KR101250173B1 - Magnetic separation method of fluidized catalytic cracking catalyst - Google Patents

Magnetic separation method of fluidized catalytic cracking catalyst Download PDF

Info

Publication number
KR101250173B1
KR101250173B1 KR1020050119389A KR20050119389A KR101250173B1 KR 101250173 B1 KR101250173 B1 KR 101250173B1 KR 1020050119389 A KR1020050119389 A KR 1020050119389A KR 20050119389 A KR20050119389 A KR 20050119389A KR 101250173 B1 KR101250173 B1 KR 101250173B1
Authority
KR
South Korea
Prior art keywords
catalyst
magnetic
catalytic cracking
mass
amount
Prior art date
Application number
KR1020050119389A
Other languages
Korean (ko)
Other versions
KR20060065521A (en
Inventor
히사오 사코다
Original Assignee
자이단호진 세키유산교캇세이카센터
제이엑스 닛코닛세키에너지주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자이단호진 세키유산교캇세이카센터, 제이엑스 닛코닛세키에너지주식회사 filed Critical 자이단호진 세키유산교캇세이카센터
Publication of KR20060065521A publication Critical patent/KR20060065521A/en
Application granted granted Critical
Publication of KR101250173B1 publication Critical patent/KR101250173B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/20Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • C10G32/02Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means

Abstract

유동접촉분해촉매의 자기분리장치에 있어서 분리효율을 향상시키는 것에 의해 재생사용되는 촉매량을 증가시켜 평형촉매의 폐기량을 삭감시키는 방법을 제공한다. 자기분리장치를 구비한 유동접촉분해 공정에 있어서, 유동접촉분해장치로부터 발출된 촉매의 수분량을 5질량% 이하로 조정한 후, 자기분리장치에 도입시키는 것을 특징으로 하는 유동접촉분해촉매의 자기분리방법.In the magnetic separation device of a fluid catalytic cracking catalyst, there is provided a method of reducing the waste of the equilibrium catalyst by increasing the amount of catalyst used for regeneration by improving the separation efficiency. In a fluid catalytic cracking process having a magnetic separator, magnetic separation of the fluid catalytic cracking catalyst is introduced into a magnetic separator after adjusting the amount of water of the catalyst extracted from the fluid catalytic cracking apparatus to 5 mass% or less. Way.

유동접촉분해촉매, 자기분리방법, 평형촉매, 자기분리장치, 수분량 Fluid catalytic cracking catalyst, magnetic separation method, equilibrium catalyst, magnetic separator, moisture content

Description

유동접촉분해촉매의 자기분리방법{MAGNETIC SEPARATION METHOD OF FLUIDIZED CATALYTIC CRACKING CATALYST}MAGNETIC SEPARATION METHOD OF FLUIDIZED CATALYTIC CRACKING CATALYST}

본 발명은 자기분리장치를 구비하는 중질석유류의 유동접촉분해 공정에 있어서, 유동접촉분해장치로부터 발출되는 촉매의 자기분리방법에 관한 것이다.The present invention relates to a magnetic separation method of a catalyst extracted from a fluid catalytic cracking device in a fluid catalytic cracking process of heavy petroleum oil having a magnetic separator.

유동접촉분해는, 석유계탄화수소를 촉매와 접촉시킴으로써 분해하여, 가솔린, 액화석유가스, 알킬화원료, 중간 잔류 혼합물 등의 생성물을 수득하는 방법이다.Fluid catalytic cracking is a method of decomposing petroleum hydrocarbons by contact with a catalyst to obtain products such as gasoline, liquefied petroleum gas, alkylated raw materials, and intermediate residual mixtures.

최근, 환경문제 또는 이용의 용이성으로 인해 경유 이하의 비등 잔류물을 보유한 탄화수소유류의 수요가 상대적으로 증가하고 있고, 중질유를 임의의 방법으로 연질유로 전환하는 것이 중요한 과제가 되고 있다. 이와 같은 가운데, 중질유 처리 공정의 하나로서 중질석유류를 원료로 하는 유동접촉분해의 중요성이 증가되고 있다.Recently, due to environmental problems or ease of use, the demand for hydrocarbon oils having boiling residues below light oil is relatively increasing, and converting heavy oil into soft oil by any method has become an important problem. In the meantime, the importance of fluid catalytic cracking which uses heavy petroleum as a raw material as a heavy oil processing process is increasing.

중질석유류의 유동접촉분해를 수행하는 경우, 원료유 중에 함유되는 니켈, 바나듐, 철, 동 등의 금속이 촉매 상에 퇴적하는 현상이 특히 현저히 나타난다. 이러한 금속은 원유 또는 수송저장 및 처리장치와의 접촉에서 유래하는 것인데, 통상 포피린 환 구조를 기초로 하는 유기금속 화합물로서 존재하고 있고, 촉매와 고온에서 접촉하면 분해하여, 금속은 촉매 상에 퇴적해 있게 된다.In the case of performing fluid catalytic cracking of heavy petroleum, a phenomenon in which metals such as nickel, vanadium, iron, copper, etc. contained in the crude oil are deposited on the catalyst is particularly remarkable. These metals are derived from contact with crude oil or transportation storage and processing equipment, and are generally present as organometallic compounds based on the porphyrin ring structure. Will be.

이러한 금속은 촉매의 활성을 저하시킬뿐만 아니라, 촉매의 선택성도 저하시킨다. 즉, 이러한 금속은 수소화, 탈수소화능을 보유하고 있어, 유동접촉분해의 반응조건에서는 탄화수소의 탈수소반응을 촉진하고, 그 결과 생성물로서 바람직하지 않은 수소 가스나 코크스의 생성량이 증가하고, 바람직한 액화석유가스, 가솔린, 등경유 생성량이 감소한다.Such metals not only lower the activity of the catalyst but also lower the selectivity of the catalyst. That is, these metals have hydrogenation and dehydrogenation capability, and promote the dehydrogenation of hydrocarbons under the reaction conditions of fluid catalytic cracking, and as a result, the amount of hydrogen gas or coke that is undesirable as a product increases, and the preferred liquefied petroleum oil. Gas, gasoline and kerosene production are reduced.

이와 같은 촉매활성의 저하 또는 선택성의 저하를 피하기 위해, 금속함유량이 많은 중질유 또는 잔류유의 유동접촉분해에서는 통상 순환계내의 촉매의 일부를 정기적 또는 정상적으로 발출하고, 새로운 촉매와 교환하여 활성을 일정하게 유지하는 방법을 채용하고 있지만, 촉매의 발출량을 현저하게 많게 할 필요가 있어, 특히 높은 비용이 소요되고 있다. 또한, 발출된 촉매(이하, 평형촉매라 한다)의 폐기는 산업폐기물이 되기 때문에 그 처리에 추가 비용이 소요되는 결과를 낳고 있다.In order to avoid such lowering of catalytic activity or deterioration of selectivity, in the fluid catalytic cracking of heavy oil or residual oil containing a large amount of metal, a part of the catalyst in the circulation system is usually periodically or normally extracted and exchanged with a new catalyst to keep the activity constant. Although the method is employ | adopted, it is necessary to remarkably increase the extraction amount of a catalyst, and high cost is especially required. In addition, the disposal of the extracted catalyst (hereinafter referred to as the equilibrium catalyst) is an industrial waste, which results in an additional cost for the treatment.

촉매는, 통상 30㎛ 내지 150㎛의 입자 직경을 갖고 있지만, 장치 내에서 반응에 이용됨으로써 그 강도가 저하하고, 장치내 보유시간이 긴 촉매일수록 입자 직경은 작아지게 된다. 그 결과, 장치내 보유시간 분포가 긴 촉매는, 입자 직경이 30㎛ 이하인 극히 작은 입자 직경의 촉매의 비율이 많아져서, 장치 외로 비산하거나 또는 미분해유 중으로 혼입함으로써, 장치내 촉매의 손실 또는 C 중유 중으로의 촉매 혼입 등의 문제를 일으키고 있다. 또한, 여기서 말하는 촉매 입자 직경이란, 메쉬 크기가 상이한 9 종류의 필터를 이용하여, 각 입자 직경의 분포로부터 산출하는 것이다.The catalyst usually has a particle diameter of 30 µm to 150 µm, but its strength decreases by being used for the reaction in the apparatus, and the particle diameter becomes smaller as the catalyst having a longer holding time in the apparatus. As a result, the catalyst having a long distribution time in the device has a large proportion of the catalyst having a very small particle diameter having a particle diameter of 30 µm or less, and thus the loss of the catalyst or the C heavy oil in the device by scattering or mixing into undecomposed oil in the device. Problems such as the mixing of the catalyst into the middle have been caused. In addition, the catalyst particle diameter here is computed from the distribution of each particle diameter using nine types of filters from which a mesh size differs.

이러한 과제를 해결하는 수단으로서, 평형촉매를, 원료유의 중질석유류에 함유되어 있는 니켈, 바나듐 등의 금속이 다량 퇴적되어 자기부착물이 된 자기부착촉매와, 금속의 퇴적이 적어서 자기부착되지 않는 비자기부착촉매로, 자기분리장치를 이용하여 분리하고, 비자기부착촉매를 재생 후, 유동접촉분해장치로 복귀시켜 재사용하는 방법이 알려져 있다(예컨대, 특공소 63-37835호 공보 및 특공소 63-37156호 공보).As a means to solve this problem, the equilibrium catalyst is a self-adhesive catalyst in which a large amount of metals such as nickel and vanadium contained in the heavy petroleum oil of the raw material oil are deposited and become a self-adhesive, and a non-magnetic self-adhesive due to the low deposition of metal. As a deposition catalyst, a method of separating using a magnetic separation device, regenerating a non-magnetic adhesion catalyst, and then returning it to a fluid catalytic cracking device is known (for example, JP 63-37835 and JP 63-37156). Publication).

이러한 자기분리장치를 사용한 촉매의 분리방법은 유효한 방법인 것이 확인되어 있지만, 이 방법을 이용하여 니켈, 바나듐 등의 금속이 다량으로 퇴적되어 자기부착물이 된 자기부착촉매와 금속의 퇴적이 적어서 자기부착되지 않는 비자기부착촉매로 분리하는 경우, 분리효율이 반드시 충분하다고 할 수는 없고, 특히 재생사용되는 비자기부착촉매의 접촉분해활성이 새 촉매에 비해 열등하다는 것을 고려하면, 자기분리장치에서 비자기부착촉매가 되는 양을 증가시킬 수 없기 때문에 폐기되는 평형촉매량을 감소시킬 수 없다고 하는 문제점이 있다.It has been confirmed that the separation method of the catalyst using the magnetic separation device is an effective method. However, the magnetic adhesion catalyst which becomes a magnetic deposit by depositing a large amount of metals such as nickel and vanadium by using this method and the deposition of the metal has little magnetic adhesion. In the case of separation with a nonmagnetic attachment catalyst which is not used, the separation efficiency is not necessarily sufficient. Especially, considering that the catalytic cracking activity of the nonmagnetic attachment catalyst used for regeneration is inferior to that of the new catalyst, Since the amount of the self-adhesive catalyst cannot be increased, there is a problem in that the amount of equilibrium catalysts discarded cannot be reduced.

본 발명은 유동접촉분해촉매의 자기분리장치에 있어서 분리효율을 더욱 향상시키고, 그 결과 재생사용되는 촉매량의 증가를 가능하게 함으로써 평형촉매의 폐기량을 삭감시키는 것을 목적으로 하는 것이다. 또한, 분리효율 향상에 의해 재생사용되는 촉매 중의 입자 직경이 30㎛ 이하인 극히 작은 입자 직경의 촉매의 비율을 감소시키는 것을 목적으로 하는 것이다.It is an object of the present invention to further reduce the separation efficiency of the equilibrium catalyst by further improving the separation efficiency in the magnetic separation device of the fluid catalytic cracking catalyst and, as a result, increasing the amount of catalyst used for regeneration. Furthermore, it aims at reducing the ratio of the catalyst of the extremely small particle diameter whose particle diameter is 30 micrometers or less in the catalyst used for regeneration by improving separation efficiency.

본 발명자들은 예의연구를 수행한 결과, 자기분리장치를 구비하는 유동접촉분해 공정에 있어서, 유동접촉분해장치로부터 발출된 촉매를 자기분리할 때에, 평형촉매의 수분을 5질량% 이하로 함으로써 촉매의 분리효율이 대폭 향상하는 것을 발견하여, 본 발명을 완성하기에 이르렀다.The present inventors conducted earnest research and found that in the fluid catalytic cracking process including the magnetic separator, when the catalyst extracted from the fluid catalytic cracking apparatus is magnetically separated, the equilibrium catalyst has a water content of 5% by mass or less, thereby It has been found that the separation efficiency is greatly improved, and the present invention has been completed.

즉, 본 발명은 자기분리장치를 구비하는 유동접촉분해 공정에서 유동접촉분해장치로부터 발출된 촉매의 수분량을 5질량% 이하로 조정한 후, 자기분리장치에 도입시키는 것을 특징으로 하는 유동접촉분해촉매의 자기분리방법에 관한 것이다.That is, in the fluid catalytic cracking process including the magnetic separator, the present invention adjusts the water content of the catalyst extracted from the fluid catalytic cracking apparatus to 5 mass% or less, and then introduces the catalytic catalytic cracking catalyst into the magnetic separator. It relates to a magnetic separation method of.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 방법은 자기분리장치를 구비하는 유동접촉분해공정에 적용된다. 자기분리장치를 구비하는 일반적인 유동접촉분해공정으로는, 먼저 중질석유류를 유동접촉분해장치 중에서 유동상태로 유지되고 있는 촉매와 접촉시켜 분해하고, 다음에 분해생성물, 미반응원료 및 촉매의 혼합물을 스트리핑 처리함으로써 분해생성물 및 미반응물의 대부분을 제거한다. 탄소질 및 일부 중질탄화수소류가 부착된 촉매는, 스트리핑 구역으로부터 발출한 후, 자기분리장치로 이송한다. 자기분리장치에서는 금속이 다량으로 퇴적하여 자기부착물이 된 자기부착촉매와, 금속의 퇴적이 적어서 자기부착되지 않은 비자기부착촉매로 분리하고, 비자기부착촉매는 재생탑으로 전달한다. 재생탑에서는 촉매 상에 부착된 탄소질 및 중질 탄화수소류를 감소시키기 위한 산화처리가 실시된다. 이러한 재생탑에서 촉매는 유동상태가 유지되고, 통상 공기에 의해 550 내지 850℃에서 연소처리가 실시된다. 이러한 산화처리를 받 은 촉매가 재생촉매이고, 이 재생촉매는 상기 유동접촉분해장치의 반응 구역으로 복귀시킨다.The method of the present invention is applied to a fluid catalytic cracking process having a magnetic separation device. In a general fluid catalytic cracking process having a magnetic separation device, first, heavy petroleum oil is decomposed by contacting with a catalyst held in a fluid state in a fluid catalytic cracking device, and then stripped of the decomposition product, unreacted raw material and the catalyst. Treatment removes most of the degradation products and unreacted products. The catalyst with carbonaceous and some heavy hydrocarbons attached is withdrawn from the stripping zone and then transferred to a magnetic separation device. In the magnetic separation apparatus, a large amount of metal is deposited to separate the magnetic adhesion catalyst which becomes a magnetic deposit, and the non-magnetic adhesion catalyst which is not magnetically adhered due to the small amount of metal deposition, and the nonmagnetic adhesion catalyst is transferred to the regeneration tower. The regeneration tower is subjected to oxidation treatment to reduce carbonaceous and heavy hydrocarbons attached to the catalyst. In such a regeneration tower, the catalyst is maintained in a flow state, and combustion is usually performed at 550 to 850 ° C by air. The catalyst subjected to this oxidation treatment is a regeneration catalyst, which is returned to the reaction zone of the fluid catalytic cracker.

본 발명은 유동접촉분해장치로부터 발출된 촉매를 자기분리장치로 전달하기 전에 발출된 촉매의 수분량을 5질량% 이하로 조정한 후, 자기분리장치에 도입함으로써, 자기부착촉매와 비자기부착촉매의 분리효율을 현저하게 개선시킨 것이다.The present invention adjusts the amount of the extracted catalyst to 5% by mass or less before transferring the catalyst extracted from the fluid catalytic cracker to the magnetic separation device, and then introduces the magnetic adhesion catalyst and the non-magnetic adhesion catalyst by introducing the catalyst into the magnetic separation device. The separation efficiency is significantly improved.

원료로서 이용되는 중질석유류로는, 니켈, 바나듐 등의 중금속, 아스팔텐 등의 증류 잔류물을 함유한 중질석유류가 이용된다. 구체적으로, 원유의 상압증류 잔류유, 감압증류 잔류유, 또는 이들을 수소화처리한 것, 또는 이들의 혼합물 등을 예로 들 수 있다.As heavy petroleum oil used as a raw material, heavy petroleum oil containing distillation residues, such as heavy metals, such as nickel and vanadium, and asphaltene, is used. Specifically, the atmospheric distillation residual oil of crude oil, the vacuum distillation residual oil, the thing which hydroprocessed these, the mixture thereof, etc. are mentioned.

원료와 촉매의 접촉방식으로는, 촉매의 유동 베드에서 수행하는 경우와, 촉매 입자와 원료가 함께 관을 이동하는 라이자-크랙킹과 같은 방식을 채용하는 경우가 있지만, 본 발명은 어떤 방식에도 적용된다.As the method of contacting the raw material and the catalyst, a method such as that performed in a fluidized bed of the catalyst and a liner-cracking in which the catalyst particles and the raw material move the tube together may be employed, but the present invention is applied to any method. .

유동접촉분해장치의 반응조건은 특별히 한정되는 것은 없고, 통상의 반응조건이 채용될 수 있다. 예를 들면, 반응온도 480 내지 650℃, 압력 0.1 내지 0.3MPa, 촉매/오일 비 1 내지 20, 접촉시간 0.1 내지 10초가 사용될 수 있다.The reaction conditions of the fluid catalytic cracking device are not particularly limited, and ordinary reaction conditions may be employed. For example, a reaction temperature of 480 to 650 ° C., a pressure of 0.1 to 0.3 MPa, a catalyst / oil ratio of 1 to 20, and a contact time of 0.1 to 10 seconds may be used.

촉매는, 석유류의 접촉분해에 통상 이용되는 촉매이면 좋고, 예를 들면 제올라이트계 촉매 등이 있다. 또한 촉매의 입자 직경도 특별히 한정되지 않지만, 통상 5 내지 200㎛, 바람직하게는 30 내지 150㎛이다.The catalyst should just be a catalyst normally used for catalytic cracking of petroleum, and there exist a zeolite type catalyst etc., for example. Moreover, the particle diameter of a catalyst is not specifically limited, either, Usually, 5-200 micrometers, Preferably it is 30-150 micrometers.

본 발명에서는, 유동접촉분해장치로부터 발출된 촉매(평형촉매)의 수분량을 5질량% 이하로 조정한 후 자기분리장치에 도입시킨다. 수분량은 3질량% 이하가 보 다 바람직하고, 1질량% 이하가 특히 바람직하다. 수분량이 5질량%보다 많아지면, 냉각에 의해 평형촉매의 온도가 저하할 때, 평형촉매 중에 함유되어 있는 수증기가 응집하여, 평형촉매의 촉매입자중량이 변화하기 때문에 분리효율이 악화되어, 본 발명의 효과가 수득되지 않는다.In the present invention, the water content of the catalyst (equilibrium catalyst) extracted from the fluid catalytic cracker is adjusted to 5% by mass or less and then introduced into the magnetic separation device. 3 mass% or less is more preferable, and 1 mass% or less is especially preferable. When the amount of moisture exceeds 5% by mass, when the temperature of the equilibrium catalyst decreases due to cooling, water vapor contained in the equilibrium catalyst aggregates and the catalyst particle weight of the equilibrium catalyst changes, so that the separation efficiency is deteriorated. The effect of is not obtained.

또한, 본 발명에서는, 자기분리장치에 도입되는 평형촉매의 온도를 100℃ 이하로 조정한 후 자기분리장치에 도입하는 것이 바람직하다. 평형촉매의 온도는 80℃ 이하가 보다 바람직하고, 60℃ 이하가 특히 바람직하다. 평형촉매의 온도가 100℃보다도 높으면, 냉각에 의해 평형촉매의 온도가 저하된 경우, 평형촉매 중에 함유되어 있는 수증기가 응집하여, 평형촉매의 촉매입자중량이 변화하기 때문에 분리효율이 악하될 우려가 있다. 또한, 하한 온도에 대해서는 특별한 제한은 없지만, 10℃ 이상이 바람직하고, 20℃ 이상이 보다 바람직하다.Moreover, in this invention, after adjusting the temperature of the equilibrium catalyst introduce | transduced into a magnetic separation apparatus to 100 degrees C or less, it is preferable to introduce into a magnetic separation apparatus. The temperature of the equilibrium catalyst is more preferably 80 ° C or lower, and particularly preferably 60 ° C or lower. If the temperature of the equilibrium catalyst is higher than 100 ° C, when the temperature of the equilibrium catalyst decreases due to cooling, water vapor contained in the equilibrium catalyst aggregates and the catalyst particle weight of the equilibrium catalyst changes, so that the separation efficiency may be deteriorated. have. Moreover, although there is no restriction | limiting in particular about a minimum temperature, 10 degreeC or more is preferable and 20 degreeC or more is more preferable.

평형촉매의 수분량을 소정의 비율이 되게 하는 방법에는 특별히 한정되는 것은 없고, 어떤 방법을 이용해도 좋다. 예를 들어, 데구사(Degussa)를 이용하여 수분량을 5질량% 이하로 하는 방법이 있다. 데구사는 외면으로 열방산을 위한 핀을 보유하는 드럼이고, 내부에 건조 공기를 흡입시켜 유동접촉분해장치로부터 발출된 평형촉매 중에 함유되어 있는 수분 감소와 평형촉매 온도를 저하시키는 장치이다. 또한, 평형촉매의 온도를 더욱 냉각할 목적으로, 추가로 냉각기를 설치해도 좋다.The method of bringing the water content of the equilibrium catalyst to a predetermined ratio is not particularly limited, and any method may be used. For example, there is a method in which the moisture content is 5% by mass or less using Degussa. Degussa is a drum having fins for heat dissipation to the outside, and is a device for reducing the moisture and the equilibrium catalyst temperature contained in the equilibrium catalyst extracted from the fluid catalytic cracking device by sucking dry air therein. In addition, for the purpose of further cooling the temperature of the equilibrium catalyst, a cooler may be further provided.

본 발명에서는, 자기분리장치에 도입되는 평형촉매의 수분량 조절에 의해, 자기분리장치에서의 분리효율을 향상시키고, 이에 의해 재생사용되는 촉매량의 증가를 가능하게 함으로써 평형촉매의 폐기량을 삭감시킬 수 있다.In the present invention, by controlling the amount of water in the equilibrium catalyst introduced into the magnetic separation device, the separation efficiency in the magnetic separation device can be improved, thereby enabling an increase in the amount of catalyst used for regeneration, thereby reducing the waste of the equilibrium catalyst. .

본 발명에서 분리효율은, 재생사용되는 촉매의 평형촉매에 대한 비율을 어느 일정 비율로 했을 때, 폐기되는 자기부착촉매와 재생사용되는 비자기부착촉매의 금속퇴적량의 차이, 비표면적의 차이, 마이크로액티비티 테스트(MAT)에 의한 활성 차이를 의미한다.In the present invention, the separation efficiency is a difference between the metal deposition amount, the specific surface area, Mean activity difference by micro activity test (MAT).

예를 들어, 니켈의 분리효율은, 폐기되는 자기부착촉매와 재생사용되는 비자기부착촉매의, 촉매입자 상에 퇴적된 니켈이 많은 자기부착물과 적은 비자기부착물과의 비로 산출할 수 있다. 따라서, 비자기부착물의 금속퇴적량/자기부착물의 금속퇴적량으로 나타내고, 이 값이 1.0인 경우는 전부 분리가 일어나지 않은 경우를 나타내고, 이 값이 작아지면 작아질수록 분리효율은 높아진다.For example, the separation efficiency of nickel can be calculated by the ratio of the self-adhesive catalyst to be discarded and the non-magnetic adhering catalyst used for regeneration to the ratio of the self-adhesive material containing a large amount of nickel deposited on the catalyst particles and the non-magnetic adhering material. Therefore, the metal deposition amount of the nonmagnetic attachment / the metal deposition amount of the magnetic attachment, the value of 1.0 indicates the case where no separation occurs, and the smaller the value, the higher the separation efficiency.

또한, 여기서 말하는 표면적은, BET법으로 측정된 BET 비표면적을 의미한다. 표면적이 클수록 촉매의 활성은 커진다. 더욱이, 여기서 말하는 MAT는, ASTM D-3907 (FLUID CRACKING CATALYST BY MICROACTIVITY TEST)로 정의되는 값으로서, 이 수치가 클수록 촉매의 활성이 높은 것을 의미한다.In addition, the surface area here means BET specific surface area measured by the BET method. The larger the surface area, the greater the activity of the catalyst. Moreover, MAT here is a value defined by ASTM D-3907 (FLUID CRACKING CATALYST BY MICROACTIVITY TEST), and the larger this value, the higher the activity of the catalyst.

전술한 바와 같이, 유동접촉분해장치로부터 발출된 촉매는, 수분량이 5질량% 이하로 조정된 후 자기분리장치로 전달된다.As described above, the catalyst extracted from the fluid catalytic cracker is delivered to the magnetic separator after the amount of water is adjusted to 5% by mass or less.

자기분리장치는, 촉매입자를 그 자화율의 차이에 따라 촉매입자 상에 퇴적된 니켈, 바나듐, 철 및 동이 많은 자기부착물과, 금속 퇴적량이 적은 비자기부착물을 연속적으로 분리할 수 있는 자기분리기이고, 특히 고구배자기분리기가 바람직하다.The magnetic separator is a magnetic separator capable of continuously separating the nickel, vanadium, iron and copper magnetic deposits deposited on the catalyst particles and the nonmagnetic deposits having a small metal deposition amount according to the difference in the magnetization rate thereof. Particularly preferred are high gradient magnetic separators.

고구배자기분리기는, 균일한 고자기공간 내에 강자성의 충진물을 투입하고, 충진물의 주위에 통상 200 × 103 내지 20000 × 103 가우스/㎠의 높은 자장구배를 발생시킴으로써, 충진물의 표면에 강자성 또는 상자성 미소 입자의 자기부착물을 자기부착시켜서, 이것을 비자기부착물의 약상자성 미소입자 또는 반자성 미소입자로부터 분리할 수 있도록 설계된 자기분리기이다. 고구배자기분리기의 예로는, Metso Minerals 사에서 제작 판매하고 있는 HGMS를 들 수 있다.The high gradient magnetic separator inserts ferromagnetic fillers into a uniform high magnetic space and generates a high magnetic gradient of 200 × 10 3 to 20000 × 10 3 gauss / cm 2 around the fillers, thereby producing ferromagnetic or A magnetic separator designed to magnetically adhere magnetic particles of paramagnetic microparticles and to separate them from weak paramagnetic particles or diamagnetic microparticles of nonmagnetic attachments. An example of a high gradient magnetic separator is HGMS manufactured and sold by Metso Minerals.

또한, 자기부착물:비자기부착물의 중량비는, 1:9 내지 9:1 범위가 바람직하고, 보다 바람직하게는 1:9 내지 5:5 범위인 것이다.In addition, the weight ratio of the magnetic adhering substance to the nonmagnetic adhering substance is preferably in the range of 1: 9 to 9: 1, and more preferably in the range of 1: 9 to 5: 5.

강자성 물질로 이루어진 충진물은 통상 망상이고, 강자성 물질이면 그 재질은 문제가 되지 않지만, 예컨대 스테인레스 스틸로 제조된 익스팬디드 메탈(expanded metal) 등을 예로 들 수 있다.Fills made of ferromagnetic materials are usually reticulated, and the material is not a problem if they are ferromagnetic materials. Examples thereof include expanded metals made of stainless steel.

망상충진물의 망의 선 직경은 통상 10 내지 1000㎛이고, 바람직하게는 50 내지 700㎛이다. 또한, 촉매입자가 충진물을 통해 발출 처리되기 위해서는, 충진물의 망눈은 통상 3 내지 80 메쉬의 범위인 것이 바람직하고, 보다 바람직하게는 5 내지 50메쉬 범위이다. 망눈이 80메쉬보다 크면, 비자기부착물도 기계적으로 체류해버리고, 또한 3메쉬보다 작으면 충진물이 효율좋게 자기부착됨이 없이 통과하여 발출되는 일이 많아져 버리기 때문에 바람직하지 않다. 망상 충진물은 일매 이상 적층하여 사용되지만, 경우에 따라서는 망상충진물 사이에 스페이서 등을 삽입하여, 일정한 간격을 두어도 좋다.The wire diameter of the network of the network filler is usually 10 to 1000 µm, preferably 50 to 700 µm. In addition, in order for the catalyst particles to be extracted through the packing, the netting of the packing is preferably in the range of 3 to 80 mesh, more preferably in the range of 5 to 50 mesh. If the mesh is larger than 80 mesh, the nonmagnetic attachment is also mechanically retained, and if it is smaller than 3 mesh, it is not preferable because the filling is more likely to pass out without self-adhesion efficiently. Although one or more network fillers are laminated and used, in some cases, spacers or the like may be inserted between the network fillers and spaced at regular intervals.

자기분리는, 촉매를 이송 유체와 함께 자기분리기의 자기공간내를 통과시킴 으로써 수행된다. 이송 유체는 촉매에 악영향을 미치지 않는 것이면 특별한 제한은 없지만, 경제성, 안전성 면에서 공기, 질소 또는 이의 혼합물이 이용될 수 있다.Magnetic separation is performed by passing the catalyst along with the conveying fluid into the magnetic space of the magnetic separator. The conveying fluid is not particularly limited so long as it does not adversely affect the catalyst, but in terms of economy and safety, air, nitrogen or a mixture thereof may be used.

고구배자기분리기를 운전할 때의 공정 변수로는, 자기강도, 자기구배, 입자농도, 이송유체선속도 등이 있고, 촉매입자 직경, 퇴적 금속의 종류와 상태 및 목적으로 하는 분리 레벨, 분리 효율 등에 따라 공정 변수의 최적값은 변동한다.Process variables when operating a high gradient magnetic separator include magnetic strength, magnetic gradient, particle concentration, conveying fluid linear velocity, etc., catalyst particle diameter, the type and condition of the deposited metal, the separation level for the purpose, separation efficiency, etc. The optimum value of the process variable therefore varies.

자기강도는, 충진물이 배치되어 있는 공간내의 자장의 강도인 것으로서, 통상 1000가우스 이상, 바람직하게는 3000가우스 이상이다.The magnetic strength is the strength of the magnetic field in the space in which the packing material is placed, and is usually 1000 gauss or more, preferably 3000 gauss or more.

자장구배는, 충진물의 주위에 발생되는 자장 강도의 거리에 따른 변화량이고, 망상충진물의 선 직경과 밀접한 관계를 갖지만, 일반적으로 선 직경이 작을수록 자장구배는 커진다.The magnetic field gradient is an amount of change according to the distance of the magnetic field intensity generated around the packing material, and has a close relationship with the wire diameter of the network packing material. However, the smaller the wire diameter, the larger the magnetic field gradient becomes.

입자농도는, 이송유체중에서의 촉매입자의 농도를 말한다. 통상 0.01 내지 100g/l, 바람직하게는 0.1 내지 10g/l이다.Particle concentration refers to the concentration of catalyst particles in the transfer fluid. Usually, 0.01 to 100 g / l, preferably 0.1 to 10 g / l.

또한, 이송유체 선속도는, 자장공간내를 통과할 때의 이송유체의 선속도인 것으로서, 이송유체 선속도를 변화시킴으로써 분리 레벨, 분리 효율을 크게 변화시킬 수 있다. 이송유체선속도는, 통상 0.01 내지 50m/sec, 바람직하게는 0.1 내지 10m/sec이다. 이송유체선속도가 0.01m/sec보다 적은 경우, 비자기부착물도 기계적으로 체류하고, 50m/sec보다 큰 경우에는 자기부착물의 대부분이 통과하여 발출되어 버려, 분리 레벨, 분리 효율 모두 실용적으로 적당하지 않다.In addition, the conveying fluid linear velocity is a linear velocity of the conveying fluid when passing through the magnetic field space, and the separation level and the separation efficiency can be greatly changed by changing the conveying fluid linear velocity. The conveying fluid linear velocity is usually 0.01 to 50 m / sec, preferably 0.1 to 10 m / sec. If the conveying fluid linear velocity is less than 0.01 m / sec, the non-magnetic deposit also stays mechanically, and if it is larger than 50 m / sec, most of the magnetic adsorbent will pass through and be discharged. not.

자기분리장치에서 분리된 비자기부착촉매는 재생탑으로 전달되고, 자기부착촉매는 폐기된다. 이 때, 폐기된 촉매와 동량의 새 촉매가, 장치 운전상 지장을 주 지않는 장소로부터 보충된다. 또한, 장치내를 순환하는 촉매의 활성을 일정하게 유지하기 위해, 장치운전상 지장을 주지않는 적당한 장소로부터 촉매의 일부를 발출하고, 이들과 동량의 새 촉매를 보충하여도 좋다. 또한, 촉매의 발출은 연속적으로 수행해도 좋고, 또는 성능에 악영향을 미치지 않는 범위에서 일정 간격을 두고 비연속적으로 발출해도 좋다.The non-magnetic adhesion catalyst separated from the magnetic separation device is transferred to the regeneration tower, and the magnetic adhesion catalyst is discarded. At this time, the same amount of new catalyst as that of the discarded catalyst is replenished from a place which does not interfere with the operation of the apparatus. In addition, in order to keep the activity of the catalyst circulating in the apparatus constant, a part of the catalyst may be extracted from a suitable place which does not interfere with the operation of the apparatus, and a new catalyst of the same amount may be replenished. In addition, the catalyst may be continuously discharged or may be discharged discontinuously at regular intervals within a range that does not adversely affect performance.

실시예Example

이하, 실시예를 예로 들어 본 발명을 구체적으로 설명하지만, 본 발명은 이러한 실시예들에 한정되지는 않는다. Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(실시예 1)(Example 1)

발출된 촉매(평형촉매)의 수분량을 1질량%, 온도를 30℃로 조정한 후, 고구배자기분리기에서 분리처리했다. 고구배자기분리기에 있어서, 충진물로는 스테인레스 스틸제 익스팬디드 메탈을 이용하고, 이송유체로는 공기를 이용했다.After adjusting the moisture content of the extracted catalyst (equilibration catalyst) to 1 mass% and temperature to 30 degreeC, it separated-separated by the high gradient magnetic separator. In the high gradient magnetic separator, expanded metal made of stainless steel was used as the filling material, and air was used as the conveying fluid.

발출 촉매, 자기부착물, 비자기부착물에 대하여, 금속분석, 표면적분석 및 MAT에 의한 활성 평가를 수행했다. 이들 결과를 표 1에 나타낸다.The extraction catalyst, the magnetic adsorbate, and the nonmagnetic adsorbate were subjected to metal analysis, surface area analysis and activity evaluation by MAT. These results are shown in Table 1.

표 1에 나타낸 바와 같이, 평형촉매의 수분량을 1질량%, 온도를 30℃로 조정하여 자기분리를 수행한 경우 매우 양호한 분리효율이 수득되었다. 장치내로 복귀되어 재생사용되는 비자기부착물의 금속 퇴적량은 평형촉매와 비교할 때 극히 적었고, 또한 표면적이 커서 MAT 전환율이 높기 때문에, 자기분리장치에서의 분리효율이 향상되고, 이에 따라 재생사용되는 촉매량이 증가하는 바, 평형촉매의 폐기량을 대폭 삭감시킬 수 있었다.As shown in Table 1, very good separation efficiency was obtained when magnetic separation was carried out by adjusting the water content of the equilibrium catalyst to 1% by mass and the temperature to 30 ° C. The amount of metal deposited on the nonmagnetic attachments returned to the apparatus for regeneration is very small compared to the equilibrium catalyst, and the surface area is large, so the MAT conversion rate is high, so that the separation efficiency in the magnetic separation device is improved, and thus the amount of catalyst used for regeneration. As a result of this increase, the waste volume of the equilibrium catalyst was greatly reduced.

또한, 평형촉매에 비해, 장치내로 복귀되어 재생사용되는 미자기부착물의 입자 직경 30㎛ 이하인 극히 작은 입자 직경 촉매의 비율이 적기 때문에, 장치외로 비산 또는 비분해유 중으로 혼입됨으로써 발생하는, 장치내 촉매의 손실 또는 C중유중으로의 촉매 혼입 등을 감소시킬 수 있다.In addition, compared to the equilibrium catalyst, since the ratio of the extremely small particle diameter catalyst having a particle diameter of 30 µm or less returned to the apparatus and used for regeneration is small, the catalyst in the apparatus generated by incorporation into the fugitive or non-degradable oil outside the apparatus Loss or incorporation of the catalyst into the C-heavy oil can be reduced.

실시예 1Example 1 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
30
1.0
12.9
4.2
0.17
자기부착물: 비자기부착물 = 1:4
30
1.0
12.9
4.2
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
4120
13730
4120
13730
1240
4110
1240
4110
1820
6040
1820
6040
성능Performance 표면적 ㎡/g
MAT 전환율 질량%
입자직경 30㎛ 이하의 비율%
Surface area ㎡ / g
MAT conversion mass%
% Of particle diameter less than 30㎛
67
35.5
0.91
67
35.5
0.91
149
76.6
0.16
149
76.6
0.16
133
69.4
0.31
133
69.4
0.31
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.301
0.299
0.301
0.299

(실시예 2 내지 5)(Examples 2 to 5)

발출된 촉매(평형촉매)의 수분량을 2질량%, 3질량%, 4질량% 및 5질량%로 변화시키고, 고구배자기분리기에서 분리처리했다. 고구배자기분리기에서 충진물로는 스테인레스 스틸제 익스팬디드 메탈을 이용하고, 이송 유체로는 공기를 이용했다. 발출된 촉매, 자기부착물, 비자기부착물에 대해 금속분석을 수행했다. 그 결과는 표 2 내지 5에 나타냈다.The amount of water of the extracted catalyst (equilibrium catalyst) was changed to 2% by mass, 3% by mass, 4% by mass and 5% by mass and separated in a high gradient magnetic separator. In the high gradient magnetic separator, expanded metal made of stainless steel was used as a filler, and air was used as a conveying fluid. Metal analysis was performed on the extracted catalyst, magnetic adhering matter, and nonmagnetic adhering matter. The results are shown in Tables 2 to 5.

표 2 내지 표 5에 나타낸 바와 같이, 평형촉매의 수분량이 적은 경우 양호한 분리가 일어나고 있다. 요컨대, 평형촉매의 수분량이 적은 경우, 장치내로 복귀되어 재생사용되는 비자기부착물의 금속 퇴적량이 평형촉매와 비교하여 극히 적어서, 그로 인해 재생사용되는 촉매량이 증가하기 때문에 평형촉매의 폐기량을 대폭 삭감시킬 수 있다.As shown in Tables 2 to 5, good separation occurs when the amount of water in the equilibrium catalyst is small. In other words, when the amount of water in the equilibrium catalyst is small, the amount of metal deposition of the nonmagnetic attachments returned to the apparatus and used for regeneration is extremely small compared to the equilibrium catalyst, thereby greatly reducing the waste of the equilibrium catalyst since the amount of catalyst used for regeneration is increased. Can be.

실시예 2Example 2 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
100
2.0
12.9
4.2
0.17
자기부착물: 비자기부착물 = 1:4
100
2.0
12.9
4.2
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
4080
13010
4080
13010
1270
4280
1270
4280
1820
6040
1820
6040
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.311
0.329
0.311
0.329

실시예 3Example 3 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
100
3.0
12.9
4.2
0.17
자기부착물: 비자기부착물 = 1:4
100
3.0
12.9
4.2
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
3870
12040
3870
12040
1320
4530
1320
4530
1820
6040
1820
6040
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.341
0.376
0.341
0.376

실시예 4Example 4 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
30
4.0
12.9
4.2
0.17
자기부착물: 비자기부착물 = 1:4
30
4.0
12.9
4.2
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
3450
10520
3450
10520
1420
4920
1420
4920
1820
6040
1820
6040
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.412
0.468
0.412
0.468

실시예 5Example 5 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
30
5.0
12.9
4.2
0.17
자기부착물: 비자기부착물 = 1:4
30
5.0
12.9
4.2
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
3010
9530
3010
9530
1510
5160
1510
5160
1820
6040
1820
6040
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.502
0.541
0.502
0.541

(비교예 1)(Comparative Example 1)

비교예 1의 촉매 수분량 및 처리온도를 조정함이 없이, 고구배자기분리기에서 자기부착물과 비자기부착물을 분리할 수 있는 조건으로 처리했다. 이들 결과는 표 6에 나타낸다. Without adjusting the catalyst water content and the treatment temperature of the comparative example 1, it processed on the conditions which can isolate a magnetic adhering substance and a non-magnetic adhering substance in a high gradient magnetic separator. These results are shown in Table 6.

표 6에 나타낸 바와 같이, 평형촉매의 수분량을 조정하지 않고 자기분리를 수행한 경우에는 실시예 1 만큼의 분리효율을 수득할 수 없었다.As shown in Table 6, when magnetic separation was carried out without adjusting the water content of the equilibrium catalyst, the separation efficiency as in Example 1 could not be obtained.

또한, 평형촉매와, 장치내로 복귀되어 재생사용되는 비자기부착물의 입자 직경이 30㎛ 이하인 극히 작은 입자 직경의 촉매 비율에 그다지 변화가 없고, 장치외로 비산 또는 미분해유 중으로 혼입되어 일어나는, 장치내 촉매의 손실 또는 C 중유중으로의 촉매 혼입 등의 감소 효과는 작았다.In addition, there is no change in the equilibrium catalyst and the catalyst ratio of the extremely small particle diameter whose particle diameter of the nonmagnetic attachment returned and used for regeneration is 30 µm or less, and the catalyst in the device caused by incorporation into the fly ash or undecomposed oil outside the device. The reduction effect such as loss of or incorporation of catalyst into C heavy oil was small.

비교예 1Comparative Example 1 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
120
8.0
12.9
3.9
0.17
자기부착물: 비자기부착물 = 1:4
120
8.0
12.9
3.9
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
2670
8880
2670
8880
1610
5330
1610
5330
1820
6040
1820
6040
성능Performance 표면적 ㎡/g
MAT 전환율 질량%
입자직경 30㎛ 이하의 비율%
Surface area ㎡ / g
MAT conversion mass%
% Of particle diameter less than 30㎛
110
47.5
0.52
110
47.5
0.52
139
75.1
0.26
139
75.1
0.26
133
69.4
0.31
133
69.4
0.31
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.603
0.600
0.603
0.600

(비교예 2)(Comparative Example 2)

비교예 1의 촉매 수분량을 조정함이 없이, 처리온도를 30℃로 조정하여 고구배자기분리기에서 자기부착물과 비자기부착물로 분리할 수 있는 조건으로 처리했다. 이들 결과를 표 7에 나타낸다. The treatment temperature was adjusted to 30 ° C. without adjusting the catalyst water content of Comparative Example 1, and the treatment was performed under conditions that could be separated into magnetic adhering materials and nonmagnetic adhering materials in a high gradient magnetic separator. These results are shown in Table 7.

표 7에 나타낸 바와 같이, 평형촉매의 수분량을 조정하지 않고 자기분리를 수행한 경우에는, 처리 온도를 조정하여도 실시예 1 만큼의 분리효율을 수득할 수 없었다.As shown in Table 7, when the magnetic separation was carried out without adjusting the water content of the equilibrium catalyst, the separation efficiency as in Example 1 could not be obtained even by adjusting the treatment temperature.

비교예 2Comparative Example 2 평형촉매Equilibrium catalyst 자기
분리
조건
magnetism
detach
Condition
처리온도 ℃
수분량 질량%
자기강도 KGauss
선속도 m/sec
촉매입자농도 g/l
분리비율
Treatment temperature ℃
Moisture content mass%
Magnetic strength KGauss
Linear velocity m / sec
Catalyst particle concentration g / l
Separation Ratio
30
8.0
12.9
3.9
0.17
자기부착물: 비자기부착물 = 1:4
30
8.0
12.9
3.9
0.17
Magnetic Attachments: Nonmagnetic Attachments = 1: 4
금속량Amount of metal 자기부착물Self-adhesive 비자기부착물Nonmagnetic attachment 니켈 질량-ppm
바나듐 질량-ppm
Nickel Mass-ppm
Vanadium mass-ppm
2690
8900
2690
8900
1600
5320
1600
5320
1820
6040
1820
6040
분리효율 니켈
바나듐
Separation Efficiency Nickel
vanadium
0.595
0.598
0.595
0.598
69.4
0.31
69.4
0.31

(비교예 6)(Comparative Example 6)

제올라이트계 유동접촉분해촉매를 이용하고, 유동접촉분해 파일로트 장치에 의해 순환촉매 일부를 발출하고, 장치내 촉매량을 일정하게 유지하기 위해 새 촉매를 보충량 첨가하면서, 상압증류 잔류유의 접촉분해를 수행했다. 이 경우, 표 8에 나타낸 생성물을 수득하는 데에 처리유 1배럴 당 309g의 새 촉매를 필요로 했다.Catalytic cracking of atmospheric distillation residual oil is carried out by using a zeolite-based catalytic cracking catalyst, extracting a part of the circulating catalyst by a fluid catalytic cracking pilot device, and adding a supplemental amount of catalyst to maintain a constant amount of catalyst in the apparatus. did. In this case, 309 g of fresh catalyst per barrel of treated oil was required to obtain the product shown in Table 8.

이어서, 유동접촉분해 파일로트 장치에 고구배자기분리기를 조립 장착하고, 발출된 촉매를 실시예 1과 같은 조건에서 고구배자기분리기로 자기부착물과 비자기부착물로 나누어, 비자기부착물을 순환계내로 복귀시켜 재생사용했다. 이 경우, 고구배자기분리를 이용하지 않은 경우와 거의 동일한 생성물을 수득하는 데에 필요한 새 촉매 양은 처리유 1배럴당 210g이었다. 이와 같이, 평형촉매의 수분량을 조정한 후에, 고구배자기분리기에서 분리처리하는 것에 의해 자기부착물과 비자기부착물의 분리효율을 향상시키고, 이로 인해 재생사용되는 촉매량의 증가가 가능해지고, 그 결과 새 촉매의 사용량, 평형촉매의 폐기량을 삭감시킬 수 있다.Subsequently, the high contact magnetic separator was assembled and mounted on the fluid catalytic cracking pilot device, and the extracted catalyst was divided into a magnetic attachment and a nonmagnetic attachment using a high gradient magnetic separator under the same conditions as in Example 1, and the nonmagnetic attachment was returned to the circulation system. I used to play it. In this case, the amount of fresh catalyst required to obtain approximately the same product as without using high gradient magnetic separation was 210 g per barrel of treated oil. In this way, after adjusting the water content of the equilibrium catalyst, the separation treatment in the high gradient magnetic separator improves the separation efficiency of the magnetic adhering material and the nonmagnetic adhering material, thereby increasing the amount of catalyst used for regeneration. The amount of catalyst used and the amount of waste disposed of the equilibrium catalyst can be reduced.

고구배자기분리기 없음No high gradient magnetic separator 고구배자기분리기 부설High Gradient Magnetic Separator 실시예 1 조건Example 1 Conditions 비교예 1 조건Comparative Example 1 Conditions 생성물 분포Product distribution H2 질량%
C1+C2 질량%
C3+C4 질량%
카올린 질량%
순환유 질량%
코크스 질량%
H 2 mass%
C1 + C2 mass%
C3 + C4 mass%
Kaolin mass%
Circulating oil mass%
Coke Mass%
0.44
2.10
16.81
49.85
24.32
6.48
0.44
2.10
16.81
49.85
24.32
6.48
0.40
1.87
16.99
49.90
24.46
6.38
0.40
1.87
16.99
49.90
24.46
6.38
0.41
1.91
16.82
49.88
24.57
6.41
0.41
1.91
16.82
49.88
24.57
6.41
평형촉매 폐기량 g/배럴Equilibrium catalyst waste g / barrel 309309 144144 210210

본 발명의 방법에 의하면, 유동접촉분해촉매의 자기분리장치에서 분리효율이 현저하게 향상되기 때문에 재생사용되는 촉매량이 증가하고, 폐기되는 촉매량을 삭감시킬 수 있다.According to the method of the present invention, since the separation efficiency is remarkably improved in the magnetic separation device of the fluid catalytic cracking catalyst, the amount of catalyst used for regeneration can be increased, and the amount of discarded catalyst can be reduced.

또한, 금속 퇴적량이 많은 촉매는, 장치내 보유시간이 긴 촉매이기 때문에 입자 직경 30㎛ 이하의 극히 작은 입자 직경 촉매인 비율이 많고, 역으로 금속 퇴적량이 적은 촉매는, 장치내 보유시간이 짧은 촉매이기 때문에 재생사용되는 촉매중의 입자 직경 30㎛ 이하의 비율을 저하시킬 수 있다. 그 결과, 장치외로의 비산 또는 미분해유 중으로 혼입됨으로써 일어나는, 장치내 촉매의 손실 또는 C 중유 중으로의 촉매 혼입 등을 감소시킬 수 있다.In addition, since the catalyst having a large amount of metal deposition is a catalyst having a long holding time in the apparatus, there are many ratios of an extremely small particle diameter catalyst having a particle diameter of 30 µm or less. On the contrary, the catalyst having a small metal deposition amount has a short holding time in the apparatus. For this reason, the ratio of the particle diameter of 30 micrometers or less in the catalyst used for regeneration can be reduced. As a result, it is possible to reduce the loss of the catalyst in the apparatus or the incorporation of the catalyst into the C heavy oil, which is caused by incorporation into fly ash or undigested oil outside the apparatus.

Claims (2)

자기분리장치를 구비하는 유동접촉분해 공정에 있어서, 유동접촉분해장치로부터 발출된 촉매의 수분량을 5질량% 이하로 조정한 후, 자기분리장치에 도입시키는 것을 특징으로 하는 유동접촉분해촉매의 자기분리방법.In a fluid catalytic cracking process including a magnetic separator, magnetic separation of the fluid catalytic cracking catalyst is introduced into a magnetic separator after adjusting the amount of water of the catalyst extracted from the fluid catalytic cracking apparatus to 5 mass% or less. Way. 제1항에 있어서, 발출된 촉매의 온도를 100℃ 이하로 조정한 후, 자기분리장치에 도입시키는 것을 특징으로 하는, 자기분리방법.The magnetic separation method according to claim 1, wherein the temperature of the extracted catalyst is adjusted to 100 ° C or lower, and then introduced into a magnetic separation device.
KR1020050119389A 2004-12-10 2005-12-08 Magnetic separation method of fluidized catalytic cracking catalyst KR101250173B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004357780 2004-12-10
JPJP-P-2004-0357780 2004-12-10

Publications (2)

Publication Number Publication Date
KR20060065521A KR20060065521A (en) 2006-06-14
KR101250173B1 true KR101250173B1 (en) 2013-04-04

Family

ID=36907070

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050119389A KR101250173B1 (en) 2004-12-10 2005-12-08 Magnetic separation method of fluidized catalytic cracking catalyst

Country Status (2)

Country Link
KR (1) KR101250173B1 (en)
CN (1) CN1814711B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357229A (en) * 1979-11-01 1982-11-02 Exxon Research And Engineering Co. Catalysts and hydrocarbon treating processes utilizing the same
US4406773A (en) * 1981-05-13 1983-09-27 Ashland Oil, Inc. Magnetic separation of high activity catalyst from low activity catalyst
KR0126111B1 (en) * 1993-03-02 1997-12-18 오오자와 히데지로 Process for the fluid catalytic cracking of heavy fraction oils

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089642C (en) * 1998-06-24 2002-08-28 中国石化集团洛阳石油化工总厂 Magnetic separating machine, separating process and corollary equipment for separating waste catalytic cracking catalyst
CN1405274A (en) * 2002-04-15 2003-03-26 中国石化工程建设公司 Catalyst on-line magnetic treating method of fluidized catalytic cracker for oil refinery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357229A (en) * 1979-11-01 1982-11-02 Exxon Research And Engineering Co. Catalysts and hydrocarbon treating processes utilizing the same
US4406773A (en) * 1981-05-13 1983-09-27 Ashland Oil, Inc. Magnetic separation of high activity catalyst from low activity catalyst
KR0126111B1 (en) * 1993-03-02 1997-12-18 오오자와 히데지로 Process for the fluid catalytic cracking of heavy fraction oils

Also Published As

Publication number Publication date
CN1814711B (en) 2010-08-04
KR20060065521A (en) 2006-06-14
CN1814711A (en) 2006-08-09

Similar Documents

Publication Publication Date Title
EP0106052B1 (en) Demetallizing and decarbonizing heavy residual oil feeds
EP0466735B1 (en) Magnetic separation into low, intermediate and high metals and activity catalyst
US5364827A (en) Composition comprising magnetically active moieties for magnetic beneficiation of particulates in fluid bed hydrocarbon processing
US5230869A (en) Addition of magnetically active moieties for magnetic beneficiation of particulates in fluid bed hydrocarbon processing
KR0126111B1 (en) Process for the fluid catalytic cracking of heavy fraction oils
US2472723A (en) Method for removal of metal compounds from oil feed to fluid catalyst cracking
CN107828442B (en) Method and apparatus for enhanced contaminant removal in a fluid catalytic cracking process
KR101250173B1 (en) Magnetic separation method of fluidized catalytic cracking catalyst
JP4585424B2 (en) Magnetic separation method of fluid catalytic cracking catalyst
JP5213401B2 (en) Fluid catalytic cracking method for heavy petroleum
US8840846B2 (en) Method and apparatus for catalytic cracking
JPH06313176A (en) Fluid catalytic cracking of heavy oil
US2631124A (en) Magnetic decontamination of cracking catalyst
KR20220156569A (en) Production of Light Olefins from Crude Oil via Fluid Catalytic Cracking Process and Equipment
JP2009518470A (en) Integrated hydrocarbon cracking and product olefin cracking
JPS6024831B2 (en) Catalytic cracking method for heavy petroleum containing distillation residue
JPS6337156B2 (en)
JPS6337835B2 (en)
JPH0920893A (en) Fluidized catalytic cracking of heavy petroleum oil
JPH06116569A (en) Method for fluidized catalytic cracking of heavy oil
EP4271770A1 (en) Catalytic cracking process for a true circular solution for converting pyrolysis oil produced from recycled waste plastic into virgin olefins and petrochemical intermediates
US6099721A (en) Use of magnetic separation to remove non-magnetic, particles from FCC catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee