JPH03257147A - Production of aluminum foil for electrolytic capacitor - Google Patents

Production of aluminum foil for electrolytic capacitor

Info

Publication number
JPH03257147A
JPH03257147A JP5694090A JP5694090A JPH03257147A JP H03257147 A JPH03257147 A JP H03257147A JP 5694090 A JP5694090 A JP 5694090A JP 5694090 A JP5694090 A JP 5694090A JP H03257147 A JPH03257147 A JP H03257147A
Authority
JP
Japan
Prior art keywords
aluminum foil
foil
thickness
aluminum
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5694090A
Other languages
Japanese (ja)
Other versions
JP3180954B2 (en
Inventor
Toshio Saito
斎藤 寿雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP5694090A priority Critical patent/JP3180954B2/en
Publication of JPH03257147A publication Critical patent/JPH03257147A/en
Application granted granted Critical
Publication of JP3180954B2 publication Critical patent/JP3180954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To improve the etchability of Al foil and to perform uniform etching by dissolving and washing the surface of an Al sheet with an alkaline aq. soln. at the time when the sheet to be repeatedly cold rolled to obtain foil is cold rolled to a specified thickness. CONSTITUTION:When an Al sheet is repeatedly cold rolled to produce Al foil for an electrolytic capacitor, the sheet is cold rolled to a thickness (t) satisfying an inequality 3.3t0<=t<=20t0 (where t0 is the thickness of the resulting Al foil), the surface of the sheet is dissolved and washed with an alkaline or acidic aq. soln. and the sheet is further cold rolled. By this method, foil with a thinner oxide film on the surface is obtd. When this foil is electrolytically etched, nuclei are formed at many positions of the surface at the beginning of etching, etching proceeds well and uniform etching can be performed. The surface area of the foil is sufficiently increased and the reduction of the strength can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、エツチング性が良好で高静電容量の電極箔を
得ることができる電解コンデンサ用アルミニウム箔の製
造方法に関するものである。
The present invention relates to a method for manufacturing aluminum foil for electrolytic capacitors, which allows obtaining electrode foil with good etching properties and high capacitance.

【従来の技術】[Conventional technology]

従来より、電解コンデンサ用アルミニウム箔は、以下の
如き方法で製造されている。即ち、アルミニウム箔塊の
表面を面削し、次いで均質化処理を施した後、熱間圧延
し、得られたアルミニウム板に冷間圧延を繰り返し施す
ことによって、電解コンデンサ用アルミニウム箔を製造
している。冷間圧延は数バス族され、厚さ3〜8間のア
ルミニウム板が、厚さ20〜100μの電解コンデンサ
用アルミニウム箔となるのである。 このようにして製造された電解コンデンサ用アルミニウ
ム箔に、エツチング処理をすることにより、アルミニウ
ム箔表面に微細孔を形成させて、アルミニウム箔の表面
積の拡大を図り、もって高静電容量の電解箔を得るので
ある。 しかしながら、従来の方法で製造された電解コンデンサ
用アルミニウム箔は、エツチング処理しても十分にアル
ミニウム箔の表面積の拡大を図ることはできなかった。 これは、得られた電解コンデンサ用アルミニウム箔の表
面に厚い酸化皮膜が形成されており、エツチング処理し
ても酸化皮膜の厚み方向への微細孔の形成が均一に進行
しにくいからである。 このため、得られた電解コンデンサ用アルξニウム箔を
、アルカリ性水溶液又は酸性水溶液で溶解洗浄して、酸
化皮膜を除去して酸化皮膜の厚みを薄<シようとする試
みが行われている。しかし、得られた電解コンデンサ用
アルミニウム箔の表面が荒れ、エツチング性が低下する
ということがあった。
Conventionally, aluminum foil for electrolytic capacitors has been manufactured by the following method. That is, aluminum foil for electrolytic capacitors is manufactured by face-shaving the surface of an aluminum foil block, then subjecting it to homogenization treatment, hot rolling, and repeatedly cold rolling the obtained aluminum plate. There is. Cold rolling is performed in several steps, and an aluminum plate with a thickness of 3 to 8 μm becomes an aluminum foil for electrolytic capacitors with a thickness of 20 to 100 μm. By etching the aluminum foil for electrolytic capacitors manufactured in this way, micropores are formed on the surface of the aluminum foil, expanding the surface area of the aluminum foil, and thereby creating an electrolytic foil with high capacitance. You get it. However, the surface area of aluminum foil for electrolytic capacitors manufactured by conventional methods cannot be sufficiently increased even when subjected to etching treatment. This is because a thick oxide film is formed on the surface of the obtained aluminum foil for electrolytic capacitors, and even if etched, it is difficult to uniformly form micropores in the thickness direction of the oxide film. For this reason, attempts have been made to reduce the thickness of the oxide film by dissolving and cleaning the obtained aluminum foil for electrolytic capacitors in an alkaline aqueous solution or acidic aqueous solution to remove the oxide film. However, the surface of the obtained aluminum foil for electrolytic capacitors may become rough and the etching properties may deteriorate.

【発明が解決しようとする課B】[Question B that the invention attempts to solve]

本発明者が、酸化皮膜の形成について種々研究を重ねた
結果、アルミニウム箔表面の酸化皮膜は、熱間圧延の際
に不均一に生成すること、及び冷間圧延中に成長じて厚
みが厚くなることを見出した。 そして、酸化皮膜を除去すると、その後工程においてア
ルミニウム箔表面に厚い酸化皮膜の形成が防止されるの
ではないかと考えた。そこで、本発明者は、得られた電
解コンデンサ用アルミニウム箔をアルカリ性水溶液又は
酸性水溶液で溶解洗浄するのではなく、電解コンデンサ
用アルミニウム箔を製造する途中の工程である冷間圧延
中にアルミニウム板をアルカリ水溶液又は酸性水溶液で
溶解洗浄したところ、厚い酸化皮膜の形成が防止される
と共にアルミニウム箔表面の荒れが残らないことを見出
した。本発明は、このような知見に基づいてなされたも
のである。
As a result of various studies conducted by the present inventor regarding the formation of oxide films, it was found that the oxide film on the surface of aluminum foil is formed unevenly during hot rolling, and that it grows during cold rolling and becomes thick. I discovered that. We also thought that removing the oxide film would prevent the formation of a thick oxide film on the surface of the aluminum foil in subsequent steps. Therefore, instead of dissolving and cleaning the obtained aluminum foil for electrolytic capacitors with an alkaline aqueous solution or acidic aqueous solution, the present inventor developed an aluminum plate during cold rolling, which is a process in the middle of manufacturing aluminum foil for electrolytic capacitors. When the aluminum foil was dissolved and cleaned with an aqueous alkali solution or an acidic aqueous solution, it was found that the formation of a thick oxide film was prevented and no roughness remained on the surface of the aluminum foil. The present invention has been made based on such knowledge.

【課題を解決するための手段及び作用】即ち、本発明は
、アルミニウム板に冷間圧延を繰り返し施して電解コン
デンサ用アルミニウム箔を製造する方法において、アル
ミニウム板の厚さ(t)が式3.3to≦t≦20to
(式中、f、oは得られた電解コンデンサ用アルミニウ
ム箔の厚さを示す。)を満足する厚みに冷間圧延された
後に、アルカリ性水溶液又は酸性水溶液を用いてアルミ
ニウム板の表面を溶解洗浄し、その後更に冷間圧延を施
すことを特徴とする電解コンデンサ用アルミニウム箔の
製造方法に関するものである。 本発明においては、まず従来公知の方法でアルミニウム
板を製造する。即ち、アルミニウム鋳塊を作威し、鋳塊
の表面を面削した後、均質化処理し、更に熱間圧延をし
て厚さ3〜8皿のアルミニウム板を製造する。アルミニ
ウム鋳塊としては、電解コンデンサ用アルミニウム箔を
製造するのに適した純度のものが採用され、具体的には
99.7%以上のアルミニウム純度を持つものが採用さ
れる。 また、表面面削、均質化処理、熱間圧延は、従来採用さ
れている条件で行われる。 次に、アルミニウム板に冷間圧延が施される。 冷間圧延は数バス族され、徐々にアルミニウム板が薄く
なっていき、電解コンデンサ用アルξニウム箔として適
した厚さ、−射的には20〜100μに調整される。本
発明で重要なことは、この冷間圧延の途中で、且つアル
5ニウム板の厚さ(t)が最終の得られた電解コンデン
サ用アルミニウム箔の厚さ(to)の3.3〜20倍の
時点で、アルカリ性水溶液又は酸性水溶液を用いてアル
ミニウム板を溶解洗浄することである。従って、アルカ
リ水溶液又は酸性水溶液による溶解洗浄を、冷間圧延前
にのみ行っても、冷間圧延中に酸化皮膜が戒長し、アル
ミニウム箔表面の酸化皮膜の厚さを薄くすることができ
ない。また、冷間圧延の途中であっても、アルミニウム
板の厚さが十分に薄くなっていないと(20t Oを超
える程度に厚い場合)、アルミニウム箔表面の酸化皮膜
の厚さを薄くすることができない。逆に、アルもニウム
板の厚さが薄くなりすぎていると(3,3tO未満程度
に薄い場合)、アルミニウム箔表面に荒れが残り、エツ
チング性が悪くなるので好ましくない。なお、本発明に
おいては、冷間圧延の途中で、且つアルミニウム板の厚
さ(t)が3.3to≦t≦20t0のときのアルカリ
水溶液又は酸性水溶液による溶解洗浄に加えて、冷間圧
延前の溶解洗浄や冷間圧延後の脱脂洗浄を行っても良い
ことは言うまでもない。 溶解洗浄の際に使用するアルカリ性水溶液は、水酸化ナ
トリウム水溶液等の強アルカリ性水溶液であって、従来
の洗浄工程で使用されているものを用いればよい。また
、酸性水溶液も、硝酸水溶液やクロム酸水溶液等の強酸
性水溶液であって、従来の洗浄工程で使用されているも
のを用いればよい。また、強アルカリ性水溶液と強酸性
水溶液とを併用しても良い。 以上のようにして得られた電解コンデンサ用アルミニウ
ム箔にエツチング処理を施し、アルミニウム箔の表面積
を拡大せしめて、高静電容量の電極箔が得られるのであ
る。
Means for Solving the Problems and Effects That is, the present invention provides a method for manufacturing aluminum foil for an electrolytic capacitor by repeatedly subjecting an aluminum plate to cold rolling, in which the thickness (t) of the aluminum plate is determined by the formula 3. 3to≦t≦20to
(In the formula, f and o indicate the thickness of the obtained aluminum foil for electrolytic capacitors.) After being cold rolled to a thickness that satisfies the following, the surface of the aluminum plate is dissolved and cleaned using an alkaline aqueous solution or an acidic aqueous solution. The present invention relates to a method for manufacturing an aluminum foil for an electrolytic capacitor, which is characterized in that the aluminum foil is further subjected to cold rolling. In the present invention, an aluminum plate is first manufactured by a conventionally known method. That is, an aluminum ingot is prepared, the surface of the ingot is milled, homogenized, and then hot rolled to produce an aluminum plate having a thickness of 3 to 8 pans. As the aluminum ingot, one having a purity suitable for manufacturing aluminum foil for an electrolytic capacitor is used, and specifically, one having an aluminum purity of 99.7% or more is used. Further, surface milling, homogenization treatment, and hot rolling are performed under conventionally employed conditions. Next, the aluminum plate is cold rolled. Cold rolling is carried out in several steps, and the aluminum plate is gradually thinned until it is adjusted to a thickness of 20 to 100 microns, which is suitable for use as aluminum foil for electrolytic capacitors. What is important in the present invention is that during this cold rolling, the thickness (t) of the aluminum plate is 3.3 to 20 times the thickness (to) of the final aluminum foil for electrolytic capacitors. At the time of doubling, the aluminum plate is dissolved and cleaned using an alkaline aqueous solution or an acidic aqueous solution. Therefore, even if dissolving and cleaning with an alkaline aqueous solution or an acidic aqueous solution is performed only before cold rolling, the oxide film will lengthen during cold rolling, and the thickness of the oxide film on the surface of the aluminum foil cannot be reduced. In addition, even during cold rolling, if the thickness of the aluminum sheet is not sufficiently thinned (if it is thick enough to exceed 20 tO), it is difficult to reduce the thickness of the oxide film on the surface of the aluminum foil. Can not. On the other hand, if the thickness of the aluminum plate is too thin (less than 3.3 tO), the surface of the aluminum foil will remain rough and the etching properties will deteriorate, which is not preferable. In addition, in the present invention, in addition to dissolution cleaning with an alkaline aqueous solution or acidic aqueous solution during the cold rolling and when the thickness (t) of the aluminum plate is 3.3to≦t≦20t0, Needless to say, it is also possible to perform dissolution cleaning or degreasing cleaning after cold rolling. The alkaline aqueous solution used in dissolving and cleaning may be a strong alkaline aqueous solution such as a sodium hydroxide aqueous solution, which is used in conventional cleaning processes. Further, the acidic aqueous solution may be a strong acidic aqueous solution such as a nitric acid aqueous solution or a chromic acid aqueous solution, which is used in a conventional cleaning process. Further, a strong alkaline aqueous solution and a strong acidic aqueous solution may be used together. The aluminum foil for electrolytic capacitors obtained as described above is subjected to etching treatment to enlarge the surface area of the aluminum foil, thereby obtaining an electrode foil with high capacitance.

【実施例】【Example】

実施例1 99.98%アルミニウム純度のアルミニウム鋳塊(厚
さ400mmX巾1110mmX長さ2500m)の表
面を各10ci面削した後、600℃XIO時間の条件
で均質化処理し、直ちに240″Cで熱間圧延をして厚
さ6閣のアルミニウム板を作成した。 次に、冷間圧延を繰り返し、厚さが0.5−になったと
き、アルミニウム板を連続洗浄ラインに通して溶解洗浄
した。溶解洗浄条件は、60°Cの2%水酸化ナトリウ
ム水溶液中に約30秒間浸漬した。 その後、常温の20%硝酸水溶液で中和し、次いで水洗
乾燥した。この後、更にアルミニウム板を冷間圧延し、
厚さ0.09mmのアルミニウム箔を作成した。そして
、このアルミニウム箔を弱アルカリ性石鹸水で脱脂洗浄
し、硬質電解コンデンサ用アルミニウム箔を得た。 実施例2 99.96%アルミニウム純度のアルミニウム鋳塊を用
いる以外は、実施例1と同様の方法で硬質電解コンデン
サ用アルミニウム箔を得た。 実施例3 実施例1で得られた厚さ0.09閣のアルミニウム箔に
、不活性雰囲気中で、温度300°CX20時間の条件
で最終焼鈍を施して軟質電解コンデンサ用アルミニウム
箔を得た。 実施例4 実施例2で得られた厚さ0.09mのアルミニウム箔に
、不活性雰囲気中で、温度300°CX20時間の条件
で最終焼鈍を施して軟質電解コンデンサ用アルミニウム
箔を得た。 比較例1〜4 アルミニウム箔の厚さが0.5mmになったときに、連
続洗浄ラインを通さない以外は、実施例1〜4と同様の
方法で電解コンデンサ用アルミニウム箔を得た。なお、
比較例1は実施例1に対応し、比較例2は実施例2に対
応し、比較例3は実施例3に対応し、比較例4は実施例
4に対応している。 以上の実施例1〜4及び比較例1〜4に係る電解コンデ
ンサ用アルミニウム箔に電解エツチングを施して電極箔
を得、静電容量を測定した。ここで、電解エツチングの
条件は以下のとおりである。 即ち、蒸留れ:塩酸(35%)  : C!H2O4・
2HtO:^lC1:l = 3.51:0.3i :
  175g :  175gの組成の液中で、液温5
6°C9矩形波30Hz 、電流密度0.4A/ ci
 、時間5分の条件で電解エツチングを行った。 そして、得られた電極箔の静電容量をOvfで測定した
。また、各電極箔を巾1 cmの短冊状に切断し、引張
強度も測定した。この結果を第1表に示す。 (以下余白) 第1表 第1表中の実施例1〜4と比較例1〜4を比較すれば明
らかなように、冷間圧延途中でアルミニウム板の表面を
溶解洗浄すれば、静電容量が高まり、電解エツチングが
良好に行われていることが判る。また、引張強度も若干
実施例のものが比較例のものに比べて高く、均一な電解
エツチングが行われていることが判る。 比較例5 以下の点が相違する以外は、実施例1と同様の方法で電
解コンデンサ用アルミニウム箔を得た。 相違は、アルミニウム板の厚さが0.5mmのときに連
続洗浄ラインを通さずに、冷間圧延を更に施し、アルミ
ニウム板の厚さが0.2皿になったときに連続洗浄ライ
ンを通した点にある。 比較例6 以下の点が相違する以外は、実施例1と同様の方法で電
解コンデンサ用アルミニウム箔を得た。 相違は、アルミニウム板の厚さが0.5mmのときに連
続洗浄ラインを通さずに、アルミニウム板の厚さが冷間
圧延をして2.0mになったときに連続洗浄ラインを通
した点にある。 比較例5及び6で得られた電解コンデンサ用アルミニウ
ム箔の静電容量と引張強度を上記と同様にして測定した
。その結果を第2表に示す。 第2表 第1表中の実施例1と第2表中の比較例とを比較すれば
明らかなように、冷間圧延中に熔解洗浄する場合であっ
ても、アルミニウム板の厚さ(t)が3.3to ≦t
、≦20t0(式中、T0は得られた電解コンデンサ用
アルミニウム箔の厚さを示す。)の弐を満足しない厚さ
で熔解洗浄を行うと、アルミニウム箔表面に形成された
酸化皮膜が厚かったり、或いはアルミニウム箔表面に荒
れが残っていたりして、良好な電解エツチングがなされ
ず、十分に静電容量を高められないことが判る。 実施例5 JIS H4000の1080アルミニウム鋳塊を温度
240°Cで熱間圧延して、厚さ3 mmのアルミニウ
ム板を得た。 次に、冷間圧延を繰り返し、厚さが0.28mmになっ
たとき、実施例1と同一の条件で、アルミニウム板を連
続洗浄ラインに通して溶解洗浄し、そして中和及び水洗
乾燥した。この後、更にアルミニウム板を冷間圧延し、
厚さ0.05Mのアルミニウム箔を作威し、これを硬質
電解コンデンサ用アルミニウム箔とした。 実施例6 最終のアルミニウム箔の厚さを0.02mmとする以外
は、実施例5と同様の条件で硬質電解コンデンサ用アル
果ニウム箔を得た。 比較例7 連続洗浄ラインに通さない以外は、実施例5と同様にし
て硬質電解コンデンサ用アルミニウム箔を得た。 比較例8 連続洗浄ラインに通さない以外は、実施例6と同様にし
て硬質電解コンデンサ用アルミニウム箔を得た。 以上の実施例5及び6と比較例7及び8に係る電解コン
デンサ用アルミニウム箔を化学溶解して、溶解減量を測
定した。この結果を第3表に示す。 ここで、溶解減量の測定方法は以下のとおりである。即
ち、100mx 100m(7)試料を、50’C(7
)15.5%塩酸水溶液中に2.5分間浸漬し、浸漬前
の重量から浸漬後の重量を減じて得られた値を溶解減量
とした。 第3表 第3表中の実施例と比較例を比較すれば明らかなように
、冷間圧延途中で溶解洗浄して得られた電解コンデンサ
用アルミニウム箔は、溶解減量が比較例のものと比較し
て少なく、電解エツチング時に不均一なエツチング或い
は過溶解が防止され、静電容量が高くなることが判る。
Example 1 The surface of an aluminum ingot (thickness: 400 mm x width: 1110 mm x length: 2,500 m) with 99.98% aluminum purity was milled by 10 ci, then homogenized at 600°C for IO hours, and immediately heated to 240″C. An aluminum plate with a thickness of 6 mm was created by hot rolling. Next, cold rolling was repeated, and when the thickness reached 0.5 -, the aluminum plate was passed through a continuous cleaning line and melted and cleaned. The dissolution and cleaning conditions were as follows: immersion in a 2% sodium hydroxide aqueous solution at 60°C for about 30 seconds.Then, the aluminum plate was neutralized with a 20% nitric acid aqueous solution at room temperature, and then washed with water and dried.After this, the aluminum plate was further cooled. Rolled between
An aluminum foil with a thickness of 0.09 mm was created. This aluminum foil was then degreased and washed with slightly alkaline soapy water to obtain an aluminum foil for a hard electrolytic capacitor. Example 2 An aluminum foil for a hard electrolytic capacitor was obtained in the same manner as in Example 1, except that an aluminum ingot with an aluminum purity of 99.96% was used. Example 3 The aluminum foil with a thickness of 0.09 mm obtained in Example 1 was subjected to final annealing at a temperature of 300° C. for 20 hours in an inert atmosphere to obtain an aluminum foil for a soft electrolytic capacitor. Example 4 The aluminum foil with a thickness of 0.09 m obtained in Example 2 was subjected to final annealing in an inert atmosphere at a temperature of 300° C. for 20 hours to obtain an aluminum foil for a soft electrolytic capacitor. Comparative Examples 1 to 4 Aluminum foils for electrolytic capacitors were obtained in the same manner as Examples 1 to 4, except that the continuous cleaning line was not passed when the aluminum foil had a thickness of 0.5 mm. In addition,
Comparative Example 1 corresponds to Example 1, Comparative Example 2 corresponds to Example 2, Comparative Example 3 corresponds to Example 3, and Comparative Example 4 corresponds to Example 4. Electrolytic etching was performed on the aluminum foils for electrolytic capacitors according to Examples 1 to 4 and Comparative Examples 1 to 4 to obtain electrode foils, and the capacitance was measured. Here, the conditions for electrolytic etching are as follows. That is, distilled: Hydrochloric acid (35%): C! H2O4・
2HtO:^lC1:l = 3.51:0.3i:
175g: In a liquid with a composition of 175g, the liquid temperature is 5.
6°C9 square wave 30Hz, current density 0.4A/ci
Electrolytic etching was carried out under the conditions of , 5 minutes. Then, the capacitance of the obtained electrode foil was measured using Ovf. In addition, each electrode foil was cut into strips with a width of 1 cm, and the tensile strength was also measured. The results are shown in Table 1. (Left below) Table 1 As is clear from comparing Examples 1 to 4 and Comparative Examples 1 to 4 in Table 1, if the surface of the aluminum plate is dissolved and cleaned during cold rolling, the capacitance It can be seen that the electrolytic etching is carried out satisfactorily. Furthermore, the tensile strength of the examples was slightly higher than that of the comparative examples, indicating that uniform electrolytic etching was performed. Comparative Example 5 An aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1 except for the following differences. The difference is that when the aluminum plate is 0.5 mm thick, it is cold rolled without passing through the continuous cleaning line, and when the aluminum plate becomes 0.2 mm thick, it is passed through the continuous cleaning line. That's the point. Comparative Example 6 An aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1 except for the following differences. The difference is that when the thickness of the aluminum plate is 0.5 mm, it is not passed through the continuous cleaning line, but when the thickness of the aluminum plate is 2.0 m after cold rolling, it is passed through the continuous cleaning line. It is in. The capacitance and tensile strength of the aluminum foils for electrolytic capacitors obtained in Comparative Examples 5 and 6 were measured in the same manner as above. The results are shown in Table 2. Table 2 As is clear from a comparison of Example 1 in Table 1 and Comparative Example in Table 2, even when melt cleaning is performed during cold rolling, the thickness of the aluminum plate (t ) is 3.3to ≦t
, ≦20t0 (in the formula, T0 indicates the thickness of the obtained aluminum foil for electrolytic capacitors). Alternatively, it can be seen that roughness remains on the surface of the aluminum foil, and good electrolytic etching is not performed, making it impossible to sufficiently increase the capacitance. Example 5 A JIS H4000 1080 aluminum ingot was hot rolled at a temperature of 240°C to obtain an aluminum plate with a thickness of 3 mm. Next, cold rolling was repeated, and when the thickness reached 0.28 mm, the aluminum plate was passed through a continuous cleaning line to be dissolved and cleaned under the same conditions as in Example 1, and then neutralized, washed with water, and dried. After this, the aluminum plate is further cold rolled,
An aluminum foil with a thickness of 0.05M was made and used as an aluminum foil for a hard electrolytic capacitor. Example 6 An aluminum foil for a hard electrolytic capacitor was obtained under the same conditions as in Example 5 except that the final thickness of the aluminum foil was 0.02 mm. Comparative Example 7 An aluminum foil for a hard electrolytic capacitor was obtained in the same manner as in Example 5 except that it was not passed through the continuous cleaning line. Comparative Example 8 An aluminum foil for a hard electrolytic capacitor was obtained in the same manner as in Example 6 except that it was not passed through the continuous cleaning line. The aluminum foils for electrolytic capacitors according to Examples 5 and 6 and Comparative Examples 7 and 8 above were chemically dissolved and the weight loss by dissolution was measured. The results are shown in Table 3. Here, the method for measuring the dissolution loss is as follows. That is, a 100m x 100m (7) sample was heated to 50'C (7
) The sample was immersed in a 15.5% hydrochloric acid aqueous solution for 2.5 minutes, and the weight after immersion was subtracted from the weight before immersion, and the value obtained was defined as the weight loss after immersion. Table 3 As is clear from the comparison between the example and the comparative example in Table 3, the aluminum foil for electrolytic capacitors obtained by melting and cleaning during cold rolling has a melting loss that is comparable to that of the comparative example. It can be seen that the capacitance is reduced, non-uniform etching or excessive dissolution is prevented during electrolytic etching, and the capacitance is increased.

【発明の効果】【Effect of the invention】

以上説明したように、本発明に係る方法は、従来の電解
コンデンサ用アルミニウム箔の製造方法において、冷間
圧延中であって、且つアル壽ニウム板が特定の厚さにな
ったときにアルカリ性水溶液又は酸性水溶液でその表面
を溶解洗浄するというものである。そして、この方法に
よって得られた電解コンデンサ用アルミニウム箔は、従
来のアルミニウム箔に比べて、表面に存在する酸化皮膜
の厚さが薄いものである。従って、本発明の方法で得ら
れた電解コンデンサ用アルミニウム箔を電解エツチング
すると、エツチング開姑時に表面の多数の箇所で核がで
きてエツチングが進行し、均一なエツチングが可能とな
って、表面積の拡大も十分に図れる。依って、エツチン
グして得られた電極箔は、高静電容量を示すという効果
を奏する。 また、エツチングが均一なため、エツチングの不均一に
よって生じる強度低下を防止しうるという効果を奏する
As explained above, the method according to the present invention differs from the conventional method for producing aluminum foil for electrolytic capacitors in that an alkaline aqueous solution is applied during cold rolling and when the aluminum plate reaches a specific thickness. Alternatively, the surface is dissolved and cleaned with an acidic aqueous solution. The aluminum foil for electrolytic capacitors obtained by this method has a thinner oxide film on its surface than conventional aluminum foils. Therefore, when the aluminum foil for electrolytic capacitors obtained by the method of the present invention is electrolytically etched, nuclei are formed at many locations on the surface during the etching process, and the etching progresses, making uniform etching possible and reducing the surface area. It can also be expanded sufficiently. Therefore, the electrode foil obtained by etching has the effect of exhibiting high capacitance. Furthermore, since the etching is uniform, it is possible to prevent a decrease in strength caused by non-uniform etching.

Claims (1)

【特許請求の範囲】[Claims]  アルミニウム板に冷間圧延を繰り返し施して電解コン
デンサ用アルミニウム箔を製造する方法において、アル
ミニウム板の厚さ(t)が式3.3t_0≦t≦20t
_0(式中、T_0は得られた電解コンデンサ用アルミ
ニウム箔の厚さを示す。)を満足する厚みに冷間圧延さ
れた後に、アルカリ性水溶液又は酸性水溶液を用いてア
ルミニウム板の表面を溶解洗浄し、その後更に冷間圧延
を施すことを特徴とする電解コンデンサ用アルミニウム
箔の製造方法。
In a method of manufacturing aluminum foil for electrolytic capacitors by repeatedly subjecting an aluminum plate to cold rolling, the thickness (t) of the aluminum plate satisfies the formula 3.3t_0≦t≦20t.
After being cold-rolled to a thickness that satisfies _0 (in the formula, T_0 indicates the thickness of the obtained aluminum foil for electrolytic capacitors), the surface of the aluminum plate is dissolved and cleaned using an alkaline aqueous solution or an acidic aqueous solution. A method for producing aluminum foil for electrolytic capacitors, which comprises further cold rolling.
JP5694090A 1990-03-08 1990-03-08 Manufacturing method of aluminum foil for electrolytic capacitor Expired - Fee Related JP3180954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5694090A JP3180954B2 (en) 1990-03-08 1990-03-08 Manufacturing method of aluminum foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5694090A JP3180954B2 (en) 1990-03-08 1990-03-08 Manufacturing method of aluminum foil for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH03257147A true JPH03257147A (en) 1991-11-15
JP3180954B2 JP3180954B2 (en) 2001-07-03

Family

ID=13041538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5694090A Expired - Fee Related JP3180954B2 (en) 1990-03-08 1990-03-08 Manufacturing method of aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3180954B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200405A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05205983A (en) * 1992-01-27 1993-08-13 Showa Alum Corp Aluminum foil for electrolytic capacitor
EP1422732A1 (en) * 2001-08-03 2004-05-26 Showa Denko K.K. PROCESS FOR PRODUCING ALUMINUM MATERIAL FOR ELECTRODE OF ELECTROLYTIC CAPACITOR&comma; ALUMINUM MATERIAL FOR ELECTRODE OF ELECTROLYTIC CAPACITOR&comma; AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR ELECTROLYTIC CAPACITOR
EP1498513A1 (en) * 2002-04-25 2005-01-19 Showa Denko K.K. Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200405A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05205983A (en) * 1992-01-27 1993-08-13 Showa Alum Corp Aluminum foil for electrolytic capacitor
JP2774894B2 (en) * 1992-01-27 1998-07-09 昭和アルミニウム株式会社 Manufacturing method of aluminum foil for electrolytic capacitor
EP1422732A1 (en) * 2001-08-03 2004-05-26 Showa Denko K.K. PROCESS FOR PRODUCING ALUMINUM MATERIAL FOR ELECTRODE OF ELECTROLYTIC CAPACITOR&comma; ALUMINUM MATERIAL FOR ELECTRODE OF ELECTROLYTIC CAPACITOR&comma; AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR ELECTROLYTIC CAPACITOR
EP1422732A4 (en) * 2001-08-03 2007-11-14 Showa Denko Kk Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrode of electrolytic capacitor, and method for producing electrode material for electrolytic capacitor
EP1498513A1 (en) * 2002-04-25 2005-01-19 Showa Denko K.K. Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
EP1498513A4 (en) * 2002-04-25 2007-11-14 Showa Denko Kk Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor

Also Published As

Publication number Publication date
JP3180954B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JPH03257147A (en) Production of aluminum foil for electrolytic capacitor
CA1239900A (en) Two-stage electrolytic etching of aluminium capacitor foil
JPH05279815A (en) Production of aluminum foil for electrolytic capacitor anode
JP2004536228A (en) Aluminum alloy sheet with roughened surface
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP3495265B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3427902B2 (en) Aluminum foil for electrolytic capacitor anode with excellent electrolytic etching properties
US3332859A (en) Process for producing tantalum foil for capacitors
JPH01215959A (en) Manufacture of aluminum foil for electrolytic capacitor cathode
JP2003193260A (en) Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JPH1116787A (en) Manufacture of aluminum electrode foil for electrolytic capacitor large in electrostatic capacitance per unit loss of weight on etching
JP2644311B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor electrode
JPH05200407A (en) Production of aluminum foil for electrolytic capacitor
JPH0133546B2 (en)
JPH11290906A (en) Manufacture of aluminum foil for electrode of electrolytic capacitor
JP2003119585A (en) Method for manufacturing aluminum foil electrolytic capacitor electrode
JP2639553B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors
JPH09310136A (en) Aluminum hard foil for electrolytic capacitor and its production
JP3355529B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor
JPS6037185B2 (en) Aluminum electrolytic capacitor - manufacturing method of aluminum foil for cathode
JPH07180007A (en) Production of aluminum foil for electrolytic capacitor medium-low pressure anode
JPH01248609A (en) Manufacture of aluminium material for electrolytic capacitor
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode
JPH03291363A (en) Production of aluminum foil for electrolytic capacitor cathode
KR100232294B1 (en) Electrode manufacturing method for aluminum electrolytic condenser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees