JPS6338599A - Method for anodizing aluminum alloy - Google Patents
Method for anodizing aluminum alloyInfo
- Publication number
- JPS6338599A JPS6338599A JP18166686A JP18166686A JPS6338599A JP S6338599 A JPS6338599 A JP S6338599A JP 18166686 A JP18166686 A JP 18166686A JP 18166686 A JP18166686 A JP 18166686A JP S6338599 A JPS6338599 A JP S6338599A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current density
- alloy
- film
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 20
- 238000007743 anodising Methods 0.000 title claims abstract description 15
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000010407 anodic oxide Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明はアルミニウム合金の陽極酸化方法に関するもの
で、自動車部品のアルミ合金の陽極酸化に利用されるも
のである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for anodizing aluminum alloys, and is used for anodizing aluminum alloys for automobile parts.
(従来の技術)
本発明に係る従来技術としてはプロシーディング、オブ
インターフィニッシュ3Q(proceedings
of IN”r’ERFINIsH80)の文献の
第263頁〜第267頁にアルミ合金の高速陽極酸化処
理の方法が記載されている。(Prior art) As a prior art related to the present invention, there is a procedure, an inter-finish 3Q (proceeding
of IN"r'ERFINIsH80), pages 263 to 267 describe a method for high-speed anodizing treatment of aluminum alloys.
これはアルミ合金の陽極酸化処理を高速するためにアル
マイト焼けの限界値を求め、その関数曲線に沿って整流
器の出力をコンピュータ制御する方法で、厚いアルマイ
ト皮膜を短時間に、ヤケ不良を起こすことなく生成すた
めにアルマイト処理の初期に大電流密度で、後期には小
電流密度で処理するものである。This is a method that calculates the limit value of alumite burn to speed up the anodizing process of aluminum alloy, and then computer-controls the output of the rectifier along the function curve.This method can quickly produce thick alumite films without causing burn defects. In order to achieve this goal, a high current density is applied at the beginning of the alumite treatment, and a low current density is applied at the latter stage.
(発明が解決しようとする問題点)
しかし前記陽極酸化処理方法は整流器の制御に関数発生
コンピュータを使用するために、非常に高い設備費がか
かり、かつチタン設定治具を使用した場合に、チタンの
放電耐圧を越えてチタン表面から放電するという問題点
があった。(Problems to be Solved by the Invention) However, since the anodic oxidation treatment method uses a function generating computer to control the rectifier, it requires extremely high equipment costs, and when a titanium setting jig is used, titanium There was a problem in that discharge occurred from the titanium surface beyond the discharge withstand voltage of the titanium.
本発明は設備費の安価な定電流・定電圧整流器を使用し
かつチタン表面から放電することないアルミニウム合金
の陽極酸化法を提供することを技術的課題とするもので
ある。The technical object of the present invention is to provide a method for anodizing an aluminum alloy that uses a constant current/constant voltage rectifier with low equipment cost and that does not cause discharge from the titanium surface.
(問題点を解決するための手段)
前記技術的手段を解決するための技術的手段は、アルミ
ニウム合金の陽極酸化方法において、一定電流で電解し
、浴電圧が50V以上になる前に電解を50V以下の一
定電圧負荷に切り換える、陽極酸化処理方法である。(Means for solving the problem) The technical means for solving the above technical means is that in the anodizing method of aluminum alloy, electrolysis is carried out at a constant current, and before the bath voltage reaches 50V or more, the electrolysis is stopped at 50V. This is an anodizing treatment method that switches to the following constant voltage load.
(作用) 前記技術的手段は次のように作用する。(effect) The technical means works as follows.
すなわち、初期に一定電流密度にて陽極酸化処理するこ
とにより、アルミ合金の表面処理膜が次第に増大し、そ
れに伴い電圧を上昇せしめ、一定時間経過後、後期は電
圧を一定にすることにより電流密度は膜厚の抵抗により
低下し、従って膜焼けがまったく発生ずることもなく、
接点においてもチタンの放電を越えることがないもので
ある。In other words, by anodizing at a constant current density in the initial stage, the surface treatment film of the aluminum alloy gradually increases, and the voltage increases accordingly, and after a certain period of time, in the latter stage, by keeping the voltage constant, the current density increases. is reduced due to the resistance of the film thickness, so no film burning occurs at all.
Even at the contact point, the discharge of titanium will not be exceeded.
(実施例) 以下実施例について説明する。(Example) Examples will be described below.
〔実施例1〕
アルミニウム合金(JIS、Al100.Aff=99
%、 Cu : 0.05〜0.2%、Zrl<0.
1%。[Example 1] Aluminum alloy (JIS, Al100.Aff=99
%, Cu: 0.05-0.2%, Zrl<0.
1%.
Fe+Si<1%)の圧延板(厚み0.8mm)を溶剤
で脱脂し、5%NaOH溶液50°Cに30秒浸漬し表
面を軽(エツチングした後、10%HN Off溶液に
浸漬した。その後陽極酸化皮膜は50μを得るために次
のような条件で陽極酸化を実施した。A rolled plate (thickness: 0.8 mm) of Fe+Si<1%) was degreased with a solvent, immersed in a 5% NaOH solution at 50°C for 30 seconds to lightly (etch) the surface, and then immersed in a 10% HN Off solution. In order to obtain an anodic oxide film of 50μ, anodization was carried out under the following conditions.
前記、定電流制御方式、後期定電圧制御方式の場合の電
流密度及び電圧曲線を第1図に示す。FIG. 1 shows the current density and voltage curves for the constant current control method and the latter constant voltage control method.
第1図において一定電流密度It (IOA/dd)
にて8分間陽極酸化処理をする。この場合膜厚が次第に
厚くなり抵抗が大きくなるために電圧■1を点線に示す
ように上昇させる。8分間通電後、切換スイッチの操作
により電圧■1を一定として陽極酸化処理を行う。この
場合膜厚が厚くなり抵抗が大きくなるために電流■1は
次第に低下する。In Figure 1, constant current density It (IOA/dd)
Anodize for 8 minutes at In this case, the film thickness gradually increases and the resistance increases, so the voltage 1 is increased as shown by the dotted line. After 8 minutes of electricity, the anodizing process is performed with the voltage 1 kept constant by operating the changeover switch. In this case, the current (1) gradually decreases because the film thickness increases and the resistance increases.
この様にして僅か16分の通電により陽極酸化皮膜53
μの均一な皮膜が得られた。また接点部の焼現象の発生
もな(、従ってチタン表面からの放電もない。第5閏は
本実施例の定電流、定電圧切替え整流器の回路を示し、
整流器の基本構成は、CB (電源遮断器)、THY(
サイリスク)、RF−TR(整流器変圧器)、SR(シ
リコンダイオード)よりなるものである。In this way, the anodic oxide film 53 is formed by applying electricity for only 16 minutes.
A uniform film of μ was obtained. In addition, there is no burning phenomenon at the contact point (therefore, no discharge from the titanium surface.
The basic configuration of a rectifier is CB (power circuit breaker), THY (
RF-TR (rectifier transformer), and SR (silicon diode).
〔従来例1−1〕
実施例1の方法にて処理したアルミ合金を従来例のpr
oceedings of [NTERFINIS
H80に示す。[Conventional Example 1-1] The aluminum alloy treated by the method of Example 1 was
oceedings of [NTERFINIS
Shown in H80.
前記定電流制御方式、後期関数発生による制御方式によ
る電流密度及び電圧をコンピュータ制御により陽極酸化
処理を行った場合の電流密度■3と電圧V、及び時間の
関係を第3図に示す。FIG. 3 shows the relationship between the current density (3), the voltage V, and time when the anodizing treatment is performed by computer-controlling the current density and voltage using the constant current control method and the control method using late function generation.
膜厚は53μであったが治具接点のチタン材質が一部溶
解し、またワークの圧延板の接点部周辺において焼けが
生じていた。Although the film thickness was 53 μm, part of the titanium material of the jig contact had melted, and there was some burning around the contact of the rolled plate of the workpiece.
これは最終的な電圧値が八に示すように50Vを越え接
点材質のチタン表面の酸化膜の放電耐圧以上になったた
めである。電圧曲線の最期の変動はそのために生じた現
象である。この場合電流の制御に特殊な回路を必要とし
設備として高価になる。This is because the final voltage value exceeded 50V as shown in Figure 8, exceeding the discharge withstand voltage of the oxide film on the surface of titanium, which is the contact material. The final fluctuation of the voltage curve is a phenomenon caused by this. In this case, a special circuit is required to control the current, making the equipment expensive.
〔従来例1−2〕
従来例1−1の方法で処理したアルミ合金を従来例の定
電圧制御方式である電圧一定力式で陽極酸化処理を行っ
た場合の電流密度I4と電圧■。[Conventional Example 1-2] Current density I4 and voltage (2) when an aluminum alloy treated by the method of Conventional Example 1-1 is anodized using a constant voltage control method, which is a conventional constant voltage control method.
の変化を第4図に示す。この方法は一般的に行われてい
る処理方式であり膜厚は38μしか得られず、厚膜を得
ることが困難で、また処理時間も80分と非常に長時間
を要した。これは定電圧制御方式のため陽極酸化皮膜の
形成と共にこれが絶縁膜となって電流が急激に減少し皮
膜生成速度が遅(なったためである。Figure 4 shows the changes in . This method is a commonly used processing method, and the film thickness was only 38 μm, making it difficult to obtain a thick film, and the processing time was very long at 80 minutes. This is because due to the constant voltage control method, as the anodic oxide film is formed, it becomes an insulating film, the current decreases rapidly, and the film formation rate becomes slow.
〔実施例2〕
アルミ合金鋳物(JIS ADC12,Si :9、
6〜12.0%、Fe:1.3%、 Cu : 1.5
〜3゜5 %、Mn:0.5 %、Mg 二 〇、
3 %、Zn:10%、Sn:0.3%、A2:残分
)を溶剤で脱脂し、さらに弱アルカリ性実施剤で洗浄後
火のような条件で陽極酸化を行った。[Example 2] Aluminum alloy casting (JIS ADC12, Si: 9,
6-12.0%, Fe: 1.3%, Cu: 1.5
~3゜5%, Mn: 0.5%, Mg 20,
3%, Zn: 10%, Sn: 0.3%, A2: residue) was degreased with a solvent, further washed with a weak alkaline agent, and then anodized under conditions similar to fire.
(11硫酸4度200g/L、(2)温度20°C1(
3)電流負荷条件、定電流(t、5A/dmx5分)一
定電圧(38VXS分)。(11 sulfuric acid 4 degrees 200g/L, (2) temperature 20°C1 (
3) Current load conditions: constant current (t, 5A/dm x 5 minutes) constant voltage (38V x S minutes).
この状況を第2図の12及びV2に示す。この結果膜厚
4.5μの均一な陽極酸化皮膜を得ることができた。This situation is shown at 12 and V2 in FIG. As a result, a uniform anodic oxide film with a thickness of 4.5 μm could be obtained.
〔比較例2−1〕
実施例2のアルミ合金の鋳物について実施例2と同様の
洗浄後、従来例であるproceeding of
INTERFfNISH80による関数制御方式にて
酸化処理を実施したが溶電圧50Vを越え接点部の焼は
現象が発生した。[Comparative Example 2-1] After cleaning the aluminum alloy casting of Example 2 in the same manner as in Example 2, proceeding of the conventional example.
Although oxidation treatment was carried out using the function control method using INTERFfNISH80, the melting voltage exceeded 50V and burning of the contact occurred.
〔比較例2−2〕
実施例2のアルミ合金鋳物について実施例2と同様の洗
浄後、従来例の一定電圧制御■方式にて酸化処理を行っ
たところ処理時間に25分も要した。[Comparative Example 2-2] After the aluminum alloy casting of Example 2 was cleaned in the same manner as in Example 2, oxidation treatment was performed using the constant voltage control method (2) of the conventional example, and the treatment time required 25 minutes.
本発明は次の効果を有する。即ち、コンピュータ制?f
f1lによる陽極酸化処理の場合には、初期電流を対象
物が小さい場合には小電流を、大きい場合には大電流と
し、その後複雑な制御システムにより電圧を制御するた
めに、一般の汎用設備として使用するには制御工数がか
かり不向であるが、本発明の定電流、定電圧方式は制御
方式が極めて節華で汎用設備としては最適である。The present invention has the following effects. In other words, computer system? f
In the case of anodizing treatment using f1l, the initial current is set to a small current when the target is small, and a large current when the target is large, and then the voltage is controlled by a complicated control system, so it is used as a general-purpose equipment. Although it is not suitable for use because it requires many control steps, the constant current and constant voltage method of the present invention is extremely economical in control method and is optimal for general-purpose equipment.
第1図は本実施例に基づく電流密度、電圧曲線図、第2
図は他の実施例の電流密度、電圧曲線図、第3図は従来
例の電流密度、電圧曲線図、第4図は他の従来例の電流
密度、電圧曲線図であり、第5図は本実施例の回路図を
示す。
1+、Iz ・・・一定電流密度、V、、V2 ・・
・一定電圧Figure 1 is a current density and voltage curve diagram based on this example, and
The figure shows a current density and voltage curve diagram of another example, Fig. 3 shows a current density and voltage curve diagram of a conventional example, Fig. 4 shows a current density and voltage curve diagram of another conventional example, and Fig. 5 shows a current density and voltage curve diagram of another conventional example. A circuit diagram of this embodiment is shown. 1+, Iz... Constant current density, V,, V2...
・Constant voltage
Claims (1)
流密度にて電解し、浴電圧が50V以上となる前に電解
を50V以下の一定電圧に切り換えて陽極酸化処理を行
う、アルミニウム合金の陽極酸化方法。A method for anodizing an aluminum alloy, in which electrolysis is performed at a constant current density, and before the bath voltage reaches 50 V or more, the electrolysis is switched to a constant voltage of 50 V or less to perform the anodizing treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18166686A JPS6338599A (en) | 1986-07-31 | 1986-07-31 | Method for anodizing aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18166686A JPS6338599A (en) | 1986-07-31 | 1986-07-31 | Method for anodizing aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6338599A true JPS6338599A (en) | 1988-02-19 |
Family
ID=16104743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18166686A Pending JPS6338599A (en) | 1986-07-31 | 1986-07-31 | Method for anodizing aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6338599A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198497A (en) * | 1990-11-29 | 1992-07-17 | Izumi Ind Ltd | Surface treatment of al or its alloy |
WO2009133898A1 (en) * | 2008-04-28 | 2009-11-05 | 富士フイルム株式会社 | Microstructure and manufacturing method thereof |
WO2011136229A1 (en) * | 2010-04-28 | 2011-11-03 | シャープ株式会社 | Method for forming anodized layer |
CN109628960A (en) * | 2019-02-01 | 2019-04-16 | 孟静 | The device of aluminium alloy is prepared in situ in electrolysis |
-
1986
- 1986-07-31 JP JP18166686A patent/JPS6338599A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198497A (en) * | 1990-11-29 | 1992-07-17 | Izumi Ind Ltd | Surface treatment of al or its alloy |
WO2009133898A1 (en) * | 2008-04-28 | 2009-11-05 | 富士フイルム株式会社 | Microstructure and manufacturing method thereof |
JP2009263748A (en) * | 2008-04-28 | 2009-11-12 | Fujifilm Corp | Fine structure and method for producing the same |
WO2011136229A1 (en) * | 2010-04-28 | 2011-11-03 | シャープ株式会社 | Method for forming anodized layer |
US8790503B2 (en) | 2010-04-28 | 2014-07-29 | Sharp Kabushiki Kaisha | Method for forming anodized layer |
CN109628960A (en) * | 2019-02-01 | 2019-04-16 | 孟静 | The device of aluminium alloy is prepared in situ in electrolysis |
CN109628960B (en) * | 2019-02-01 | 2020-05-08 | 广西鲁板铝合金模板有限公司 | Device for preparing aluminum alloy in situ by electrolysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102337572B (en) | Dyeing anode oxidization method of silicon bronze casting aluminum alloy | |
CN109570321B (en) | Method for promoting creep forming | |
TWI424096B (en) | Method for forming anodic oxide film | |
WO2007115167A2 (en) | Manufacturing process to produce litho sheet | |
CN103695980A (en) | Preparation method of single-layer micro-arc oxidation ceramic film on surface of aluminum alloy | |
US4652347A (en) | Process for electroplating amorphous alloys | |
JPS6338599A (en) | Method for anodizing aluminum alloy | |
JP5691135B2 (en) | Anodized film and anodizing method | |
EP2045367A1 (en) | Method for anodically oxidizing aluminum alloy and power supply for anodically oxidizing aluminum alloy | |
US3578570A (en) | Aluminum capacitor foil | |
JPS62253797A (en) | Surface-treatment of die cast aluminum-base metallic product | |
JPH06108212A (en) | Production of precipitation type copper alloy | |
US3475289A (en) | Electrode | |
CN113278823A (en) | Treatment method for improving wear-resisting and corrosion-resisting properties of Al-Mg-Si alloy | |
JP2764199B2 (en) | Plating method for aluminum and aluminum alloy and electrolytic solution | |
CN1050386C (en) | Aluminium-copper alloy foil for negative electrode foil of electrolytic capacitor | |
CN116145208A (en) | Hard anodizing method for copper-containing high-aluminum alloy material | |
JPH0489118A (en) | Production of aluminum foil for electrolytic capacitor anode | |
CN113088776A (en) | Magnesium alloy and surface treatment method thereof | |
CN1039836C (en) | Aluminium-lithium alloy electric field homogenizing treating method | |
JPH06192778A (en) | Aluminum-based printed circuit board | |
SU1255274A2 (en) | Method of obtaining a coating on graphite moulds | |
JPH03257147A (en) | Production of aluminum foil for electrolytic capacitor | |
RU2039850C1 (en) | Method for anodizing made of aluminium alloys | |
CN116676653A (en) | Formula of white anodic oxidation liquid for aluminum alloy |