JPS6337835B2 - - Google Patents

Info

Publication number
JPS6337835B2
JPS6337835B2 JP55187065A JP18706580A JPS6337835B2 JP S6337835 B2 JPS6337835 B2 JP S6337835B2 JP 55187065 A JP55187065 A JP 55187065A JP 18706580 A JP18706580 A JP 18706580A JP S6337835 B2 JPS6337835 B2 JP S6337835B2
Authority
JP
Japan
Prior art keywords
catalyst
magnetized
catalytic cracking
nickel
fluid catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187065A
Other languages
Japanese (ja)
Other versions
JPS57115488A (en
Inventor
Masaru Ushio
Tooru Morita
Takeshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP55187065A priority Critical patent/JPS57115488A/en
Publication of JPS57115488A publication Critical patent/JPS57115488A/en
Publication of JPS6337835B2 publication Critical patent/JPS6337835B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質石油類の流動接触分解法の改良に
関するものである。 流動接触分解は石油系炭化水素を原料として触
媒と接触することによつて分解し、大部分がガソ
リン、液化石油ガス、アルキル化原料、中間留分
混合物の望ましい生成物を得るものである。 流動接触分解の原料油は、通常軽油が用いられ
る。ここで言う軽油とは常圧蒸留装置よりのヘビ
ーガスオイルと減圧蒸留装置のバキユーム・ガス
オイル等の留出油又はこれらを必要に応じ水素化
したもの等を指し、沸点範囲220゜〜600℃、比重
0.8〜1.0程度のものである。 ところが近年産出原油は重質化傾向にある一方
需要は環境問題や利用の容易さなどにより軽油以
下の沸点留分をもつ炭化水素油類の需要が相対的
に増加しており、軽油のみを接触分解の原料とす
ることは、原料資源の点から問題を生じて来てい
る。 またエネルギー節約の観点からも重質石油類の
有効利用が重要な課題となつて来ている。そのよ
うな中で重質油処理プロセスの1つとして重質石
油類を流動接触分解の原料とすることが試みられ
つつある。 重質石油類の流動接触分解を行なう場合、原料
油中に含まれるニツケル、バナジウム、鉄、銅が
触媒上に堆積する現象が、特に顕著に見られる。 通常原油中には5〜500ppmのニツケル、5〜
1500ppmのバナジウム、1〜100ppmの鉄、0.1〜
10ppmの銅が含まれている。 この他に石油原料は輸送、貯蔵および処理装置
と接触することにより装置の鉄を溶解して含有す
る傾向があるので原料油中の鉄含有量は上記の値
を大巾に上回る。 これらの金属は処理中に留出せずに残留する傾
向があるので残渣油は原料原油より2〜4倍ある
いはそれ以上の量の金属を含有する。たとえば蒸
留残渣油は1000〜2000ppmものバナジウムを含有
することがある。 これらの金属は通常ポリフイリン環構造をはじ
めとする有機金属化合物として存在しており触媒
と高温で接触すると分解して、金属は触媒上に付
着し堆積していく。 これらの金属は触媒の活性を低下させるばかり
でなく触媒の選択性をも低下させるものである。
即ち、これらの金属は水素化−脱水素化能を有し
ており、流動接触分解の反応条件では、炭化水素
の脱水素反応を促進し、その結果生成物として好
ましくない水素ガス、コークの生成量が増加し、
好ましいLPG、ガソリン、灯軽油の得率が減少
する。 上記のように反応に有害な作用を及ぼす金属が
触媒上に蓄積するという問題は、軽油の流動接触
分解においては、それ程重要な問題とはならない
ものである。何故なら、軽油は金属含有量が少な
いために、触媒上への金属堆積量は一般に少な
く、必要とされる触媒交換量も少なくてすむから
である。事実、軽油の流動接触分解においては、
装置から必然的に溢出する触媒量に相当する量の
新触媒を単に補給するだけで、触媒上への金属蓄
積によつてもたらされる悪影響を回避することが
できる。 しかしながら、金属含有量の多い重質油あるい
は残油の流動接触分解においては、循環系内の金
属蓄積量は莫大な量となるため、触媒の活性及び
選択性を維持するために特別な手段が必要とな
る。通常このための手段としては、触媒の一部を
定期的あるいは定常的に抜き出し、新触媒ないし
は再生触媒(たとえばイオン交換法または酸化還
元法等により再生する)と交換して活性を一定レ
ベルに維持する方法が採用されているが、触媒の
抜き出し量を著しく大きくすることが必要であ
り、これはコスト的に非常に不利である。従つ
て、触媒上への金属堆積の問題は、金属含有量の
多い重質油あるいは残油の流動接触分解において
は、とりわけ深刻な問題となるのである。 この問題を解決する手段として、触媒に堆積し
た金属の活性を抑制する方法が知られている。具
体的には、堆積した金属を不動態化しその活性を
なくすために、触媒にあらかじめ不動態化剤を含
ませる方法と、流動接触分解系内に不動態化剤を
添加する方法が挙げられる。この種の方法はすで
に、特開昭52−68092、同53−26801、同53−
104588、同53−142406に開示されており、有効な
方法であることが確認されている。 しかしながら、この種の方法は触媒の寿命を長
くすることにはなるが、いずれは触媒として活性
を一定レベルに保つために、触媒の一部を定期的
に新触媒ないしは再生触媒と交換しなくてはなら
ない。この交換の際に、未だ活性が高い触媒を含
めたものを抜き出すわけで、この点の問題は依然
として残り、本質的な解決方法ではない。 本発明者達は上記の問題を解決するために鋭意
研究を行つた結果、全く新しい手段を考案し、新
規な接触分解方法を完成した。 すなわち本発明によれば、重質石油類の流動接
触分解方法において、粒径5〜200μmの分解触
媒を用い、反応帯域、分離帯域、ストリツピング
帯域、触媒再生帯域を具備する流動接触分解装置
内を流動する触媒粒子の一部を抜き出し、該抜き
出し触媒粒子を、空気、スチーム、窒素あるいは
その混合物からなる群より選ばれた移送流体によ
り、粒子濃度0.01〜500g/および移送流体速
度0.01〜100m/secで、均一な高磁場空間内に強
磁性物質でできた線径10〜1000μmを有する3〜
80メツシユの網状充填物を一枚以上重ねて配置し
た高勾配磁気分離機に送り、それによつて該抜き
出し触媒粒子を、該重質石油類に含有されていた
ニツケル、バナジウム、鉄および銅からなる群か
ら選ばれた少なくとも一種以上の金属の堆積によ
り着磁物となつた着磁性触媒粒子と非着磁性粒子
に分離し、非着磁性触媒粒子を分解装置に戻して
再使用することを特徴とする重質石油類の流動接
触分解方法が提供される。 以下着磁性触媒粒子を単に着磁物と言い、非着
磁性触媒粒子を非着磁物と言う。ここで言う着磁
物とは高勾配磁気分離機の磁場空間内に置かれた
充填物の表面に磁力により捕集された触媒粒子を
言う。 また非着磁物とは充填物の表面に捕集されず
に、そのまま高勾配磁気分離機の系外に放出され
る触媒粒子を言う。 以下本発明の方法をより詳細に説明する。 本発明者達は重質石油類の流動接触分解におい
て循環系内より抜き出した触媒を高勾配磁気分離
機により着磁物と非着磁物に分け、抜き出し触
媒、着磁物、非着磁物の3者の触媒活性を固定床
マイクロリアクターにより評価したところ非着磁
物>抜き出し触媒>着磁物の順で転化率が高く、
またLPG、ガソリン、灯軽油生成の選択性に優
れており、これら3者の間には、触媒能に著しい
差違があることを見出した。 しかも非着磁物を循環系内へ戻して用いたとこ
ろ、転化率選択性に悪影響をおよぼすことなく再
使用できること、これによりメイクアツプの触媒
量を著しく節約できることを見出した。 本発明は、本発明者達により見出された上記の
ような新規な知見に基づいて完成されたものであ
り、即ち、本発明の方法は、重質石油類中に含ま
れるニツケル、バナジウム、鉄、銅が触媒上に堆
積することにより反応の転化率が低下し、生成物
中のガソリン、灯油軽油留分の得率が下がりコー
ク、水素の得率が増加して経済的な損失を与え、
装置運転上支障をきたすことを防ぐため、分離装
置内を流動する触媒の一部を抜き出し新触媒ある
いは再生触媒と交際する際に、抜き出した触媒を
高勾配磁気分離機により、着磁物と非着磁物に分
け、未だ高い活性と選択性を維持する非着磁物を
分解装置内に戻して再使用することにより生成物
中のコーク、水素の増加を抑制し、反応の転化率
の低下を防ぎながらメイクアツプの触媒量を節約
する方法である。 本発明で言う重質石油類とは、アスフアルテン
等の蒸留残渣分を実質量含む重質石油類で、原油
の常圧蒸留残渣油、減圧蒸留残渣油、および、こ
れらを水素化脱硫したもの、あるいは、アスフア
ルテン等蒸留残渣分を実質量含まないもので、常
圧留出油、減圧留出油、溶剤脱歴油および熱処理
または水素化精製処理により脱アスフアルテン処
理した残渣油ないし、それらの混合物およびこれ
らを水素化精製したものである。 本発明の流動接触分解においては、通常の操作
すなわち、反応温度480〜550℃、圧力1〜3Kg/
cm2G、触媒/油比1〜20、接触時間1〜10秒で運
転される。 触媒は、石油類の接触分解に通常用いられる触
媒で良く、たとえば、アルミナ約15〜20重量%を
含むシリカ・アルミナ触媒または、ゼオライト約
5〜50%含むシリカ・アルミナ触媒などである。
該触媒は通常5〜200μm、好ましくは20〜150μ
mのものである。 接触分解法による各製品の収率および性状は原
料油の組成、触媒の種類、反応条件の違いによつ
て変化するが、およそその範囲で示せば主製品の
ガソリンの収率は40〜60vol%、分解ガスは15〜
25vol%、分解軽油20〜40vol%、コークス3〜
8wt%である。 ここで言う流動接触分解は、前記した炭化水素
原料を流動状態に保持されている前記触媒と前記
温度、圧力条件で連続的に接触される。この接触
は触媒の流動ベツドで行なう場合と、触媒粒子と
原料が共に管中を上昇するいわゆるライザークラ
ツキングを採用する場合がある。このように接触
反応を受けた反応物、未反応原料および触媒の混
合物は一般的にストリツピング帯域に送入され、
生成物、未反応物等の炭化水素類の大部分が除去
される。炭素質および一部重質の炭化水素類が付
着した触媒は該ストリツピング帯域から連続的に
抜き出され、再生帯域に送入される。再生帯域
(再生塔)においては、該炭素質の付着した触媒
の酸化処理がほどこされる。この再生帯域におい
ても触媒は流動状態を保持され通常空気により温
度560〜650℃で燃焼処理がほどこされる。この酸
化処理を受けた触媒が再生触媒であり、触媒上に
沈着した炭素質および炭化水素類が減少されたも
のである。この再生触媒は前記反応帯域に連続的
に循環される。 本発明の重質石油類の流動接触分解において、
反応塔と再生塔の間を循環する流動触媒の一部を
ストリツパー出口あるいは再生塔出口あるいはそ
の他の装置運転上支障を来たさない適当な場所よ
り抜き出す。 この場合連続的に抜き出しても、製品に悪影響
を及ぼさない範囲で一定間隔をおいて非連続的に
抜き出しても良い。抜き出された触媒を、そのま
まかあるいは高勾配磁気分離機にかける前に、あ
らかじめなんらかの処理をすることもできる。 該高勾配磁気分離機とは均一な高磁場空間内に
強磁性の充填物を置き、充填物の周囲に通常2000
×103〜20000×103ガウス/cmもの高い磁場勾配
を生じさせることにより充填物の表面に強磁性あ
るいは常磁性微小粒子の着磁物を着磁させて、非
着磁物の弱常磁性微小粒子あるいは反磁性微小粒
子からそれらを分離することができるように設計
された磁気分離機である。高勾配磁気分離機の例
としては、SALA社により製作販売されている高
勾配磁気分離機をあげることができる。 強磁性物質でできた網状充填物とは、強磁性物
質でできていれば材質は問わないが、たとえばス
テンレススチールでできたエキスパンドメタルな
どがある。 該網状充填物の網の線径は通常10〜1000μm
で、好ましくは50〜700μmである。該網状充填
物の網目は、触媒粒子が充填物を通り抜けて処理
されるためには通常3〜80メツシユ、好ましくは
5〜50メツシユの範囲にあることが必要であり、
網目が80メツシユより小さければ非着磁物も機械
的にとどまつてしまい、また3メツシユより大き
ければ充填物に効率よく着磁せずに通り抜けるも
のが多くなつてしまう。 該網状充填物は一枚以上積層するが、場合によ
つては網状充填物の間にスペーサー等をいれて、
一定の間隔をあけることもある。 磁気分離は、触媒を移送流体とともに磁場空間
内を通すことで行われる。移送流体は触媒に悪い
影響を及ぼさないものが選ばれ、また経済性、安
全性の面から言つて空気、スチーム、窒素および
それらの混合物が用いられる。 磁気分離機を運転する際のプロセス変数として
は、通常磁場強度、磁場勾配、粒子濃度、移送流
体線速度、処理温度があり、触媒粒径、堆積金属
の種類と状態および量、目的とする分離レベル、
分離の選択性により、プロセス変数の最適値は大
きく変動する。 磁場強度とは充填物が置かれている空間内の磁
場の強さのことであり、通常1000ガウス以上、好
ましくは2000ガウス以上である。 磁場勾配とは充填物の周囲に生じる磁場の強さ
の距離による変化量であり網状充填物の線径と密
接な関係をもつが、一般に線径が小さいほど磁場
勾配は大きくなる。通常2000×103〜20000×103
ガウス/cmである。 粒子濃度とは移送流体中での触媒粒子の濃度を
言う。通常0.01〜500g/好ましくは0.1〜100
g/である。また磁場空間内を通過する際の移
送流体の線速度を変化させることで、分離レベ
ル、分離の選択性を大きく変えることが出来る。
通常0.01〜100m/sec好ましくは0.1〜50m/sec
である。線速が、0.01m/secより小さい場合、
非着磁物も機械的にとどまり、100m/sec以上だ
と、着磁物のほとんどが通り抜けてしまい、分離
のレベル、分離の選択性ともに実用に適さない。 処理温度は磁気分離の対象である触媒粒子の温
度をさし厳密には、触媒粒子に堆積するニツケ
ル、バナジウム、鉄、銅の温度をいう。処理温度
はこれらの金属のキユリー温度以下が好ましく通
常は常温が用いられる。 高勾配磁気分離機は、流動接触分解装置のライ
ンに組み込んで使用しても良いし、組み込まずに
バツチで稼動してもよい。抜き出された触媒は高
勾配磁気分離機によりニツケル、バナジウム、
鉄、銅が多量に堆積している触媒粒子である着磁
物とこれらの金属が多量に堆積していない触媒粒
子である非着磁物に分けられるが着磁物と非着磁
物の重量比は1対1000から1000対1の範囲に及ぶ
ことがある。好ましくは1対100から100対1の範
囲内で分離することである。 着磁性触媒粒子の金属堆積量は、流動接触分解
反応における使用触媒種、目的製品反応条件等で
大きく変わるがニツケル当量にして通常0.05〜
20wt%好ましくは0.1〜5wt%の範囲にある。な
おここで言うニツケル当量とは次式で示される値
である。 ニツケル当量=〔Ni〕+0.25×〔V〕 +0.1×〔Fe〕+0.1×〔Cu〕 (〔Ni〕、〔V〕、〔Fe〕、〔Cu〕は各々、ニツケル、
バナジウム、鉄、銅の濃度を表わす。) 分離後の非着磁物は金属堆積量が比較的少な
く、未だ高い活性と選択性を有しているため循環
系へ戻して再使用する。 この場合分離除去した着磁物と等量の新触媒あ
るいは再生触媒をメイクアツプして循環系内の触
媒量を抜き出し前と同じ量にして流動バランスが
崩れるのを防ぎ、触媒活性の低下を防ぐことが通
常行なわれる。 循環系へ触媒を張込む場所は再生塔入口、再生
塔出口トランスフアーラインあるいはその他熱バ
ランス、流動バランスに影響を及ぼし難い個所が
選ばれる。 次に磁気分離後の着磁物は廃棄しても良いし、
イオン交換、塩素化、硫化、CO化、酸化、還元
等の方法で堆積金属を触媒から脱離後、再使用し
ても良い。 再生を行なう場合、再生装置は高勾配磁気分離
機に連結されラインに組み込まれていても良い
し、切り離されてバツチで運転されても良い。 実施例 1 約5wt%のゼオライトを含有するシリカ−アル
ミナ流動接触分解触媒を用い、流動接触分解パイ
ロツト装置により循環触媒の一部を新触媒と交換
しながら常圧蒸留残渣油の接触分解を行つた。 また抜き出し触媒を、高勾配磁気分離機で、着
磁物と非着磁物がほぼ等量ずつ分離できるような
条件で処理した。充填物としてステンレススチー
ル製のエキスパンドメタルを用い、移送流体とし
て空気を用いた。 また抜き出し触媒、着磁物、非着磁物の3者に
つき、ニツケル、バナジウムの量を分析しさらに
固定床マイクロリアクターによる活性評価を行な
つた。以上の結果を表−1に示す。
The present invention relates to an improvement in a fluid catalytic cracking method for heavy petroleum products. Fluid catalytic cracking is a process in which petroleum-based hydrocarbons are cracked by contacting them with a catalyst to yield desirable products, mostly gasoline, liquefied petroleum gas, alkylation feedstock, and middle distillate mixtures. Light oil is usually used as the feedstock for fluid catalytic cracking. The term "light oil" here refers to heavy gas oil from atmospheric distillation equipment, distilled oil such as vacuum gas oil from vacuum distillation equipment, or hydrogenated products of these as necessary, and has a boiling point range of 220° to 600°C. ,specific gravity
It is about 0.8 to 1.0. However, while the crude oil produced has tended to become heavier in recent years, demand for hydrocarbon oils with a boiling point fraction lower than diesel oil has increased relatively due to environmental issues and ease of use. Using it as a raw material for decomposition has caused problems in terms of raw material resources. Also, from the perspective of energy conservation, the effective use of heavy petroleum products has become an important issue. Under such circumstances, attempts are being made to use heavy petroleum as a raw material for fluid catalytic cracking as one of the heavy oil treatment processes. When fluid catalytic cracking of heavy petroleum is carried out, the phenomenon in which nickel, vanadium, iron, and copper contained in the feedstock oil is deposited on the catalyst is particularly noticeable. Normally crude oil contains 5 to 500 ppm of nickel, 5 to 500 ppm of nickel,
1500ppm vanadium, 1~100ppm iron, 0.1~
Contains 10ppm copper. In addition, petroleum feedstocks tend to contain dissolved iron in equipment due to contact with transportation, storage, and processing equipment, so the iron content in the feedstock greatly exceeds the above values. Since these metals tend to remain undistilled during processing, the residual oil contains two to four times or more metals than the raw crude oil. For example, distillation residue oils can contain as much as 1000 to 2000 ppm vanadium. These metals usually exist as organometallic compounds including polyphyllin ring structures, and when they come into contact with the catalyst at high temperatures, they decompose, and the metals adhere and accumulate on the catalyst. These metals not only reduce the activity of the catalyst but also reduce the selectivity of the catalyst.
In other words, these metals have the ability to hydrogenate and dehydrogenate, and under the reaction conditions of fluid catalytic cracking, they promote the dehydrogenation reaction of hydrocarbons, resulting in the production of undesirable hydrogen gas and coke. The amount increases;
The yield of preferred LPG, gasoline, and kerosene will decrease. As mentioned above, the problem of accumulation of metals on the catalyst that have a detrimental effect on the reaction is not a very important problem in fluid catalytic cracking of gas oil. This is because gas oil has a low metal content, so the amount of metal deposited on the catalyst is generally small, and the amount of catalyst replacement required is also small. In fact, in fluid catalytic cracking of light oil,
The negative effects caused by metal build-up on the catalyst can be avoided by simply replenishing an amount of fresh catalyst that corresponds to the amount of catalyst that would inevitably spill out of the device. However, in fluid catalytic cracking of heavy oil or residual oil with a high metal content, the amount of metal accumulated in the circulation system is enormous, so special measures are required to maintain the activity and selectivity of the catalyst. It becomes necessary. The usual means for this is to periodically or constantly extract a portion of the catalyst and replace it with fresh or regenerated catalyst (e.g., regenerated by ion exchange or redox methods) to maintain activity at a constant level. However, it is necessary to significantly increase the amount of catalyst extracted, which is extremely disadvantageous in terms of cost. Therefore, the problem of metal deposition on the catalyst becomes a particularly serious problem in fluid catalytic cracking of heavy oil or residual oil with a high metal content. As a means to solve this problem, a method of suppressing the activity of metal deposited on the catalyst is known. Specifically, in order to passivate the deposited metal and eliminate its activity, there are a method in which a passivating agent is included in the catalyst in advance, and a method in which a passivating agent is added into the fluid catalytic cracking system. This type of method has already been used in JP-A Nos. 52-68092, 53-26801, and 53-
104588 and 53-142406, and it has been confirmed that it is an effective method. However, although this type of method extends the life of the catalyst, some part of the catalyst must be periodically replaced with fresh or regenerated catalyst to maintain a constant level of catalyst activity. Must not be. During this exchange, the catalyst containing the catalyst that is still highly active is extracted, so this problem still remains and is not an essential solution. The present inventors conducted intensive research to solve the above problems, and as a result, devised a completely new means and completed a new catalytic cracking method. That is, according to the present invention, in a method for fluid catalytic cracking of heavy petroleum, a cracking catalyst with a particle size of 5 to 200 μm is used, and a fluid catalytic cracking apparatus comprising a reaction zone, a separation zone, a stripping zone, and a catalyst regeneration zone is A part of the flowing catalyst particles is extracted, and the extracted catalyst particles are transferred to a particle concentration of 0.01 to 500 g/sec and a transfer fluid velocity of 0.01 to 100 m/sec by a transfer fluid selected from the group consisting of air, steam, nitrogen, or a mixture thereof. In this case, a wire made of ferromagnetic material with a diameter of 10 to 1000 μm is placed in a uniform high magnetic field space.
The extracted catalyst particles are sent to a high-gradient magnetic separator equipped with one or more 80-mesh mesh packing stacked one on top of the other, thereby separating the extracted catalyst particles from nickel, vanadium, iron, and copper contained in the heavy petroleum. It is characterized by separating into magnetized catalyst particles and non-magnetized particles, which have become magnetized particles by depositing at least one kind of metal selected from the group, and returning the non-magnetized catalyst particles to the decomposition device for reuse. A method for fluid catalytic cracking of heavy petroleum is provided. Hereinafter, magnetized catalyst particles will be simply referred to as magnetized materials, and non-magnetized catalyst particles will be referred to as non-magnetized materials. The term "magnetized material" as used herein refers to catalyst particles that are collected by magnetic force on the surface of a packing placed in the magnetic field space of a high-gradient magnetic separator. In addition, non-magnetized substances refer to catalyst particles that are not collected on the surface of the packing and are discharged as they are outside the system of the high gradient magnetic separator. The method of the present invention will be explained in more detail below. The present inventors separated the catalyst extracted from the circulation system in fluid catalytic cracking of heavy petroleum into magnetized and non-magnetized substances using a high gradient magnetic separator, and separated the extracted catalyst, magnetized and non-magnetized substances. When the catalytic activity of the three types was evaluated using a fixed bed microreactor, the conversion rate was higher in the order of non-magnetized material > extracted catalyst > magnetized material;
It also has excellent selectivity for LPG, gasoline, and kerosene production, and it was found that there is a significant difference in catalytic ability among these three. Furthermore, when the non-magnetized material was returned to the circulation system, it was found that it could be reused without adversely affecting the conversion selectivity, and that the amount of make-up catalyst could be significantly saved. The present invention has been completed based on the above-mentioned novel findings discovered by the present inventors. That is, the method of the present invention can be applied to nickel, vanadium, etc. contained in heavy petroleum. The deposition of iron and copper on the catalyst lowers the conversion rate of the reaction, lowering the yield of gasoline and kerosene and gas oil fractions in the product, and increasing the yield of coke and hydrogen, causing economic losses. ,
In order to prevent problems in the operation of the equipment, a part of the catalyst flowing in the separator is extracted and when it is mixed with new or regenerated catalyst, the extracted catalyst is separated from magnetized substances and non-magnetic substances using a high gradient magnetic separator. By separating the magnetized materials and returning the non-magnetized materials, which still maintain high activity and selectivity, to the cracker for reuse, the increase in coke and hydrogen in the product is suppressed, and the conversion rate of the reaction is reduced. This is a method to save the amount of makeup catalyst while preventing. The heavy petroleum products referred to in the present invention are heavy petroleum products containing a substantial amount of distillation residue components such as asphaltenes, such as atmospheric distillation residue oil of crude oil, vacuum distillation residue oil, and those obtained by hydrodesulfurization of these. Alternatively, it does not contain a substantial amount of distillation residue such as asphaltenes, and is an atmospheric distillate oil, a vacuum distillate oil, a solvent deasphalted oil, a residual oil that has been treated to remove asphaltene by heat treatment or hydrorefining treatment, or a mixture thereof. These are hydrorefined. In the fluid catalytic cracking of the present invention, normal operation is carried out, that is, reaction temperature is 480 to 550°C, pressure is 1 to 3 kg/
cm 2 G, catalyst/oil ratio 1-20, contact time 1-10 seconds. The catalyst may be a catalyst commonly used for catalytic cracking of petroleum, such as a silica-alumina catalyst containing about 15 to 20% by weight of alumina or a silica-alumina catalyst containing about 5 to 50% of zeolite.
The catalyst usually has a thickness of 5 to 200 μm, preferably 20 to 150 μm.
It belongs to m. The yield and properties of each product produced by the catalytic cracking method vary depending on the composition of the feed oil, the type of catalyst, and the reaction conditions, but within this range, the yield of the main product, gasoline, is 40 to 60 vol%. , decomposition gas is 15~
25vol%, cracked light oil 20~40vol%, coke 3~
It is 8wt%. In the fluid catalytic cracking referred to here, the hydrocarbon raw material described above is brought into continuous contact with the catalyst kept in a fluidized state under the temperature and pressure conditions described above. This contact may be carried out in the bed of the catalyst, or by so-called riser cracking, in which the catalyst particles and the raw material rise together in a tube. The mixture of reactants, unreacted raw materials, and catalyst thus catalyzed is generally fed into a stripping zone and
Most of the hydrocarbons such as products and unreacted products are removed. The catalyst loaded with carbonaceous and some heavy hydrocarbons is continuously removed from the stripping zone and sent to the regeneration zone. In the regeneration zone (regeneration tower), the carbonaceous catalyst is subjected to oxidation treatment. In this regeneration zone as well, the catalyst is maintained in a fluidized state and is subjected to combustion treatment at a temperature of 560 to 650°C using normal air. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, in which carbonaceous substances and hydrocarbons deposited on the catalyst have been reduced. This regenerated catalyst is continuously recycled to the reaction zone. In the fluid catalytic cracking of heavy petroleum products of the present invention,
A portion of the fluidized catalyst circulating between the reaction tower and the regeneration tower is extracted from the stripper outlet, the regeneration tower exit, or any other suitable location that does not interfere with the operation of the apparatus. In this case, it may be extracted continuously or discontinuously at regular intervals as long as it does not adversely affect the product. The removed catalyst may be treated as is or before being subjected to a high gradient magnetic separator. The high gradient magnetic separator is a ferromagnetic packing placed in a homogeneous high magnetic field space, and a ferromagnetic packing is placed around the packing.
By generating a magnetic field gradient as high as ×10 3 to 20,000 × 10 3 Gauss/cm, ferromagnetic or paramagnetic microparticles are magnetized on the surface of the filling, and the weak paramagnetism of non-magnetized objects is It is a magnetic separator designed to be able to separate microparticles or diamagnetic microparticles. An example of a high gradient magnetic separator is the high gradient magnetic separator produced and sold by SALA. The net-like filling made of a ferromagnetic substance can be made of any material as long as it is made of a ferromagnetic substance, such as expanded metal made of stainless steel. The wire diameter of the net of the net-like packing is usually 10 to 1000 μm.
The thickness is preferably 50 to 700 μm. The mesh size of the reticulated packing usually needs to be in the range of 3 to 80 meshes, preferably 5 to 50 meshes, in order for the catalyst particles to pass through the packing and be processed.
If the mesh size is smaller than 80 meshes, non-magnetized substances will be mechanically retained, and if the mesh size is larger than 3 meshes, more particles will pass through the filling without being efficiently magnetized. One or more sheets of the net-like filling are laminated, but in some cases, a spacer or the like is inserted between the net-like fillings,
Sometimes there is a certain interval. Magnetic separation is performed by passing the catalyst along with a transport fluid through a magnetic field space. The transfer fluid is selected to have no adverse effect on the catalyst, and air, steam, nitrogen, and mixtures thereof are used from the viewpoint of economy and safety. Process variables when operating a magnetic separator typically include magnetic field strength, magnetic field gradient, particle concentration, transport fluid linear velocity, and processing temperature, as well as catalyst particle size, type, state, and amount of deposited metal, and desired separation. level,
Depending on the selectivity of the separation, the optimal values of process variables vary widely. The magnetic field strength refers to the strength of the magnetic field in the space in which the filling is placed, and is usually 1000 Gauss or more, preferably 2000 Gauss or more. The magnetic field gradient is the amount of change in the strength of the magnetic field generated around the filling depending on the distance, and is closely related to the wire diameter of the net-like packing, but generally the smaller the wire diameter, the larger the magnetic field gradient. Usually 2000×10 3 ~20000×10 3
Gauss/cm. Particle concentration refers to the concentration of catalyst particles in the transfer fluid. Usually 0.01-500g/preferably 0.1-100
g/. Furthermore, by changing the linear velocity of the transferred fluid as it passes through the magnetic field space, the separation level and separation selectivity can be greatly changed.
Usually 0.01~100m/sec Preferably 0.1~50m/sec
It is. If the linear velocity is less than 0.01m/sec,
Non-magnetized substances are also mechanically trapped, and if the speed is over 100 m/sec, most of the magnetized substances will pass through, making both the separation level and separation selectivity unsuitable for practical use. The processing temperature refers to the temperature of the catalyst particles that are the subject of magnetic separation, and more precisely, it refers to the temperature of nickel, vanadium, iron, and copper deposited on the catalyst particles. The treatment temperature is preferably below the Curie temperature of these metals, and usually room temperature is used. The high gradient magnetic separator may be integrated into the fluid catalytic cracker line or may be operated in batches without integration. The extracted catalyst is separated into nickel, vanadium,
The weight of magnetized and non-magnetized materials is divided into magnetized materials, which are catalyst particles with large amounts of iron and copper deposited, and non-magnetized materials, which are catalyst particles with no large amount of these metals deposited. The ratio can range from 1:1000 to 1000:1. Preferably, the separation is within a range of 1:100 to 100:1. The amount of metal deposited on magnetized catalyst particles varies greatly depending on the type of catalyst used in the fluid catalytic cracking reaction, the reaction conditions of the target product, etc., but it is usually 0.05 to 0.05 in terms of nickel equivalent.
20wt% preferably in the range of 0.1-5wt%. Note that the nickel equivalent referred to here is a value expressed by the following formula. Nickel equivalent = [Ni] + 0.25 × [V] + 0.1 × [Fe] + 0.1 × [Cu] ([Ni], [V], [Fe], and [Cu] are respectively nickel,
Represents the concentration of vanadium, iron, and copper. ) The unmagnetized material after separation has a relatively small amount of metal deposited and still has high activity and selectivity, so it is returned to the circulation system and reused. In this case, make up the same amount of new or regenerated catalyst as the separated and removed magnetized material to keep the amount of catalyst in the circulation system the same as before extraction to prevent the flow balance from being disrupted and the catalyst activity from decreasing. is usually done. The location where the catalyst is introduced into the circulation system is selected from the regeneration tower inlet, the regeneration tower exit transfer line, or other locations where the heat balance and flow balance are unlikely to be affected. Next, the magnetized material after magnetic separation can be discarded,
The deposited metal may be reused after being removed from the catalyst by methods such as ion exchange, chlorination, sulfidation, CO conversion, oxidation, and reduction. In the case of regeneration, the regenerator may be connected to the high gradient magnetic separator and integrated into the line, or it may be separated and operated in batches. Example 1 Using a silica-alumina fluid catalytic cracking catalyst containing about 5 wt% zeolite, atmospheric distillation residue oil was catalytically cracked using a fluid catalytic cracking pilot device while replacing a part of the circulating catalyst with a new catalyst. . Further, the extracted catalyst was treated in a high gradient magnetic separator under conditions such that almost equal amounts of magnetized materials and non-magnetized materials could be separated. Expanded metal made of stainless steel was used as the filler, and air was used as the transfer fluid. Furthermore, the amounts of nickel and vanadium were analyzed for the extracted catalyst, magnetized material, and non-magnetized material, and the activity was evaluated using a fixed bed microreactor. The above results are shown in Table-1.

【表】 条件の組み合せにより異なつた条件でも同じよ
うな分離が出来ることがわかる。 非着磁物は転化率、炭素生成率(CPF)、水素
発生量ともに新触媒に近い値を有しており、再使
用に十分耐えうる活性と選択性を保持しているこ
とがわかる。 なお原料油にはガツチサラン常圧残油を用い
た。原料油性状は次のとおりである。 比 重 0.967 硫黄分(wt%) 2.68 残留炭素(wt%) 10.93 ニツケル(wt ppm) 45 バナジウム(wt ppm) 225 実施例 2 約5wt%のゼオライトを含有するシリカ−アル
ミナ流動接触分解触媒を用い、流動接触分解パイ
ロツト装置により循環触媒の一部を新触媒と交換
しながら残油の接触分解を行なつた。 この場合表−2左欄の生成物を得るのに処理油
1バーレルあたり1.5ポンドの新触媒を必要とし
た。 次に流動接触分解パイロツト装置に高勾配磁気
分離機を組み込み、抜き出した触媒を実施例1の
例1と同じ条件で高勾配磁気分離機により着磁物
と非着磁物に分け、非着磁物を循環系内へ戻して
再使用した。この場合、高勾配磁気分離機を用い
ない時とほぼ同様の生成物を得るのに、処理油1
バーレルあたり0.8ポンドの新触媒を必要とした。 したがつて高勾配磁気分離機を用いるとメイク
アツプの触媒量を大巾に節約できることがわか
る。 なお原料油にはガツチサラン常圧残油(実施例
1と同じ)を用いた。
[Table] It can be seen that similar separations can be achieved under different conditions depending on the combination of conditions. The non-magnetized material has values close to those of the new catalyst in terms of conversion rate, carbon production rate (CPF), and hydrogen generation amount, indicating that it maintains sufficient activity and selectivity to withstand reuse. Note that Gatsuchi Saran atmospheric residual oil was used as the raw material oil. The raw material oil properties are as follows. Specific gravity 0.967 Sulfur content (wt%) 2.68 Residual carbon (wt%) 10.93 Nickel (wt ppm) 45 Vanadium (wt ppm) 225 Example 2 Using a silica-alumina fluid catalytic cracking catalyst containing about 5 wt% zeolite, Catalytic cracking of the residual oil was carried out using a fluid catalytic cracking pilot unit while replacing part of the circulating catalyst with new catalyst. In this case, 1.5 pounds of new catalyst was required per barrel of treated oil to obtain the products shown in the left column of Table 2. Next, a high gradient magnetic separator was installed in the fluid catalytic cracking pilot equipment, and the extracted catalyst was separated into magnetized materials and non-magnetized materials by the high gradient magnetic separator under the same conditions as Example 1 of Example 1. The material was returned to the circulatory system for reuse. In this case, the treated oil 1
Required 0.8 pounds of new catalyst per barrel. Therefore, it can be seen that the amount of make-up catalyst can be greatly reduced by using a high gradient magnetic separator. Note that Gatsuchisaran atmospheric residual oil (same as in Example 1) was used as the raw material oil.

【表】 実施例 3 実施例1で抜き出した触媒を高勾配磁気分離機
でいくつかの条件で処理した。それによつて得ら
れた着磁物についてニツケル、バナジウム量の分
析および活性評価を行なつた。なお、充填物とし
てはステンレススチール製の線径700μm、10メ
ツシユのエキスパンドメタルを用い、移送流体と
しては空気を用いた。結果を表−3に示す。
[Table] Example 3 The catalyst extracted in Example 1 was treated in a high gradient magnetic separator under several conditions. The magnetized material thus obtained was analyzed for nickel and vanadium content and its activity was evaluated. Note that expanded metal made of stainless steel with a wire diameter of 700 μm and 10 meshes was used as the filler, and air was used as the transfer fluid. The results are shown in Table-3.

【表】 なおここで言う着磁物割合とは、処理触媒量に
対する着磁物の割合のことである。 条件を変えることで異つた金属含有量をもつ触
媒を分離することができる。
[Table] The term "magnetized material ratio" as used herein refers to the ratio of magnetized material to the amount of catalyst treated. Catalysts with different metal contents can be separated by changing the conditions.

Claims (1)

【特許請求の範囲】 1 重質石油類の流動接触分解方法において、粒
径5〜200μmの分解触媒を用い、反応帯域、分
離帯域、ストリツピング帯域、触媒再生帯域を具
備する流動接触分解装置内を流動する触媒粒子の
一部を抜き出し、該抜き出し触媒粒子を、空気、
スチーム、窒素あるいは、その混合物からなる群
より選ばれた移送流体により、粒子濃度0.01〜
500g/および移送流体速度0.01〜100m/sec
で、均一な高磁場空間内に強磁性物質できた線径
10〜1000μmを有する3〜80メツシユの網状充填
物を1枚以上重ねて配置した高勾配磁気分離機に
送り、それによつて該重質石油類に含有されてい
たニツケル、バナジウム、鉄および銅からなる群
の少なくとも一種の金属の堆積により着磁性を帯
びた該抜出し触媒粒子を、式 ニツケル当量=[Ni]+0.25×[V] +0.1×[Fe]+0.1×[Cu] (式中、[Ni]、[V]、[Fe]及び[Cu]は、
各々、触媒粒子に堆積したニツケル、バナジウ
ム、鉄及び銅の重量%で表した濃度である。) で示されるニツケル当量値が0.1〜5重量%であ
る着磁部分と、ニツケル当量値が着磁部分より低
い非着磁部分に分離し、非着磁部分を分解装置に
戻して再使用することを特徴とする重質石油類の
流動接触分解方法。
[Scope of Claims] 1. In a method for fluid catalytic cracking of heavy petroleum, a cracking catalyst with a particle size of 5 to 200 μm is used, and a fluid catalytic cracking apparatus comprising a reaction zone, a separation zone, a stripping zone, and a catalyst regeneration zone is A part of the flowing catalyst particles is extracted, and the extracted catalyst particles are exposed to air,
Particle concentrations from 0.01 to
500g/and transfer fluid velocity 0.01~100m/sec
The diameter of the wire made of ferromagnetic material in a uniform high magnetic field space is
The nickel, vanadium, iron and copper contained in the heavy petroleum are separated from the heavy petroleum by sending it to a high gradient magnetic separator equipped with one or more stacked mesh packings of 3 to 80 meshes with a diameter of 10 to 1000 μm. The extracted catalyst particles are magnetized by the deposition of at least one metal of the group consisting of: Nickel equivalent = [Ni] + 0.25 x [V] + 0.1 x [Fe] + 0.1 x [Cu] ( In the formula, [Ni], [V], [Fe] and [Cu] are
Concentrations in weight percent of nickel, vanadium, iron and copper, respectively, deposited on catalyst particles. ) Separate into a magnetized part with a nickel equivalent value of 0.1 to 5% by weight and a non-magnetized part with a lower nickel equivalent value than the magnetized part, and return the non-magnetized part to the decomposition device for reuse. A method for fluid catalytic cracking of heavy petroleum products, which is characterized by:
JP55187065A 1980-12-30 1980-12-30 Fluidized catalytic cracking method of heavy petroleum Granted JPS57115488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55187065A JPS57115488A (en) 1980-12-30 1980-12-30 Fluidized catalytic cracking method of heavy petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55187065A JPS57115488A (en) 1980-12-30 1980-12-30 Fluidized catalytic cracking method of heavy petroleum

Publications (2)

Publication Number Publication Date
JPS57115488A JPS57115488A (en) 1982-07-17
JPS6337835B2 true JPS6337835B2 (en) 1988-07-27

Family

ID=16199526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55187065A Granted JPS57115488A (en) 1980-12-30 1980-12-30 Fluidized catalytic cracking method of heavy petroleum

Country Status (1)

Country Link
JP (1) JPS57115488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073919A (en) * 2007-09-20 2009-04-09 Nippon Oil Corp Method of fluid catalytic cracking of heavy petroleum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896345B2 (en) * 2000-06-16 2012-03-14 ザ ペン ステイト リサーチ ファンデーション Method and apparatus for producing carbonaceous articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471078A (en) * 1946-06-12 1949-05-24 Standard Oil Dev Co Catalyst quality by magnetic separation
GB940958A (en) * 1960-08-17 1963-11-06 British Petroleum Co Improvements relating to the treatment of catalysts
JPS5688429A (en) * 1979-11-30 1981-07-17 Du Pont Novel gratt copolymer
JPS5730786A (en) * 1980-07-31 1982-02-19 Nippon Oil Co Ltd Method for catalytic reaction of heavy petroleum oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471078A (en) * 1946-06-12 1949-05-24 Standard Oil Dev Co Catalyst quality by magnetic separation
GB940958A (en) * 1960-08-17 1963-11-06 British Petroleum Co Improvements relating to the treatment of catalysts
JPS5688429A (en) * 1979-11-30 1981-07-17 Du Pont Novel gratt copolymer
JPS5730786A (en) * 1980-07-31 1982-02-19 Nippon Oil Co Ltd Method for catalytic reaction of heavy petroleum oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073919A (en) * 2007-09-20 2009-04-09 Nippon Oil Corp Method of fluid catalytic cracking of heavy petroleum

Also Published As

Publication number Publication date
JPS57115488A (en) 1982-07-17

Similar Documents

Publication Publication Date Title
US4359379A (en) Process for fluid catalytic cracking of distillation residual oils
CA1205407A (en) Method and apparatus for converting oil feeds
US4525267A (en) Process for hydrocracking hydrocarbons with hydrotreatment-regeneration of spent catalyst
US5106486A (en) Addition of magnetically active moieties for magnetic beneficiation of particulates in fluid bed hydrocarbon processing
EP0171460A1 (en) Residual oil cracking process using dry gas as lift gas initially in riser reactor
US4482450A (en) Process for catalytic reaction of heavy oils
SE438866B (en) PASSIVATIVE COMPOSITION CONSISTING OF A SILICONE CRACKING CATALYST TATTLE, PROCEDURE FOR ITS PREPARATION AND USE THEREOF IN CRACKING
US4244810A (en) Fluidized catalytic cracking process for increased hydrogen production
KR0126111B1 (en) Process for the fluid catalytic cracking of heavy fraction oils
US2472723A (en) Method for removal of metal compounds from oil feed to fluid catalyst cracking
JPS59108091A (en) Hydrocracking of heavy hydrocarbon
CA1268426A (en) Method for removing iron content in petroleum series mineral oil therefrom
EP0026508A1 (en) Process and apparatus for the demetallization of a hydrocarbon oil
JPS6337835B2 (en)
JP4371807B2 (en) Gasoline sulfur reduction in fluid catalytic cracking.
JPS6024831B2 (en) Catalytic cracking method for heavy petroleum containing distillation residue
JPS6337156B2 (en)
JP4585424B2 (en) Magnetic separation method of fluid catalytic cracking catalyst
US6194337B1 (en) Cracking catalyst with high magnetic susceptibility
JPH06313176A (en) Fluid catalytic cracking of heavy oil
JPH0920893A (en) Fluidized catalytic cracking of heavy petroleum oil
US2488713A (en) Catalytic cracking of residual hydrocarbons
KR830002109B1 (en) Catalytic Decomposition of Heavy Petroleum Oils
US5516420A (en) Magnetically separated equilibrium catalyst for specialized cracking
KR101250173B1 (en) Magnetic separation method of fluidized catalytic cracking catalyst