkali metal alcoholate such as sodium methylate has been used as a transesterification catalyst. It has been known.

しかし乍ら、本発明者等の検討結果によると、アルカリ
金属アルコラートを触媒として上記のェステル交換反応
を行なう場合、メタクリル酸メチルおよび生成するメタ
クリル酸ジメチルアミノェチルェステルの二重結合部へ
、原料のジメチルアミノェタノールおよび反応で創生す
るメタノールが付加する反応が箸るしく起りやすく、目
的物質であるメタクリル酸ジメチルアミノェチルェステ
ルの収率および純度を低下させるといった欠点があるこ
とが判明した。また、触媒としてアルミニウムアルコラ
ートまたはチタニウムアルコラートなどを用いることも
提案されているが、これらの触媒はいずれも高価であり
、また徴量の水分で容易に加水分解され失活するため、
予め、わずらわしい反応系内の脱水操作が必要であるな
どの欠点を有する。さらに、一般に、ェステル交換反応
において上記の金属ァルコラートを触媒として用いる場
合は次のごとき問題もある。
However, according to the study results of the present inventors, when the above transesterification reaction is carried out using an alkali metal alcoholate as a catalyst, the double bond of methyl methacrylate and dimethylaminoethyl methacrylate to be produced, The disadvantage is that the addition reaction between the raw material dimethylaminoethanol and the methanol created by the reaction is extremely likely to occur, reducing the yield and purity of the target substance dimethylaminoethyl methacrylate. found. It has also been proposed to use aluminum alcoholate or titanium alcoholate as a catalyst, but these catalysts are both expensive and easily hydrolyzed and deactivated by excess moisture.
It has drawbacks such as the need for a troublesome dehydration operation in the reaction system in advance. Furthermore, in general, when the above-mentioned metal alcoholate is used as a catalyst in a transesterification reaction, there are the following problems.

すなわち、m式で示されるように、これらの金属アルコ
ラートM(OR)nはまずェステル交換反応で用いられ
る原料アルコールR′OHで置換され、〔式中、MはN
a、K、Mg、AI、Tjなどの金属を、Rはメチル、
エチル、プロピルなどのアルキル基を、nは1、2、3
、4なる整数で金属Mの価数と同じであり、ROHはェ
ステル交換反応で使用される原料アルコールを、それぞ
れ意味する。
That is, as shown in formula m, these metal alcoholates M(OR)n are first substituted with the raw material alcohol R'OH used in the transesterification reaction, [wherein M is N
metals such as a, K, Mg, AI, Tj, R is methyl,
Alkyl groups such as ethyl and propyl, n is 1, 2, 3
, is an integer of 4, which is the same as the valence of the metal M, and ROH means the raw material alcohol used in the transesterification reaction, respectively.

〕M(OR′)nの形で触媒活性を示すと言われており
、本発明のェステル交換反応においても、最も多用され
ていると考えられるチタンィソプロピラートを例にとる
と、Ti(OC3日7)4は原料アルコールのジメチル
ァミノェタノールで置換されTj〔OC2日4N(C比
)2〕4に変化するため、高価な原料ジメチルアミノェ
タノールがチタンの4モル情損失されること、さらにィ
ソプロパノールが副生するため分離操作が複雑になると
いった欠点も有している。
] M(OR') n For example, titanium isopropylate is said to exhibit catalytic activity in the form of Ti( OC 3 days 7) 4 is substituted with the raw alcohol dimethylaminoethanol and changes to Tj [OC 2 days 4N (C ratio) 2] 4, so the expensive raw material dimethylaminoethanol is lost by 4 moles of titanium. In addition, it also has the disadvantage that isopropanol is produced as a by-product, making the separation operation complicated.

■ 本発明者等は従来の触媒の上設問題点を解決すべく
鋭意検討を重ねた結果、炭酸カリウム、炭酸ルビジウム
、炭酸セシウムという特定の触媒を選択することにより
、これらの問題点が解決できることを見出し本発明を完
成するに至った。すなわち、本発明は、「メタクリル酸
メチルとジメチルアミノェタノールとをェステル交換触
媒存在下にェステル交換させることによってメタクリル
酸ジメチルアミノェチルェステルを製造するに当り、上
記ェステル交換触媒として炭酸カリウム、炭酸ルビジウ
ム、炭酸セシウムなる群より選ばれたアルカリ金属の炭
酸塩を使用することを特徴とするメタクリル酸ジメチル
ァミノェチルェステルの製造法」である。
■ As a result of intensive studies to solve the problems of conventional catalyst installation, the inventors have found that these problems can be solved by selecting specific catalysts such as potassium carbonate, rubidium carbonate, and cesium carbonate. This discovery led to the completion of the present invention. That is, the present invention provides ``In producing dimethylaminoethyl methacrylate ester by transesterifying methyl methacrylate and dimethylaminoethanol in the presence of a transesterification catalyst, potassium carbonate, A method for producing dimethylaminoethyl methacrylate, which is characterized by using a carbonate of an alkali metal selected from the group consisting of rubidium carbonate and cesium carbonate.

(3} 以下本発明の構成要件を分説し詳細に説明する
(3} Below, the constituent elements of the present invention will be divided and explained in detail.

本発明の方法においてメタクリル酸メチルの使用量はジ
メチルアミノェタノール1モルに対して1.2〜10モ
ル倍、好ましくは1.5〜5モル倍の範囲である。
In the method of the present invention, the amount of methyl methacrylate used is in the range of 1.2 to 10 moles, preferably 1.5 to 5 moles, per mole of dimethylaminoethanol.

重合禁止剤としては不飽和ヱステルに対する重合禁止剤
として周知のもの、たとえばフヱノチアジン、ハイドロ
キノン、ハイドロキノンモノメチルエーテルなどを用い
ることが出来、その添加量は反応液に対して0.05〜
2重量%の範囲が好ましい。次に触媒の使用量はメタク
リル酸メチルおよびジメチルアミノェタノールの総量に
対して0.01〜2重量%の範囲であり、より好ましく
は0.02〜1.の重量%の範囲である。
As the polymerization inhibitor, those well known as polymerization inhibitors for unsaturated esters, such as phenothiazine, hydroquinone, and hydroquinone monomethyl ether, can be used, and the amount added is 0.05 to 100% of the reaction solution.
A range of 2% by weight is preferred. Next, the amount of the catalyst used is in the range of 0.01 to 2% by weight, more preferably 0.02 to 1% by weight, based on the total amount of methyl methacrylate and dimethylaminoethanol. % by weight.

触媒としては炭酸カリウムまたは炭酸ルビジウムまたは
炭酸セシウムが同等に用いられうるが、特に、工業的に
は触媒活性および価格の点より炭酸カルシウムが好まし
い。
As the catalyst, potassium carbonate, rubidium carbonate, or cesium carbonate can be equally used, but calcium carbonate is particularly preferred from the viewpoint of catalytic activity and cost.

なおこれら炭酸塩の品質は、無水の工業薬品程度の純度
で十分使用可能である。しかして、同じアルカリ金属の
炭酸塩たる炭酸リチウム、炭酸ナトリウムについては、
本発明者等の実験の結果殆ど触媒活性が認められないこ
とが判明した。次に本発明の方法において用いられる触
媒は固体状態に比較して溶解状態で活性が大幅に増加す
ることが判明した。
The quality of these carbonates is equivalent to that of anhydrous industrial chemicals, and they can be used sufficiently. However, regarding lithium carbonate and sodium carbonate, which are carbonates of the same alkali metal,
As a result of experiments conducted by the present inventors, it was found that almost no catalytic activity was observed. It has now been found that the catalyst used in the process of the invention has a significantly increased activity in the dissolved state compared to the solid state.

しかして、これらの触媒は、メタクリル酸メチルおよび
ジメチルアミノェタノールの混合液に対する溶解度が温
度にあまり関係なく小さいため、固体状態のま)メタク
リル酸メチルとジメチルアミノェタノールの混合液に添
加した場合、加熱下においても溶解量は依然として小さ
く、その結果触媒活性は必ずしも満足出釆るものではな
い。これに対し、これらの触媒を予め、メタクリル酸メ
チルに較べ、より溶けやすいジメチルアミノェタノール
に加熱下に溶解させ、このあと所定量のメタクリル酸メ
チルを添加するという手段をとることにより触媒活性を
より大きくすることが可能となる。また本発明の触媒の
溶解度を増加させる手段としては、該触媒をメタノール
に溶解させて用いる方法があり、これは極めて好ましい
態様である。
However, since the solubility of these catalysts in the mixture of methyl methacrylate and dimethylaminoethanol is low regardless of temperature, when added to the mixture of methyl methacrylate and dimethylaminoethanol in a solid state, Even under heating, the amount dissolved is still small, and as a result, the catalytic activity is not necessarily satisfactory. On the other hand, the catalytic activity can be increased by first dissolving these catalysts in dimethylaminoethanol, which is more soluble than methyl methacrylate, under heating, and then adding a predetermined amount of methyl methacrylate. It becomes possible to make it larger. Further, as a means for increasing the solubility of the catalyst of the present invention, there is a method of dissolving the catalyst in methanol and using it, which is an extremely preferred embodiment.

すなわち、該触媒は有機溶剤のうちでは特にメタノール
に対する溶解度が大きく、且つ、メタノールは本ェステ
ル交換反応の副生物であり、メタクリル酸メチルとの共
磯で速やかに反応系外へ蟹出させることが出釆、反応に
は関与しない物質であるからである。しかして、該触媒
をメタノールに加熱下に予め熔解させておき、これをジ
メチルアミノェタノールとメタクリル酸メチルの混合液
に添加することにより、反応速度をさらに上げることが
出釆る。本発明の方法において、ェステル交換反応は常
圧下でも実施出来るが、重合を抑制する点からは減圧下
での反応が好ましく、200〜760トールの範囲が好
ましい。反応温度はその圧力における反応系の沸点によ
り定まるわけであるが、反応速度が十分大きくしかも重
合が十分抑制できるという点から、80〜13000の
範囲が好ましい。本ェステル交換反応は‘2)式で示さ
れるが、高収率下にメタクリル酸ジメチルアミノェチル
ェステルを得るためには創生するメタノールを反応系外
へ除去する必要がある。
That is, the catalyst has particularly high solubility in methanol among organic solvents, and methanol is a by-product of the transesterification reaction, and can be quickly released from the reaction system by co-isolation with methyl methacrylate. This is because it is a substance that does not participate in brewing or reaction. Therefore, the reaction rate can be further increased by melting the catalyst in methanol under heating in advance and adding this to the mixture of dimethylaminoethanol and methyl methacrylate. In the method of the present invention, the transesterification reaction can be carried out under normal pressure, but from the viewpoint of suppressing polymerization, the reaction is preferably carried out under reduced pressure, preferably in the range of 200 to 760 torr. The reaction temperature is determined by the boiling point of the reaction system at that pressure, and is preferably in the range of 80 to 13,000 because the reaction rate is sufficiently high and polymerization can be sufficiently suppressed. This transesterification reaction is shown by equation '2), but in order to obtain dimethylaminoethyl methacrylate in high yield, it is necessary to remove the methanol produced from the reaction system.

しかして、該副生メタノールは、禾反応のメタクリル酸
メチルとの共沸蒸留により系外へ蟹出させることが出来
る。ここで反応操作の一態様を示すと、反応槽として蒸
留塔付き反応槽を使用し、蒸留塔頂の温度はメタノール
とメタクリル酸メチルの共沸温度に出来るだけ近いこと
が好ましい。搭頂からの留出ガスを共沸組成に近ずけ、
またジメチルアミノェタノールの蟹出を最少限に押える
ため適当な比率での還流を実施する必要があり、還流比
は1〜1餌里度の範囲が好ましい。反応の進行に伴ない
〆タノールの生成が減少するため塔頂温度は上昇する。
この温度を監視することにより反応の進行状態を把握出
釆る。さらに、反応液中の未反応ジメチルアミノェタノ
ールをガスクロマトグラフィ一で分析することによって
も、反応の進行を確認することが出釆る。反応時間は原
料モル比、圧力、還流比などにより変わり得るが、通常
5〜7時間である。反応終了後、反応液より減圧下に先
ず未反応のメタクリル酸メチルを留出せしめ、次いで目
的物であるメタクリル酸ジメチルアミノェチルェステル
を留出せしめる。本発明の方法によれば、触媒活性は他
の触媒に較べて十分高くト副反応の惹起に伴なう収率の
低下も少なく、他の触媒に比較して高収率、且つ、高純
度のメタクリル酸ジメチルアミノェチルェステルを製造
することが出来る。
Therefore, the by-product methanol can be extracted from the system by azeotropic distillation with methyl methacrylate in a reaction. Here, one embodiment of the reaction operation is shown in which a reaction tank with a distillation column is used as the reaction tank, and the temperature at the top of the distillation column is preferably as close as possible to the azeotropic temperature of methanol and methyl methacrylate. Bringing the distillate gas from the top closer to an azeotropic composition,
Further, in order to minimize the release of dimethylaminoethanol, it is necessary to carry out reflux at an appropriate ratio, and the reflux ratio is preferably in the range of 1 to 1 bait concentration. As the reaction progresses, the production of final ethanol decreases, so the temperature at the top of the column increases.
By monitoring this temperature, the progress of the reaction can be determined. Furthermore, the progress of the reaction can also be confirmed by analyzing unreacted dimethylaminoethanol in the reaction solution using gas chromatography. The reaction time may vary depending on the molar ratio of raw materials, pressure, reflux ratio, etc., but is usually 5 to 7 hours. After the reaction is completed, unreacted methyl methacrylate is first distilled off from the reaction solution under reduced pressure, and then the target product, dimethylaminoethyl methacrylate, is distilled off. According to the method of the present invention, the catalytic activity is sufficiently high compared to other catalysts, and there is little decrease in yield due to side reactions, resulting in high yield and high purity compared to other catalysts. dimethylaminoethyl methacrylate can be produced.

さらに触媒コストの点でもその使用量の少なさと相まっ
て明らかに他の触媒より安価である。本発明により製造
されるメタクリル酸ジメチルアミノェチルェステルは凝
集剤、導電性処理剤、製紙用薬剤として用いられるカチ
オンポリマーを得るために極めて重要な原料として使用
可能である。
Furthermore, in terms of catalyst cost, combined with the small amount used, it is clearly cheaper than other catalysts. Dimethylaminoethyl methacrylate produced according to the present invention can be used as an extremely important raw material for obtaining cationic polymers used as flocculants, conductive processing agents, and paper-making agents.

{41以下、実施例を挙げて本発明をさらに具体的に説
明する。
{41 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 外径5側、長さ5側のガラス管を50加充填した内径5
仇蚊、長さ55肌のガラスカラムを備えた縄梓機付き1
そフラスコをオイルバスに設遣した。
Example 1 Glass tube with outer diameter 5 side and length 5 side filled with 50% inner diameter 5
Enemy Mosquito, 1 with rope azusa machine with length 55 skin glass column
The flask was placed in an oil bath.

ガラスカラムは外側をリボンヒーターで加熱出来るよう
にし、カラム塔頂にはスプリッター形式の還流分配器を
取り付けた。上記フラスコにジメチルアミノェタノール
133.7夕、メタクリル酸メチル600.7夕、フェ
ノチアジン1.5夕、ハイドロキノンモノメチルエーブ
ル1.5夕および粉状の試薬特級無水炭酸カリウム2夕
を加え減圧下560トールで加熱した。
The outside of the glass column could be heated with a ribbon heater, and a splitter-type reflux distributor was attached to the top of the column. Add 133.7 torr of dimethylaminoethanol, 600.7 torr of methyl methacrylate, 1.5 torr of phenothiazine, 1.5 torr of hydroquinone monomethyl Able, and 2 torr of powdered special grade anhydrous potassium carbonate under reduced pressure to the above flask. heated with.

塔頂が53.5〜5400に下るまで全還流し、前記温
度に到達後該温度を保つべく還流比を変えながら、反応
により生成したメタノールをメタクリル酸メチルとの共
沸で系外へ留出せしめた。この間の還流比は概ね2〜6
の範囲であり、塔頂温度が7000、還流比が10に達
した時点で反応を打ち切った。反応時間は5時間であっ
た。次いで系内圧力を20トールとし、塔頂温度20〜
30ooでメタクリル酸メチルを留出せしめ、さらに、
圧力5トール、塔頂温度56〜5800でメタクリル酸
ジメチルアミノェチルェステルを留出せしめた。
Total reflux is carried out until the top of the column falls to 53.5 to 5400, and after reaching the above temperature, while changing the reflux ratio to maintain the temperature, methanol produced by the reaction is distilled out of the system by azeotropy with methyl methacrylate. I forced it. The reflux ratio during this period is approximately 2 to 6.
The reaction was terminated when the top temperature reached 7,000 and the reflux ratio reached 10. The reaction time was 5 hours. Then, the system internal pressure was set to 20 Torr, and the tower top temperature was set to 20 to 20 Torr.
Distill methyl methacrylate at 30oo, and further,
Dimethylaminoethyl methacrylate was distilled at a pressure of 5 torr and a top temperature of 56 to 5,800.

本留分は212.1夕でメタクリル酸ジメチルアミノェ
チルェステルの純度は99.2%であり、これは原料ジ
メチルアミノェタノールを基準とする収率で89.9%
であった。実施例 2実施例1と同じ反応装置を使用し
、触媒の種類を変えた他は実施例1と全く同じ反応を行
なった。
The purity of this distillate was 212.1 minutes, and the purity of dimethylaminoethyl methacrylate was 99.2%, which is a yield of 89.9% based on the raw material dimethylaminoethanol.
Met. Example 2 The same reaction apparatus as in Example 1 was used, and the reaction was carried out in exactly the same manner as in Example 1, except that the type of catalyst was changed.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクリル酸メチルとジメチルアミノエタノールと
をエステル交換触媒存在下にエステル交換させることに
よつてメタクリル酸ジメチルアミノエチルエステルを製
造するに当り、上記エステル交換樹脂として炭酸カリウ
ム、炭酸ルビジウム、炭酸セシウムなる群より選ばれた
アルカリ金属の炭酸塩を使用することを特徴とするメタ
クリル酸ジメチルアミノエチルエステルの製造法。
1. In producing dimethylaminoethyl methacrylate ester by transesterifying methyl methacrylate and dimethylaminoethanol in the presence of a transesterification catalyst, the group consisting of potassium carbonate, rubidium carbonate, and cesium carbonate is used as the transesterification resin. 1. A method for producing dimethylaminoethyl methacrylate ester, characterized by using a carbonate of an alkali metal selected from the above.
JP55145720A 1980-10-20 1980-10-20 Method for producing methacrylic acid dimethylaminoethyl ester Expired JPS6023101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55145720A JPS6023101B2 (en) 1980-10-20 1980-10-20 Method for producing methacrylic acid dimethylaminoethyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55145720A JPS6023101B2 (en) 1980-10-20 1980-10-20 Method for producing methacrylic acid dimethylaminoethyl ester

Publications (2)

Publication Number Publication Date
JPS5770845A JPS5770845A (en) 1982-05-01
JPS6023101B2 true JPS6023101B2 (en) 1985-06-05

Family

ID=15391563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55145720A Expired JPS6023101B2 (en) 1980-10-20 1980-10-20 Method for producing methacrylic acid dimethylaminoethyl ester

Country Status (1)

Country Link
JP (1) JPS6023101B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175448A (en) * 1986-01-28 1987-08-01 Mitsui Toatsu Chem Inc Production of alkylaminoalkyl acrylate or methacrylate
JPS62242652A (en) * 1986-04-16 1987-10-23 Mitsui Toatsu Chem Inc Production of acrylic acid or methacrylic acid alkylaminoalkyl ester
US8026374B2 (en) * 2007-02-15 2011-09-27 Basf Se Process for preparing (meth)acrylic esters of N-hydroxyalkylated imidazoles

Also Published As

Publication number Publication date
JPS5770845A (en) 1982-05-01

Similar Documents

Publication Publication Date Title
JP7206264B2 (en) Method for producing dimethylaminoalkyl (meth)acrylate
JP5496090B2 (en) Process for producing ethylene glycol dimethacrylate
US8309755B2 (en) Manufacture of esters
US20060173191A1 (en) Transesterification process for production of (meth)acrylate ester monomers
TWI356818B (en) Process for preparing allyl methacrylate
TWI443084B (en) Process for preparing butanediol dimethacrylates
KR20000011362A (en) Process for continuously producing ester of acrylic or methacrylic acid
JPS6023101B2 (en) Method for producing methacrylic acid dimethylaminoethyl ester
JP2003089672A (en) Method for decomposing michael addition reaction product
JP4860830B2 (en) Method for producing high purity (meth) acrylic acid ester
JPWO2014046261A1 (en) Hydroxyalkyl acrylate and method for producing the same
TW201412699A (en) Hydroxyalkyl (meth)acrylate and method for producing same
JP2004501131A (en) Production method of aminoalkyl (meth) acrylate
JPH0470299B2 (en)
JPS58170730A (en) Preparation of acrylic or methacrylic ester
US6215018B1 (en) Acrylate monomer preparation using alkali metal alkoxides as ester interchange catalysts and bromide salt polymerization inhibitors
JP4125916B2 (en) Method for producing high purity ester
JPS6320415B2 (en)
US3661934A (en) Process for preparing 2-(diethylamino)ethyl tetrahydro - alpha - (1 - naphthylmethyl)-2-furanpropionate
JPS62185051A (en) Production of acrylic acid or methacrylic acid higher alkyl ester
US5567838A (en) Transesterification reaction of alkoxylated bisphenol-a and methyl methacrylate
JP4545478B2 (en) Piran production method
JPS6338977B2 (en)
JPH0120152B2 (en)
JPS5817455B2 (en) Method for producing dialkylaminoethyl ester of acrylic acid or methacrylic acid