JPS6337990B2 - - Google Patents

Info

Publication number
JPS6337990B2
JPS6337990B2 JP54005144A JP514479A JPS6337990B2 JP S6337990 B2 JPS6337990 B2 JP S6337990B2 JP 54005144 A JP54005144 A JP 54005144A JP 514479 A JP514479 A JP 514479A JP S6337990 B2 JPS6337990 B2 JP S6337990B2
Authority
JP
Japan
Prior art keywords
circuit
signal
dmi
code
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54005144A
Other languages
Japanese (ja)
Other versions
JPS5597764A (en
Inventor
Toshikazu Matsumoto
Risuke Shimodaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP514479A priority Critical patent/JPS5597764A/en
Publication of JPS5597764A publication Critical patent/JPS5597764A/en
Publication of JPS6337990B2 publication Critical patent/JPS6337990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes
    • H04L25/491Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes using 1B2B codes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は伝送路符号としてDMI符号を用いた
パルス伝送方式等に用いられる回路に関し、特に
原符号を中継伝送路で生じた誤り信号と分離して
復号するDMI符号の復号回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit used in a pulse transmission method using a DMI code as a transmission path code, and in particular to a circuit for use in a DMI code that decodes the original code by separating it from an error signal generated on a relay transmission path. It relates to a decoding circuit.

DMI符号とは、第1図に示すように、2値の
情報系列の“1”に対して“1,1”,“0,0”
をバイポーラ則にしたがつて切りかえ、“0”に
対して“1,0”,“0,1”を直前の符号と反対
極性となるような変換を行なつた符号である。第
1図aが原符号列であり、第1図bがDMI符号
列である。本符号から原符号は次のようにして得
られる。DMI符号列をA,Aを1/2タイムスロツ
ト遅らせた符号列をBとすると、AとBの排他的
論理和の否定が原符号となる。このようにして復
調されたパルス列は、デユーテイ50%のRZ
(return to zero)信号であり、1タイムスロツ
ト内にて、常に一定位相で“0”となる部分があ
る。加えて、伝送路で誤りが発生する毎にこの
“0”の部分が“1”となる性質がある。従つて、
互いに180゜位相の異なるクロツクにて復調された
パルスを読み出すことによりデータ信号と誤り信
号とを分離できる。ところで、パルスを読み出す
ためのクロツクは、DMI符号識別に必要な2倍
の周波数のクロツクよりカウントダウンして得て
いるため、ここで、読み出された2系統のパルス
列のどちらが、データ信号であるかわからないこ
とに問題がある。
As shown in Figure 1, the DMI code is defined as "1, 1", "0, 0" for "1" in a binary information series.
is switched according to the bipolar rule, and "0" is converted to "1, 0" and "0, 1" to have the opposite polarity to the previous code. FIG. 1a is the original code string, and FIG. 1b is the DMI code string. The original code can be obtained from this code as follows. If the DMI code string is A, and the code string obtained by delaying A by 1/2 time slot is B, then the negation of the exclusive OR of A and B becomes the original code. The pulse train demodulated in this way is an RZ with a duty of 50%.
This is a (return to zero) signal, and there is a portion that is always "0" with a constant phase within one time slot. In addition, there is a property that this "0" portion becomes "1" every time an error occurs on the transmission path. Therefore,
Data signals and error signals can be separated by reading out pulses demodulated using clocks that are 180° out of phase with each other. By the way, since the clock for reading out the pulses is obtained by counting down from a clock with twice the frequency required for DMI code identification, it is difficult to determine which of the two pulse trains read out is the data signal. The problem is that you don't understand.

本発明の目的はこのような2系統のパルス列に
対してデータ信号と誤り信号とを判別するDMI
符号の復号回路を提供することにある。
The purpose of the present invention is to develop a DMI system that distinguishes between data signals and error signals for these two systems of pulse trains.
An object of the present invention is to provide a code decoding circuit.

次に本発明について図面を用いて詳しく説明す
る。
Next, the present invention will be explained in detail using the drawings.

第2図は本発明の一実施例である。参照数字1
はDMI信号入力端子、参照数字2はクロツク信
号入力端子、参照数字3はNRZ(non−return to
zero)信号出力端子、参照数字4は誤り信号出力
端子、参照数字5は遅延回路、参照数字6は排他
論理和回路、同様にして7は互いに180゜位相の異
なる2つのクロツクを与えるゲート回路、8,9
はパルス読出し回路、10,11は積分回路、1
2はスイツチ制御回路、13はスイツチ回路であ
る。
FIG. 2 shows an embodiment of the present invention. Reference number 1
is the DMI signal input terminal, reference number 2 is the clock signal input terminal, reference number 3 is the NRZ (non-return to
reference numeral 4 is an error signal output terminal, reference numeral 5 is a delay circuit, reference numeral 6 is an exclusive OR circuit, similarly 7 is a gate circuit that provides two clocks with a phase difference of 180 degrees from each other, 8,9
is a pulse readout circuit, 10 and 11 are integration circuits, 1
2 is a switch control circuit, and 13 is a switch circuit.

端子1からのDMI信号は遅延回路5により1/2
タイムスロツト遅延され、排他的論理和回路6に
てもとの2値RZ信号に変換される。各部信号の
タイムチヤートを第3図に示す。同図aが入力
DMI信号、同図bが1/2タイムスロツト遅延され
た信号であり、同図cが前記回路6出力の復調信
号である。第3図のタイムチヤートにて斜線で示
す部分が中継伝送路で生じた誤りとする。復調信
号(第3図c)はパルス読出し回路8,9におい
て位相の180゜異なる2つのクロツクにて識別され
る。識別された2系統の信号は、第3図d,eと
なる。ここで、第3図dがもとのデータ信号であ
り、同図eが誤り信号である。次に、それぞれの
信号を積分回路10,11にて積分し、その出力
情報を用いて端子3に常にデータ信号を送出する
ように、スイツチ回路13をスイツチ制御回路1
2によつて制御する。このようにすれば、無信号
の場合および誤りが極端に多い場合を除いてデー
タ信号と誤り信号を判別することができる。
The DMI signal from terminal 1 is halved by delay circuit 5.
The signal is delayed by a time slot and converted into the original binary RZ signal by the exclusive OR circuit 6. A time chart of each part signal is shown in Fig. 3. Input a from the same figure
The DMI signal, b in the figure, is a signal delayed by 1/2 time slot, and c in the figure is a demodulated signal output from the circuit 6. In the time chart of FIG. 3, the shaded portion is assumed to be an error occurring in the relay transmission line. The demodulated signal (FIG. 3c) is identified by two clocks having a phase difference of 180 DEG in the pulse readout circuits 8 and 9. The identified two systems of signals are shown in Figure 3 d and e. Here, d in FIG. 3 is the original data signal, and e in FIG. 3 is the error signal. Next, the switch circuit 13 is connected to the switch control circuit 1 so that each signal is integrated by the integrating circuits 10 and 11, and the output information is used to constantly send a data signal to the terminal 3.
2. In this way, it is possible to distinguish between data signals and error signals except when there is no signal or when there are extremely many errors.

本発明の一実施例の回路を第4図に示す。端子
1からのDMI信号は前記回路5,6によつて元
の符号に復号され、前記回路8,9により、デー
タ信号と誤り信号とに分離される。ここで、パル
ス読出し回路8からの出力がデータ信号とされ
る。このとき積分回路10の出力は“L”(low)
レベル積分回路11からの出力は“H”(high)
レベルとなる。前記回路10,11の積分回路は
抵抗16又は17およびコンデンサ18又は19
の構成により、パルス幅を広げて積分を行なつて
いる。次に前記回路10,11の出力情報によつ
てスイツチ制御回路12は、リセツトされ、Q出
力が“L”レベル、出力が“H”レベルとなり
これよりノアゲート27,28が閉じられ、ノア
ゲート26,29が開かれる。従つて、前記回路
8からのデータ信号は、ノアゲート30を介して
端子3に出力される。加えて、パルス読出し回路
9からの誤り信号はノアゲート31を介して端子
4から出力される。前記回路9からの出力がデー
タ信号の場合も同様にして、端子からデータ信号
が、端子4から誤り信号がそれぞれ出力される。
A circuit according to an embodiment of the present invention is shown in FIG. The DMI signal from terminal 1 is decoded into the original code by the circuits 5 and 6, and separated into a data signal and an error signal by the circuits 8 and 9. Here, the output from the pulse readout circuit 8 is used as a data signal. At this time, the output of the integrating circuit 10 is “L” (low)
The output from the level integration circuit 11 is “H” (high)
level. The integration circuit of the circuits 10 and 11 includes a resistor 16 or 17 and a capacitor 18 or 19.
With this configuration, integration is performed by widening the pulse width. Next, the switch control circuit 12 is reset by the output information of the circuits 10 and 11, and the Q output becomes "L" level and the output becomes "H" level, which closes the NOR gates 27 and 28, and the NOR gates 26, 29 will be held. Therefore, the data signal from the circuit 8 is outputted to the terminal 3 via the NOR gate 30. In addition, the error signal from the pulse readout circuit 9 is outputted from the terminal 4 via the NOR gate 31. Similarly, when the output from the circuit 9 is a data signal, the data signal is output from the terminal and the error signal is output from the terminal 4.

以上のように、本発明によりDMI符号を復号
する際の2系統のパルス列に対して、データ信号
と誤り信号とを判別して復号することのできる優
れた特性をもつ復号回路を得ることができる。
As described above, according to the present invention, it is possible to obtain a decoding circuit with excellent characteristics capable of discriminating and decoding data signals and error signals for two pulse trains when decoding a DMI code. .

なお、上記実施例のほかに、本発明の適用され
る装置の入出形態に応じて各種の変形例が考えら
れ、これらによつても同様に本発明を実施するこ
とができる。
In addition to the above-mentioned embodiments, various modifications can be made depending on the entry/exit form of the device to which the present invention is applied, and the present invention can be similarly practiced using these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは単純2値符号からDMI符号へ
の符号化のタイムチヤート、第2図は本発明の一
実施例の構成図、第3図aからeはDMI符号か
ら元の2値符号への復号化のタイムチヤートおよ
び第4図は本発明の一実施例の回路図を示す。 第2図および第4図において、1……DMI信
号入力端子、2……クロツク信号入力端子、3…
…NRZデータ信号出力端子、4……誤り信号出
力端子、5……遅延回路、6……排他的論理和回
路、7……クロツク分配回路、8,9……識別回
路、10,11……積分回路、12……スイツチ
制御回路、13……スイツチ回路、14,15…
…ダイオード、16,17,24,25……抵
抗、18,19……コンデンサ、20,21……
電源端子、26〜31……ノアゲート、22,
23……トランジスタ。
Figure 1 a and b are time charts for encoding from a simple binary code to a DMI code, Figure 2 is a block diagram of an embodiment of the present invention, and Figures 3 a to e are a time chart of encoding from a simple binary code to a DMI code. A time chart of decoding into codes and a circuit diagram of an embodiment of the present invention are shown in FIG. 2 and 4, 1...DMI signal input terminal, 2...clock signal input terminal, 3...
...NRZ data signal output terminal, 4...Error signal output terminal, 5...Delay circuit, 6...Exclusive OR circuit, 7...Clock distribution circuit, 8, 9...Identification circuit, 10, 11... Integrating circuit, 12... Switch control circuit, 13... Switch circuit, 14, 15...
...Diode, 16,17,24,25...Resistor, 18,19...Capacitor, 20,21...
Power terminal, 26-31...Noah gate, 22,
23...transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 DMI符号の復号回路において、遅延回路と
排他的論理和回路とを有しDMI符号化された信
号を原信号に復号する復号回路と、この復号回路
により復号された信号を互いに180゜位相の異なる
クロツクで読み出す2つの読出し回路と、これら
の読出し回路からの2つの信号をそれぞれ積分し
該積分値をスイツチ制御のために使用する積分回
路と、この積分回路の積分値に基いて動作が制御
され積分値が大きい方の前記読出し回路の出力を
データ信号出力端に、積分値が小さい方の前記読
出し回路の出力を誤り信号出力端にそれぞれ切替
えるスイツチ回路とを有するDMI符号の復号回
路。
1 In a DMI code decoding circuit, there is a decoding circuit that has a delay circuit and an exclusive OR circuit and decodes the DMI encoded signal into the original signal, and a decoding circuit that decodes the DMI encoded signal into the original signal, and a decoding circuit that decodes the signal decoded by this decoding circuit with a phase difference of 180° from each other. Two readout circuits that read out signals using different clocks, an integration circuit that integrates the two signals from these readout circuits and uses the integrated values for switch control, and operations that are controlled based on the integrated values of these integration circuits. and a switch circuit for switching the output of the reading circuit having a larger integral value to a data signal output terminal, and switching the output of the reading circuit having a smaller integral value to an error signal output terminal.
JP514479A 1979-01-19 1979-01-19 Decoding circuit for dmi code Granted JPS5597764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP514479A JPS5597764A (en) 1979-01-19 1979-01-19 Decoding circuit for dmi code

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP514479A JPS5597764A (en) 1979-01-19 1979-01-19 Decoding circuit for dmi code

Publications (2)

Publication Number Publication Date
JPS5597764A JPS5597764A (en) 1980-07-25
JPS6337990B2 true JPS6337990B2 (en) 1988-07-27

Family

ID=11603098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP514479A Granted JPS5597764A (en) 1979-01-19 1979-01-19 Decoding circuit for dmi code

Country Status (1)

Country Link
JP (1) JPS5597764A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952948A (en) * 1982-09-20 1984-03-27 Nippon Telegr & Teleph Corp <Ntt> Code transmitting system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244108A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Code error detection equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244108A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Code error detection equipment

Also Published As

Publication number Publication date
JPS5597764A (en) 1980-07-25

Similar Documents

Publication Publication Date Title
US4027335A (en) DC free encoding for data transmission system
US4083005A (en) Three-level serial digital data communication system
US4097859A (en) Three-level to two-level decoder
USRE31311E (en) DC Free encoding for data transmission system
FI883954A0 (en) OVERFLOWING OVER / ELLER ANODNING FOER DEMODULERING AV EN BIPHASE SIGNAL.
JP2621884B2 (en) Communication method and encoding device
US3614639A (en) Fsk digital demodulator with majority decision filtering
JPS5831136B2 (en) Digital signal transmission method
WO1990013122A1 (en) Multi-purpose circuit for decoding binary information
CA1215781A (en) Biphase signal receiver
JPS6337990B2 (en)
US4122441A (en) Error detection and indication system for bi-phase encoded digital data
EP0627144B1 (en) A bit-serial decoder
US4809301A (en) Detection apparatus for bi-phase signals
JPS62274948A (en) Frame synchronizing system
US4352095A (en) A/D Dynamic range enhancing technique
GB2147477A (en) Data transmitter, data receiver and data transmission system
JPH0124386B2 (en)
KR940008244Y1 (en) B6zs coding error detecting circuit
EP0638213B1 (en) Data signal decoding device
JPS5947504B2 (en) Digital transmission method
JPS6044871B2 (en) frequency detector
JPH0323714Y2 (en)
SU1561211A1 (en) Device for transmission of discrete information
KR100526937B1 (en) Differential Code Generator