JP4585424B2 - Magnetic separation method of fluid catalytic cracking catalyst - Google Patents
Magnetic separation method of fluid catalytic cracking catalyst Download PDFInfo
- Publication number
- JP4585424B2 JP4585424B2 JP2005309632A JP2005309632A JP4585424B2 JP 4585424 B2 JP4585424 B2 JP 4585424B2 JP 2005309632 A JP2005309632 A JP 2005309632A JP 2005309632 A JP2005309632 A JP 2005309632A JP 4585424 B2 JP4585424 B2 JP 4585424B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- magnetized
- catalytic cracking
- fluid catalytic
- magnetic separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 155
- 238000007885 magnetic separation Methods 0.000 title claims description 31
- 238000004231 fluid catalytic cracking Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 26
- 239000000463 material Substances 0.000 description 32
- 238000000926 separation method Methods 0.000 description 28
- 239000002245 particle Substances 0.000 description 25
- 239000006148 magnetic separator Substances 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000003921 oil Substances 0.000 description 17
- 239000012530 fluid Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 230000005291 magnetic effect Effects 0.000 description 13
- 238000012856 packing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000295 fuel oil Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000001465 metallisation Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000004032 porphyrins Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は磁気分離装置を具備する重質石油類の流動接触分解プロセスにおいて、流動接触分解装置から抜き出される触媒の磁気分離方法に関するものである。 The present invention relates to a method for magnetic separation of a catalyst extracted from a fluid catalytic cracking apparatus in a fluid catalytic cracking process of heavy petroleum having a magnetic separation apparatus.
流動接触分解は、石油系炭化水素を触媒と接触させることによって分解し、ガソリン、液化石油ガス、アルキル化原料、中間留分混合物等の生成物を得る方法である。
近年、環境問題や利用の容易さにより軽油以下の沸点留分を持つ炭化水素油類の需要が相対的に増加しており、重質油をいかに軽質油に転化するかが重要な課題となっている。そのような中で、重質油処理プロセスのひとつとして重質石油類を原料とする流動接触分解の重要性が増している。
重質石油類の流動接触分解を行う場合、原料油中に含まれるニッケル、バナジウム、鉄、銅などの金属が触媒上に堆積する現象が、特に顕著に見られる。これらの金属は原油もしくは輸送貯蔵および処理装置との接触に由来するもので、通常ポルフィリン環構造をはじめとする有機金属化合物として存在しており、触媒と高温で接触すると分解して、金属は触媒上に堆積していく。
Fluid catalytic cracking is a method of cracking petroleum hydrocarbons by contacting them with a catalyst to obtain products such as gasoline, liquefied petroleum gas, alkylated feedstock, middle distillate mixture and the like.
In recent years, due to environmental problems and ease of use, the demand for hydrocarbon oils with boiling fractions below that of light oil has increased relatively, and how to convert heavy oil to light oil has become an important issue. ing. Under such circumstances, the importance of fluid catalytic cracking using heavy petroleum as a raw material is increasing as one of heavy oil treatment processes.
When fluid catalytic cracking of heavy petroleum is performed, a phenomenon in which metals such as nickel, vanadium, iron, and copper contained in the raw material oil are deposited on the catalyst is particularly noticeable. These metals are derived from contact with crude oil or transportation storage and processing equipment, and usually exist as organometallic compounds including porphyrin ring structure, and decompose when contacted with catalyst at high temperature. Accumulate on top.
これらの金属は触媒の活性を低下させるだけでなく、触媒の選択性も低下させる。すなわち、これらの金属は水素化、脱水素化能を有しており、流動接触分解の反応条件では、炭化水素の脱水素反応を促進し、その結果、生成物として好ましくない水素ガスやコークの生成量が増加し、好ましい液化石油ガス、ガソリン、灯軽油の生成量が減少する。
このような触媒活性の低下や選択性の低下を避けるために、金属含有量の多い重質油あるいは残油の流動接触分解においては、通常循環系内の触媒の一部を定期的あるいは定常的に抜き出し、新触媒と交換して活性を一定に維持する方法が採用されているが、触媒の抜き出し量を著しく多くする必要があり、非常に高いコストとなっている。また抜き出された触媒(以下、平衡触媒という。)の廃棄は、産業廃棄物となるため、その処理にはさらにコストがかかる結果となっている。
These metals not only reduce the activity of the catalyst, but also reduce the selectivity of the catalyst. That is, these metals have hydrogenation and dehydrogenation capabilities, and under the reaction conditions of fluid catalytic cracking, they promote hydrocarbon dehydrogenation, resulting in undesirable hydrogen gas and coke as products. The production amount increases and the production amount of preferred liquefied petroleum gas, gasoline, and kerosene oil decreases.
In order to avoid such a decrease in catalytic activity and a decrease in selectivity, in fluid catalytic cracking of heavy oil or residual oil with a high metal content, a part of the catalyst in the circulation system is usually periodically or regularly. However, it is necessary to remarkably increase the amount of catalyst extracted, which is very expensive. In addition, disposal of the extracted catalyst (hereinafter referred to as an equilibrium catalyst) becomes industrial waste, which results in further costs.
触媒は、通常30μmから150μmの粒子径を有しているが、装置内で反応に用いられることによってその強度が低下し、装置内滞留時間の長い触媒ほど粒子径は小さくなる。その結果、装置内滞留時間分布の長い触媒は、粒子径30μm以下の極めて小さい粒子径触媒の割合が多くなり、装置外への飛散や未分解油中に混入することによって、装置内触媒のロスやC重油中への触媒混入などの問題が起こっている。なお、ここでいう触媒粒子径とは、メッシュサイズの異なる9種類のフィルターを用いて、各粒子径の分布から算出するものである。 The catalyst usually has a particle size of 30 μm to 150 μm, but its strength is reduced by being used in the reaction in the apparatus, and the particle diameter becomes smaller as the catalyst has a longer residence time in the apparatus. As a result, a catalyst with a long residence time distribution in the apparatus has a large proportion of a very small particle diameter catalyst having a particle diameter of 30 μm or less, which is lost to the outside of the apparatus or mixed in undecomposed oil. And problems such as catalyst contamination in C heavy oil are occurring. The catalyst particle diameter here is calculated from the distribution of each particle diameter using nine types of filters having different mesh sizes.
この課題を解決する手段として、平衡触媒を原料油の重質石油類に含有されていたニッケル、バナジウム等の金属が多量に堆積して着磁物となった着磁触媒と金属の堆積が少ないため着磁しなかった非着磁触媒とに磁気分離装置を用いて分離し、非着磁触媒を再生後、流動接触分解装置に戻して再使用する方法が知られている(例えば、特許文献1および特許文献2参照。)。
前記の磁気分離装置を使用した触媒の分離方法は有効な方法であることが確認されているが、この方法を用いてニッケル、バナジウム等の金属が多量に堆積して着磁物となった着磁触媒と金属の堆積が少ないため着磁しなかった非着磁触媒とに分離する場合、分離効率は必ずしも十分とはいえず、特に再生使用される非着磁触媒の接触分解活性が新触媒に対して劣ることを考えれば、磁気分離装置において非着磁触媒とする量を増加させることができないため廃棄される平衡触媒量を減少できないという問題点があった。
The catalyst separation method using the magnetic separation device has been confirmed to be an effective method, but by using this method, a large amount of metal such as nickel and vanadium is deposited to form a magnetized material. When separating a magnetic catalyst and a non-magnetized catalyst that has not been magnetized due to low metal deposition, the separation efficiency is not always sufficient, and the catalytic cracking activity of the re-used non-magnetized catalyst is particularly new. However, since the amount of the non-magnetized catalyst cannot be increased in the magnetic separator, there is a problem that the amount of the equilibrium catalyst discarded cannot be reduced.
本発明は、流動接触分解触媒の磁気分離装置における分離効率を更に向上させ、その結果、再生使用される触媒量の増加を可能とすることにより平衡触媒の廃棄量を削減することを目的とするものである。また分離効率を向上させることによって、再生使用される触媒中の粒子径30μm以下の極めて小さい粒子径触媒の割合を減少させることを目的とするものである。 It is an object of the present invention to further improve the separation efficiency of a fluid catalytic cracking catalyst magnetic separation device, and as a result, to reduce the amount of equilibrium catalyst discarded by enabling an increase in the amount of regenerated catalyst. Is. Another object of the present invention is to reduce the proportion of a very small particle size catalyst having a particle size of 30 μm or less in the regenerated catalyst by improving the separation efficiency.
本発明者等は、鋭意研究を行った結果、磁気分離装置を具備する流動接触分解プロセスにおいて、流動接触分解装置から抜き出される触媒を磁気分離する際に、平衡触媒の水分を5質量%以下とすることで触媒の分離効率が大幅に向上することを見出し、本発明を完成するに至った。
すなわち、本発明は、磁気分離装置を具備する流動接触分解プロセスにおいて、流動接触分解装置から抜き出された触媒の水分量を5質量%以下に調整したのち磁気分離装置に導入することを特徴とする流動接触分解触媒の磁気分離方法に関する。
As a result of intensive studies, the present inventors have determined that the water content of the equilibrium catalyst is 5% by mass or less when magnetically separating the catalyst extracted from the fluid catalytic cracking device in the fluid catalytic cracking process equipped with the magnetic separation device. As a result, it was found that the separation efficiency of the catalyst was greatly improved, and the present invention was completed.
That is, the present invention is characterized in that, in a fluid catalytic cracking process equipped with a magnetic separator, the water content of the catalyst extracted from the fluid catalytic cracker is adjusted to 5% by mass or less and then introduced into the magnetic separator. The present invention relates to a magnetic separation method for a fluid catalytic cracking catalyst.
以下に本発明を詳細に説明する。
本発明の方法は、磁気分離装置を具備する流動接触分解プロセスに適用される。磁気分離装置を具備する一般的な流動接触分解プロセスとしては、まず重質石油類を流動接触分解装置中で流動状態に保持されている触媒と接触させて分解し、次に分解生成物、未反応原料および触媒の混合物をストリッピング処理することにより分解生成物および未反応物の大部分を除去する。炭素質および一部重質炭化水素類が付着した触媒は、ストリッピング帯域から抜き出されたのち、磁気分離装置に送られる。磁気分離装置では金属が多量に堆積して着磁物となった着磁触媒と金属の堆積が少ないため着磁しなかった非着磁触媒とに分離して、非着磁触媒は再生塔に送入される。再生塔においては、触媒上に付着した炭素質および重質炭化水素類を減少させるため酸化処理が施される。この再生塔における触媒は流動状態が保持され、通常空気により550〜850℃で燃焼処理が施される。この酸化処理を受けた触媒が再生触媒であり、この再生触媒は前記流動接触分解装置の反応帯域に戻される。
本発明は、流動接触分解装置から抜き出された触媒を磁気分離装置に送入する前に、抜き出された触媒の水分量を5質量%以下に調整したのち、磁気分離装置に導入することにより、着磁触媒と非着磁触媒の分離効率を著しく改善したものである。
The present invention is described in detail below.
The method of the present invention is applied to a fluid catalytic cracking process equipped with a magnetic separator. As a general fluid catalytic cracking process equipped with a magnetic separation device, first, heavy petroleum is contacted with a catalyst held in a fluid state in the fluid catalytic cracking device, and then decomposed. Most of the decomposition products and unreacted products are removed by stripping the reaction raw material and catalyst mixture. The catalyst to which the carbonaceous and partially heavy hydrocarbons are attached is extracted from the stripping zone and then sent to the magnetic separation device. The magnetic separation device separates the magnetized catalyst, which is a large amount of metal deposited into a magnetized material, and the non-magnetized catalyst that has not been magnetized because there is little metal deposition. Sent in. In the regeneration tower, an oxidation treatment is performed to reduce carbonaceous and heavy hydrocarbons adhering to the catalyst. The catalyst in the regeneration tower is kept in a fluid state, and is usually burned at 550 to 850 ° C. with air. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, and this regenerated catalyst is returned to the reaction zone of the fluid catalytic cracking apparatus.
In the present invention, before the catalyst extracted from the fluid catalytic cracking apparatus is fed to the magnetic separation apparatus, the moisture content of the extracted catalyst is adjusted to 5% by mass or less and then introduced into the magnetic separation apparatus. Thus, the separation efficiency of the magnetized catalyst and the non-magnetized catalyst is remarkably improved.
原料として用いられる重質石油類としては、ニッケル、バナジウム等の重金属、アスファルテン等の蒸留残渣分を含む重質石油類が用いられる。具体的には、原油の常圧蒸留残渣油、減圧蒸留残渣油、若しくはこれらを水素化処理したもの、あるいはそれらの混合物などが挙げられる。
原料と触媒の接触方式としては、触媒の流動ベッドで行う場合と、触媒粒子と原料が共に管中を移動するライザークラッキングのような方式を採用する場合があるが、本発明はいずれの方式にも適用される。
流動接触分解装置の反応条件は特に限定されるものではなく通常の反応条件が採用される。例えば、反応温度480〜650℃、圧力0.1〜0.3MPa、触媒/油比1〜20、接触時間0.1〜10秒が挙げられる。
触媒は、石油類の接触分解に通常用いられる触媒であれば良く、例えば、ゼオライト系触媒等が挙げられる。また触媒の粒子径についても特に限定されないが、通常5〜200μm、好ましくは30〜150μmである。
As heavy petroleums used as raw materials, heavy petroleums containing heavy metals such as nickel and vanadium, and distillation residues such as asphaltenes are used. Specifically, crude oil atmospheric distillation residue oil, vacuum distillation residue oil, those obtained by hydrotreating these, or a mixture thereof can be used.
As a contact method of the raw material and the catalyst, there are a case where the method is performed in a fluidized bed of the catalyst and a method such as riser cracking in which both the catalyst particles and the raw material move in the pipe. Also applies.
The reaction conditions of the fluid catalytic cracker are not particularly limited, and normal reaction conditions are employed. For example, the reaction temperature is 480 to 650 ° C., the pressure is 0.1 to 0.3 MPa, the catalyst / oil ratio is 1 to 20, and the contact time is 0.1 to 10 seconds.
The catalyst may be any catalyst that is usually used for catalytic cracking of petroleums, and examples thereof include zeolite catalysts. The particle size of the catalyst is not particularly limited, but is usually 5 to 200 μm, preferably 30 to 150 μm.
本発明においては、流動接触分解装置から抜き出された触媒(平衡触媒)の水分量を5質量%以下に調整したのち磁気分離装置に導入する。水分量は3質量%以下がより好ましく、1質量%以下が特に好ましい。水分量が5質量%より多くなると、冷却によって平衡触媒の温度が低下した際に、平衡触媒中に含まれている水蒸気が凝集し、平衡触媒の触媒粒子重量が変化するため、分離効率が悪くなり、本発明の効果が得られない。 In the present invention, the water content of the catalyst (equilibrium catalyst) extracted from the fluid catalytic cracking device is adjusted to 5% by mass or less and then introduced into the magnetic separation device. The water content is more preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the water content exceeds 5% by mass, when the temperature of the equilibrium catalyst is lowered by cooling, water vapor contained in the equilibrium catalyst aggregates and the weight of catalyst particles of the equilibrium catalyst changes, resulting in poor separation efficiency. Thus, the effect of the present invention cannot be obtained.
また、本発明においては、磁気分離装置に導入される平衡触媒の温度を100℃以下に調整したのち磁気分離装置に導入するのが好ましい。平衡触媒の温度は80℃以下がより好ましく、60℃以下が特に好ましい。平衡触媒の温度が100℃よりも高いと、冷却によって平衡触媒の温度が低下した場合、平衡触媒中に含まれている水蒸気が凝集し、平衡触媒の触媒粒子重量が変化するため分離効率が悪くなるおそれがある。また下限の温度については特に制限は無いが、10℃以上が好ましく、20℃以上がより好ましい。 In the present invention, it is preferable that the temperature of the equilibrium catalyst introduced into the magnetic separation apparatus is adjusted to 100 ° C. or lower and then introduced into the magnetic separation apparatus. The temperature of the equilibrium catalyst is more preferably 80 ° C. or less, and particularly preferably 60 ° C. or less. When the temperature of the equilibrium catalyst is higher than 100 ° C., when the temperature of the equilibrium catalyst is lowered by cooling, water vapor contained in the equilibrium catalyst aggregates and the weight of the catalyst particles of the equilibrium catalyst changes, resulting in poor separation efficiency. There is a risk. Moreover, there is no restriction | limiting in particular about the minimum temperature, However, 10 degreeC or more is preferable and 20 degreeC or more is more preferable.
平衡触媒の水分量を所定の値にする方法は特に限定されるものではなく、いかなる方法を用いても良い。例えば、デガッサーを用いて水分量を5質量%以下とする方法が挙げられる。デガッサーとは、外面に熱放散のためのフィンを有するドラムであり、内部に乾燥した空気を吹き込むことによって、流動接触分解装置から抜き出した平衡触媒中に含まれている水分の低減と平衡触媒温度を低下させる装置である。また、平衡触媒の温度をより冷却する目的で、さらにクーラーを設置しても良い。 The method for setting the water content of the equilibrium catalyst to a predetermined value is not particularly limited, and any method may be used. For example, a method of setting the moisture content to 5% by mass or less using a degasser can be mentioned. A degasser is a drum having fins for heat dissipation on the outer surface. By blowing dry air inside, the degasser reduces the moisture contained in the equilibrium catalyst extracted from the fluid catalytic cracking device and the equilibrium catalyst temperature. It is a device that lowers. Further, a cooler may be further installed for the purpose of further cooling the temperature of the equilibrium catalyst.
本発明においては、磁気分離装置に導入される平衡触媒の水分量の調節により、磁気分離装置における分離効率を向上させ、それにより再生使用される触媒量の増加を可能とすることにより平衡触媒の廃棄量を削減することができる。
本発明において分離効率とは、再生使用される触媒の平衡触媒に対する割合をある一定値としたときに、廃棄する着磁触媒と再生使用する非着磁触媒の金属堆積量の差、比表面積の差、マイクロアクティビティーテスト(MAT)による活性差を意味する。
例えばニッケルの分離効率は、廃棄する着磁触媒と再生使用する非着磁触媒の、触媒粒子上に堆積したニッケルの多い着磁物と少ない非着磁物との比で算出できる。したがって、非着磁物の金属堆積量/着磁物の金属堆積量で示し、この値が1.0の場合は、全く分離が起こっていないことを示し、この値が小さくなれば小さくなるほど分離効率は高くなる。
また、ここでいう表面積とは、BET法で測定されたBET比表面積を意味する。表面積が大きいほど触媒の活性は高くなる。さらに、ここでいうMATとは、ASTM D-3907「FLUID CRACKING CATALYST BY MICROACTIVITY TEST」で定義されるものであり、この数値が大きいほど触媒の活性が高いことを意味する。
In the present invention, by adjusting the water content of the equilibrium catalyst introduced into the magnetic separation device, the separation efficiency in the magnetic separation device is improved, thereby increasing the amount of catalyst to be regenerated, thereby allowing the equilibrium catalyst to be increased. The amount of waste can be reduced.
In the present invention, the separation efficiency refers to the difference in the amount of metal deposited between the magnetized catalyst to be discarded and the non-magnetized catalyst to be regenerated and the specific surface area when the ratio of the regenerated catalyst to the equilibrium catalyst is a certain value. Difference, meaning activity difference by micro activity test (MAT).
For example, the separation efficiency of nickel can be calculated by the ratio of the magnetized material with a large amount of nickel deposited on the catalyst particles to the non-magnetized material with a small amount of the magnetized catalyst to be discarded and the non-magnetized catalyst to be recycled. Therefore, the value is expressed by the amount of metal deposition of non-magnetized material / the amount of metal deposition of magnetized material. When this value is 1.0, it indicates that no separation occurs at all. The smaller the value, the smaller the separation. Efficiency increases.
Moreover, the surface area here means the BET specific surface area measured by the BET method. The greater the surface area, the higher the activity of the catalyst. Furthermore, MAT here is defined by ASTM D-3907 “FLUID CRACKING CATALYST BY MICROACTIVITY TEST”, and the larger this value, the higher the activity of the catalyst.
前述のように、流動接触分解装置から抜き出された触媒は、水分量を5質量%以下に調整されたのち磁気分離装置に送入される。
磁気分離装置とは、触媒粒子をその磁化率の差によって触媒粒子上に堆積したニッケル、バナジウム、鉄および銅の多い着磁物と、金属堆積量の少ない非着磁物とを連続的に分離することができる磁気分離機であり、特に高勾配磁気分離機が好ましい。
高勾配磁気分離機とは、均一な高磁場空間内に強磁性の充填物を置き、充填物の周囲に通常200×103〜20000×103ガウス/cm2もの高い磁場勾配を生じさせることにより、充填物の表面に強磁性あるいは常磁性微小粒子の着磁物を着磁させて、非着磁物の弱常磁性微小粒子あるいは反磁性微小粒子からそれらを分離することができるように設計された磁気分離機である。高勾配磁気分離機の例としては、Metso Minerals社により製作販売されているHGMSを挙げることができる。
なお、着磁物:非着磁物の重量比は、1:9〜9:1の範囲が好ましく、より好ましくは1:9〜5:5の範囲である。
As described above, the catalyst extracted from the fluid catalytic cracking apparatus is sent to the magnetic separation apparatus after the water content is adjusted to 5% by mass or less.
The magnetic separation device continuously separates the magnetized material with a large amount of nickel, vanadium, iron and copper deposited on the catalyst particle by the difference in magnetic susceptibility from the non-magnetized material with a small amount of deposited metal. And a high gradient magnetic separator is particularly preferable.
A high gradient magnetic separator places a ferromagnetic packing in a uniform high magnetic field space and generates a magnetic field gradient as high as 200 × 10 3 to 20000 × 10 3 gauss / cm 2 around the packing. Designed to magnetize ferromagnetic or paramagnetic microparticles on the surface of the packing and separate them from non-magnetized weak paramagnetic or diamagnetic microparticles Magnetic separator. An example of a high gradient magnetic separator is HGMS manufactured and sold by Metso Minerals.
The weight ratio of the magnetized material: non-magnetized material is preferably in the range of 1: 9 to 9: 1, more preferably in the range of 1: 9 to 5: 5.
強磁性物質でできた充填物は通常網状であり、強磁性物質であればその材質は問わないが、例えばステンレススチールでできたエキスパンドメタル等が挙げられる。
網状充填物の網の線径は、通常10〜1000μmであり、好ましくは50〜700μmである。また触媒粒子が充填物を通り抜けて処理されるためには、充填物の網目は、通常3〜80メッシュの範囲にあることが好ましく、より好ましくは5〜50メッシュの範囲である。網目が80メッシュより小さければ非着磁物も機械的にとどまってしまい、また3メッシュより大きければ充填物に効率よく着磁せずに通り抜けるものが多くなってしまうため好ましくない。網状充填物は一枚以上積層して使用するが、場合によっては網状充填物の間にスペーサー等を入れて、一定の間隔を空けても良い。
The filling made of a ferromagnetic material is usually reticulated, and any material can be used as long as it is a ferromagnetic material. For example, expanded metal made of stainless steel can be used.
The wire diameter of the net of the net-like packing is usually 10 to 1000 μm, preferably 50 to 700 μm. In order for the catalyst particles to be processed through the packing, the packing mesh is preferably in the range of usually 3 to 80 mesh, more preferably 5 to 50 mesh. If the mesh is smaller than 80 mesh, the non-magnetized material stays mechanically, and if the mesh is larger than 3 mesh, many things pass through the packing without being efficiently magnetized. One or more net-like fillers are laminated and used, but in some cases, a spacer or the like may be inserted between the net-like fillers so as to leave a certain interval.
磁気分離は、触媒を移送流体と共に磁気分離機の磁場空間内を通すことで行われる。移送流体は触媒に悪い影響を及ぼさないものであれば特に制限は無いが、経済性、安全性の面から空気、窒素あるいはそれらの混合物が用いられる。 Magnetic separation is performed by passing the catalyst along with the transfer fluid in the magnetic field space of the magnetic separator. The transfer fluid is not particularly limited as long as it does not adversely affect the catalyst, but air, nitrogen or a mixture thereof is used from the viewpoint of economy and safety.
高勾配磁気分離機を運転する際のプロセス変数としては、磁場強度、磁場勾配、粒子濃度、移送流体線速度などがあり、触媒粒子径、堆積金属の種類と状態および目的とする分離レベル、分離効率などによりプロセス変数の最適値は変動する。 Process variables when operating a high gradient magnetic separator include magnetic field strength, magnetic field gradient, particle concentration, transport fluid linear velocity, etc., catalyst particle size, deposited metal type and condition, desired separation level, separation The optimum value of the process variable varies depending on the efficiency.
磁場強度とは、充填物が置かれている空間内の磁場の強さのことであり、通常1000ガウス以上、好ましくは3000ガウス以上である。
磁場勾配とは、充填物の周囲に生じる磁場の強さの距離による変化量であり、網状充填物の線径と密接な関係を持つが、一般的に線径が小さいほど磁場勾配は大きくなる。
粒子濃度とは、移送流体中での触媒粒子の濃度をいう。通常0.01〜100g/l、好ましくは0.1〜10g/lである。
また、移送流体線速度とは、磁場空間内を通過する際の移送流体の線速度のことであり、移送流体線速度を変化させることで分離レベル、分離効率を大きく変えることができる。移送流体線速度は、通常0.01〜50m/sec、好ましくは0.1〜10m/secである。移送流体線速度が0.01m/secより小さい場合、非着磁物も機械的にとどまり、50m/secより大きい場合には着磁物のほとんどが通り抜けてしまい、分離のレベル、分離効率ともに実用に適さない。
The magnetic field strength is the strength of the magnetic field in the space where the filler is placed, and is usually 1000 gauss or more, preferably 3000 gauss or more.
The magnetic field gradient is the amount of change due to the distance of the strength of the magnetic field generated around the packing, and is closely related to the wire diameter of the mesh packing, but generally the magnetic field gradient increases as the wire diameter decreases. .
The particle concentration refers to the concentration of catalyst particles in the transfer fluid. Usually 0.01 to 100 g / l, preferably 0.1 to 10 g / l.
The transfer fluid linear velocity is the linear velocity of the transfer fluid when passing through the magnetic field space, and the separation level and the separation efficiency can be greatly changed by changing the transfer fluid linear velocity. The transfer fluid linear velocity is usually 0.01 to 50 m / sec, preferably 0.1 to 10 m / sec. When the linear velocity of the transfer fluid is less than 0.01 m / sec, non-magnetized material stays mechanically, and when it is greater than 50 m / sec, most of the magnetized material passes through, and both the level of separation and the separation efficiency are practical. Not suitable for.
磁気分離装置で分離された非着磁触媒は再生塔に送入され、着磁触媒は廃棄される。このため廃棄された触媒と同量の新触媒が、装置運転上支障をきたさない場所より補充される。また、装置内を循環する触媒の活性を一定に保持するため、装置運転上支障をきたさない適当な場所から触媒の一部を抜き出し、それと同量の新触媒を補充しても良い。なお、触媒の抜き出しは連続的に行っても良いし、また性能に悪影響を及ぼさない範囲で一定間隔を置いて非連続的に抜き出しても良い。 The non-magnetized catalyst separated by the magnetic separator is sent to the regeneration tower, and the magnetized catalyst is discarded. For this reason, the same amount of new catalyst as that of the discarded catalyst is replenished from a place where there is no problem in operation of the apparatus. Further, in order to keep the activity of the catalyst circulating in the apparatus constant, a part of the catalyst may be extracted from an appropriate place that does not cause trouble in the operation of the apparatus, and the same amount of new catalyst may be replenished. The catalyst may be extracted continuously or may be extracted discontinuously at regular intervals within a range that does not adversely affect the performance.
本発明の方法により、流動接触分解触媒の磁気分離装置における分離効率が著しく向上するため、再生使用される触媒量が増加し、廃棄する触媒量を削減できる。
また金属堆積量の多い触媒は、装置内滞留時間が長い触媒であるため、粒子径30μm以下の極めて小さい粒子径触媒である割合が多く、逆に金属堆積量の少ない触媒は、装置内滞留時間が短い触媒であるため、再生使用される触媒中の粒子径30μm以下の割合を低下させることができる。その結果、装置外への飛散や未分解油中に混入することによって起こる、装置内触媒のロスやC重油中への触媒混入などを低減できる。
According to the method of the present invention, the separation efficiency of the fluid catalytic cracking catalyst in the magnetic separation apparatus is remarkably improved, so that the amount of catalyst to be regenerated increases and the amount of catalyst to be discarded can be reduced.
In addition, since a catalyst with a large amount of metal deposition is a catalyst with a long residence time in the apparatus, the proportion of the catalyst having a very small particle diameter with a particle diameter of 30 μm or less is large. Conversely, a catalyst with a small amount of metal deposition is a residence time in the apparatus. Is a short catalyst, it is possible to reduce the proportion of particles having a particle size of 30 μm or less in the regenerated catalyst. As a result, it is possible to reduce the loss of the catalyst in the apparatus and the mixture of the catalyst into C heavy oil, which are caused by scattering outside the apparatus or mixing in undecomposed oil.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるのもではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
抜き出した触媒(平衡触媒)の水分量を1質量%、温度を30℃に調整した後、高勾配磁気分離機で分離処理した。高勾配磁気分離機における充填物としてはステンレススチール製のエキスパンドメタルを用い、移送流体として空気を用いた。
抜き出し触媒、着磁物、非着磁物について、金属分析、表面積分析およびMATによる活性評価を行った。これらの結果を表1に示す。
表1に示すとおり、平衡触媒の水分量を1質量%、温度を30℃に調整して磁気分離を行ったところ非常に良い分離効率が得られた。装置内へ戻して再生使用される非着磁物の金属堆積量が平衡触媒と比較して極めて少なく、また表面積が大きくMAT転化率が高いことから、磁気分離装置における分離効率が向上し、それにより再生使用される触媒量が増加するため、平衡触媒の廃棄量を大幅に削減することができる。
また平衡触媒に比べて、装置内へ戻して再生使用される非着磁物の粒子径30μm以下の極めて小さい粒子径触媒の割合が少ないため、装置外への飛散や未分解油中に混入することによって起こる、装置内触媒のロスやC重油中への触媒混入などを低減できる。
Example 1
The water content of the extracted catalyst (equilibrium catalyst) was adjusted to 1% by mass and the temperature was adjusted to 30 ° C., and then separated with a high gradient magnetic separator. Stainless steel expanded metal was used as the packing in the high gradient magnetic separator, and air was used as the transfer fluid.
The extracted catalyst, magnetized material, and non-magnetized material were subjected to metal analysis, surface area analysis, and activity evaluation by MAT. These results are shown in Table 1.
As shown in Table 1, when the magnetic separation was performed by adjusting the water content of the equilibrium catalyst to 1% by mass and the temperature to 30 ° C., very good separation efficiency was obtained. The amount of deposited metal of non-magnetized material recycled back into the apparatus is extremely small compared to the equilibrium catalyst, and the surface area is large and the MAT conversion rate is high, so that the separation efficiency in the magnetic separation apparatus is improved. This increases the amount of catalyst that is regenerated and reused, so that the amount of equilibrium catalyst discarded can be greatly reduced.
Also, compared to the equilibrium catalyst, the proportion of the non-magnetized material that is returned to the inside of the apparatus and used for recycle is very small, with a particle diameter of 30 μm or less. It is possible to reduce the loss of the catalyst in the apparatus and the mixing of the catalyst into C heavy oil.
(実施例2〜5)
抜き出した触媒(平衡触媒)の水分量を2質量%、3質量%、4質量%および5質量%に変化させて、高勾配磁気分離機で分離処理した。高勾配磁気分離機における充填物としてはステンレススチール製のエキスパンドメタルを用い、移送流体として空気を用いた。
抜き出し触媒、着磁物、非着磁物について、金属分析を行った。これらの結果を表2〜表5に示す。
表2〜表5に示すとおり、平衡触媒の水分量が少ないほど良い分離が起こっている。つまり、平衡触媒の水分量が少ないほど、装置内へ戻して再生使用される非着磁物の金属堆積量が平衡触媒と比較して極めて少なく、それにより再生使用される触媒量が増加するため、平衡触媒の廃棄量を大幅に削減することができる。
(Examples 2 to 5)
The water content of the extracted catalyst (equilibrium catalyst) was changed to 2% by mass, 3% by mass, 4% by mass, and 5% by mass, and separated by a high gradient magnetic separator. Stainless steel expanded metal was used as the packing in the high gradient magnetic separator, and air was used as the transfer fluid.
Metal analysis was conducted on the extracted catalyst, magnetized material, and non-magnetized material. These results are shown in Tables 2-5.
As shown in Tables 2 to 5, the smaller the water content of the equilibrium catalyst, the better the separation. In other words, the smaller the amount of water in the equilibrium catalyst, the smaller the amount of metal deposited on the non-magnetized material that is returned to the apparatus for reuse, compared to the equilibrium catalyst, thereby increasing the amount of catalyst that is regenerated. Thus, the amount of waste of the equilibrium catalyst can be greatly reduced.
(比較例1)
実施例1の触媒の水分量および処理温度を調整することなしに、高勾配磁気分離機で着磁物と非着磁物に分離できる条件で処理した。これらの結果を表6に示す。
表6に示すとおり、平衡触媒の水分量を調整しないで磁気分離を行った場合には実施例1ほどの分離効率を得ることができなかった。
また平衡触媒と、装置内へ戻して再生使用される非着磁物の粒子径30μm以下の極めて小さい粒子径触媒の割合にあまり変化がなく、装置外への飛散や未分解油中に混入することによって起こる、装置内触媒のロスやC重油中への触媒混入などの低減効果は小さい。
(Comparative Example 1)
Without adjusting the water content of the catalyst of Example 1 and the treatment temperature, the catalyst was treated under conditions allowing separation into magnetized and non-magnetized materials with a high gradient magnetic separator. These results are shown in Table 6.
As shown in Table 6, when the magnetic separation was carried out without adjusting the water content of the equilibrium catalyst, the separation efficiency as in Example 1 could not be obtained.
Moreover, there is not much change in the ratio of the equilibrium catalyst and the non-magnetized material that is returned to the inside of the apparatus and re-used for remarkably small particle diameter of 30 μm or less, and it is scattered outside the apparatus or mixed in undecomposed oil. The reduction effect such as the loss of the catalyst in the apparatus and the mixing of the catalyst into C heavy oil is small.
(比較例2)
実施例1の触媒の水分量を調整することなく、処理温度を30℃に調整して高勾配磁気分離機で着磁物と非着磁物に分離できる条件で処理した。これらの結果を表7に示す。
表7に示すとおり、平衡触媒の水分量を調整しないで磁気分離を行った場合には、処理温度を調整しても実施例1ほどの分離効率を得ることができなかった。
(Comparative Example 2)
Without adjusting the water content of the catalyst of Example 1, the treatment temperature was adjusted to 30 ° C., and the treatment was performed under the condition that the high gradient magnetic separator can separate the magnetized material from the non-magnetized material. These results are shown in Table 7.
As shown in Table 7, when the magnetic separation was performed without adjusting the water content of the equilibrium catalyst, the separation efficiency as in Example 1 could not be obtained even if the treatment temperature was adjusted.
(実施例6)
ゼオライト系流動接触分解触媒を用い、流動接触分解パイロット装置により循環触媒の一部を抜き出し、装置内触媒量を一定に保つため新触媒を補充量しながら、常圧蒸留残渣油の接触分解を行った。この場合、表8に示す生成物を得るのに処理油1バーレルあたり309gの新触媒を必要とした。
次に流動接触分解パイロット装置に高勾配磁気分離機を組み込み、抜き出した触媒を実施例1と同じ条件で高勾配磁気分離機により着磁物と非着磁物に分け、非着磁物を循環系内へ戻して再生使用した。この場合、高勾配磁気分離機を用いない時とほぼ同様の生成物を得るのに必要な新触媒の量は、処理油1バーレルあたり144gであった。さらに、抜き出した触媒を比較例1と同じ条件で高勾配磁気分離機により着磁物と非着磁物に分け、非着磁物を循環系内へ戻して再生使用した。この場合、高勾配磁気分離機を用いない時とほぼ同様の生成物を得るのに必要な新触媒の量は、処理油1バーレルあたり210gであった。このように、平衡触媒の水分量を調整した後に、高勾配磁気分離機で分離処理することにより着磁物と非着磁物の分離効率が向上し、それにより再生使用される触媒量の増加が可能となり、その結果、新触媒の使用量、平衡触媒の廃棄量を削減できた。
(Example 6)
Using a zeolite-based fluid catalytic cracking catalyst, a part of the circulating catalyst is extracted by a fluid catalytic cracking pilot device, and the atmospheric distillation residue oil is catalytically cracked while replenishing the new catalyst to keep the amount of catalyst in the device constant. It was. In this case, 309 g of new catalyst was required per barrel of treated oil to obtain the products shown in Table 8.
Next, a high gradient magnetic separator is incorporated into the fluid catalytic cracking pilot device, and the extracted catalyst is divided into a magnetized material and a non-magnetized material by the high gradient magnetic separator under the same conditions as in Example 1, and the non-magnetized material is circulated. Returned to the system and used again. In this case, the amount of the new catalyst required to obtain a product almost the same as when not using the high gradient magnetic separator was 144 g per barrel of the treated oil. Further, the extracted catalyst was separated into a magnetized material and a non-magnetized material by a high gradient magnetic separator under the same conditions as in Comparative Example 1, and the non-magnetized material was returned to the circulation system for reuse. In this case, the amount of the new catalyst required to obtain a product almost the same as when not using the high gradient magnetic separator was 210 g per barrel of the treated oil. In this way, after adjusting the moisture content of the equilibrium catalyst, separation with a high gradient magnetic separator improves the separation efficiency of magnetized and non-magnetized materials, thereby increasing the amount of catalyst regenerated. As a result, it was possible to reduce the amount of new catalyst used and the amount of equilibrium catalyst discarded.
Claims (2)
2. The magnetic separation method according to claim 1, wherein the temperature of the extracted catalyst is adjusted to 100 [deg.] C. or less and then introduced into the magnetic separation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005309632A JP4585424B2 (en) | 2004-12-10 | 2005-10-25 | Magnetic separation method of fluid catalytic cracking catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004357780 | 2004-12-10 | ||
JP2005309632A JP4585424B2 (en) | 2004-12-10 | 2005-10-25 | Magnetic separation method of fluid catalytic cracking catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006187761A JP2006187761A (en) | 2006-07-20 |
JP4585424B2 true JP4585424B2 (en) | 2010-11-24 |
Family
ID=36795412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005309632A Active JP4585424B2 (en) | 2004-12-10 | 2005-10-25 | Magnetic separation method of fluid catalytic cracking catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4585424B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5129552B2 (en) | 2007-11-30 | 2013-01-30 | Jx日鉱日石エネルギー株式会社 | Method for transferring fluid catalytic cracking catalyst |
US8852427B2 (en) * | 2009-12-14 | 2014-10-07 | Exxonmobil Research And Engineering Company | Method and systems to remove polar molecules from refinery streams |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63170201A (en) * | 1986-12-29 | 1988-07-14 | テキサコ・デベロツプメント・コーポレーシヨン | Manufacture of mixed gas containing hydrogen and carbon monoxide by partial oxidation of supplied raw material |
JPH0920893A (en) * | 1995-07-05 | 1997-01-21 | Nippon Oil Co Ltd | Fluidized catalytic cracking of heavy petroleum oil |
JP2000000474A (en) * | 1998-04-24 | 2000-01-07 | Kellogg Brawn & Root Inc | Magnetic separation using high temperature separator by strong magnets |
-
2005
- 2005-10-25 JP JP2005309632A patent/JP4585424B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63170201A (en) * | 1986-12-29 | 1988-07-14 | テキサコ・デベロツプメント・コーポレーシヨン | Manufacture of mixed gas containing hydrogen and carbon monoxide by partial oxidation of supplied raw material |
JPH0920893A (en) * | 1995-07-05 | 1997-01-21 | Nippon Oil Co Ltd | Fluidized catalytic cracking of heavy petroleum oil |
JP2000000474A (en) * | 1998-04-24 | 2000-01-07 | Kellogg Brawn & Root Inc | Magnetic separation using high temperature separator by strong magnets |
Also Published As
Publication number | Publication date |
---|---|
JP2006187761A (en) | 2006-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0106052B1 (en) | Demetallizing and decarbonizing heavy residual oil feeds | |
US4359379A (en) | Process for fluid catalytic cracking of distillation residual oils | |
CN102439121B (en) | A fluidized catalytic cracking process | |
JPS5953591A (en) | Supplying oil converting method and device | |
US2908630A (en) | Process for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor | |
RU2006141838A (en) | METHOD OF TREATMENT USING HYDROGEN AND A SYSTEM FOR ENHANCING HEAVY OIL USING A COLLOID OR MOLECULAR CATALYST | |
US4482450A (en) | Process for catalytic reaction of heavy oils | |
US2689825A (en) | Removal of metals from petroleum hydrocarbons followed by fluidized cracking | |
KR0126111B1 (en) | Process for the fluid catalytic cracking of heavy fraction oils | |
JP4585424B2 (en) | Magnetic separation method of fluid catalytic cracking catalyst | |
US2472723A (en) | Method for removal of metal compounds from oil feed to fluid catalyst cracking | |
AU2021415465A1 (en) | Catalytic cracking process for a true circular solution for converting pyrolysis oil produced from recycled waste plastic into virgin olefins and petrochemical intermediates | |
CN107828442B (en) | Method and apparatus for enhanced contaminant removal in a fluid catalytic cracking process | |
US2344900A (en) | Treating hydrocarbon fluids | |
JP5213401B2 (en) | Fluid catalytic cracking method for heavy petroleum | |
JP4371807B2 (en) | Gasoline sulfur reduction in fluid catalytic cracking. | |
US8840846B2 (en) | Method and apparatus for catalytic cracking | |
CN1170914C (en) | Fluidized catalytic cracking method | |
US2631124A (en) | Magnetic decontamination of cracking catalyst | |
JP6234829B2 (en) | Fluid catalytic cracking of heavy oil | |
JPH06313176A (en) | Fluid catalytic cracking of heavy oil | |
KR101250173B1 (en) | Magnetic separation method of fluidized catalytic cracking catalyst | |
JPS6337156B2 (en) | ||
JPS6024831B2 (en) | Catalytic cracking method for heavy petroleum containing distillation residue | |
JPH0920893A (en) | Fluidized catalytic cracking of heavy petroleum oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4585424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |