JPS6337248A - Method for forecasting deterioration degree of metallic material used at high temperature - Google Patents

Method for forecasting deterioration degree of metallic material used at high temperature

Info

Publication number
JPS6337248A
JPS6337248A JP18094986A JP18094986A JPS6337248A JP S6337248 A JPS6337248 A JP S6337248A JP 18094986 A JP18094986 A JP 18094986A JP 18094986 A JP18094986 A JP 18094986A JP S6337248 A JPS6337248 A JP S6337248A
Authority
JP
Japan
Prior art keywords
layer
electrical resistance
metal
width
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18094986A
Other languages
Japanese (ja)
Inventor
Eiji Murakami
英治 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18094986A priority Critical patent/JPS6337248A/en
Publication of JPS6337248A publication Critical patent/JPS6337248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure the width of decarburization layer and that of a carburizing layer simply in a non-destructive manner on the spot, by preliminarily welding a different kind of metal different in chromium content to a metal material used at high temp. to form a different material weld. CONSTITUTION:A lead wire 10 is welded to a heat transfer pipe 5 and a different kind welded metal 1 by a spot welding and connected to a constant voltage power source 6 to allow a current to flow. Next, an electric resistance measuring terminal 13 is fixed on the heat transfer pipe 5 and the other electric resistance measuring terminal 14 is moved on the transfer pipe 5 to gradually make the interval between both terminals large. The terminals 13, 14 are connected to a voltmeter 7 by the lead wire 10 and, by calculating a resistance value from the voltage of the voltmeter 7, the relation between electric resistance and the interval between the terminals can be calculated. That is, the width of a decarburization layer 4 or carburizing layer 3 can be calculated from the change point of the gradient of the relation between electric resistance and the terminal-to-terminal interval.

Description

【発明の詳細な説明】 (産業」−9の利用分野) 本発明は高温で使用される金属(4料の劣化の程度の予
知方法に係り、特にプラン1−などに使用されている状
態で非破壊的に金属(4Hの劣化の程度を予知する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of Industry"-9) The present invention relates to a method for predicting the degree of deterioration of metals (4 materials) used at high temperatures, especially when used in Plan 1- etc. It relates to a method for non-destructively predicting the degree of deterioration of metal (4H).

(従来の技術) ホイラや化学プランI・用金属斗(料は高温で使用され
るため材ネ1劣化を生じる。具体的にその様相を述べれ
ば、フェライ1系祠T1では運転中にパーライト絹織や
ヘーナイト絹織の分解、炭化物の凝集等の材質変化を生
し、引張り強ざやクリープ強度が次第に低下してくる。
(Conventional technology) Materials such as foils and chemical plan I materials undergo material deterioration because they are used at high temperatures.To describe this situation specifically, in Ferai 1 series shrine T1, pearlite silk is produced during operation. This causes material changes such as decomposition of the weave and haenite silk weave, and aggregation of carbides, resulting in a gradual decline in tensile strength and creep strength.

また、オーステナイ1−系材拳(では、運転中に炭化物
の析出や凝集、和犬化が生したり、鉄とクロムの金属間
化合物であるシグマ相が析出し、これがクリープボイド
と同様に作用し、クリープ現象を促進させる。このよう
な材料劣化は運転温度、運転時間および作用応力により
支配されるものである。実機プラン1−ではこのような
材料劣化を考慮し、通富10万時間以上の寿命を見込ん
で設計されている。しかしながら、10万時間以上の寿
命で設計されたボイラ伝熱1″i等・においては敵方時
間で噴破あるいは膨出ずろ事z1々がC7ばしば起きて
いる。このような事故の原因ε51.燃焼ガスの偏流、
内部を冷却する被加熱流体であ?)水蒸気の流はの減少
等により、実際の運転?!L度が設計温度よりも高くな
っているごとが多い。第9図のように、破断までの時間
は温度が高<l「ろほど短くなる。特に、ボイラの運転
温度のJ、うな高温下では、破断寿命は温度の影響を人
きく受りるごとか知られている。また、ボイラ伝;す5
管に作用している応力は被加熱流体の圧力である内圧に
31、ろものであるが、内圧は設計時の圧力51算で)
主要11^1所での測定値から当該個所までの差圧を考
慮ず41ば容易に推定可能なことから、運転中の実機ボ
イラ伝熱管の作用応力をIII定すること(。1容易で
ある。したがって、ボイラ伝熱管の材料劣化の程度を調
べ、ボイラ伝熱管の噴破あるいは膨出事故を予知するた
めには、実機ボイラの運転を詰瓜を正確に測定する必要
がある。
In addition, with austenite 1-based materials, carbide precipitation, agglomeration, and curing occur during operation, and sigma phase, which is an intermetallic compound of iron and chromium, precipitates, which acts in the same way as creep voids. This accelerates the creep phenomenon. Such material deterioration is controlled by operating temperature, operating time, and acting stress. In actual machine plan 1-, such material deterioration is taken into consideration, and the However, in boiler heat transfer 1''i, etc. designed for a lifespan of 100,000 hours or more, blowouts or bulges often occur in C7. Causes of such accidents ε51. Unbalanced flow of combustion gas,
Is it a heated fluid that cools the inside? ) Due to the decrease in water vapor flow, etc., the actual operation? ! The L degree is often higher than the design temperature. As shown in Figure 9, the time until rupture becomes shorter as the temperature becomes higher.Especially at high temperatures such as boiler operating temperature J, the rupture life is significantly affected by temperature. It is also known as Boiler Story;
The stress acting on the pipe is based on the internal pressure, which is the pressure of the fluid to be heated, at 31%, but the internal pressure is based on the design pressure of 51%.)
Since it can be easily estimated from the measured value at the main 11^1 point without considering the differential pressure to the point, it is easy to determine the acting stress on the heat exchanger tubes of an actual boiler during operation. Therefore, in order to investigate the degree of material deterioration in boiler heat transfer tubes and to predict blowout or bulge accidents of boiler heat transfer tubes, it is necessary to accurately measure the operation of actual boilers.

以−1,のように、実機ボイラ伝tk)管の材料劣化の
支配因子としては温度履歴が最も重要である。しかしな
がら、運転中の実機ボイラ伝熱管の温度測定は実施され
ていないのが現状である。伝熱管の温度測定方法として
は、熱電対を実機ホイラ伝タハ管に溶着しておくことが
考えられるが、熱電対とその出力を増幅し表示するアン
プとの連絡配線が非常にしくなり、正確な測定ができな
いこと、配線が高温の燃焼ガスに直接さらされtfi 
(yiを受ける等の問題点があり、実施することば困難
である。
As mentioned above, temperature history is the most important factor governing the material deterioration of tubes in actual boilers. However, at present, temperature measurements of heat transfer tubes of actual boilers during operation have not been carried out. One way to measure the temperature of a heat transfer tube is to weld a thermocouple to the actual heat exchanger tube, but this requires a lot of wiring between the thermocouple and the amplifier that amplifies and displays its output, making it difficult to be accurate. TFI measurements cannot be made, and the wiring is directly exposed to hot combustion gases.
(There are problems such as receiving yi, and it is difficult to implement.

上述の問題点を解決した測定方法として、金属材料にあ
らかじめ異種金属を溶着し7て異材溶接部を作成しでお
き、該異材溶接部の電気抵抗から溶接境界にお&Jる脱
炭層あるいは浸炭層の幅をII定し、これより温度履歴
を測定する方法を考案し出願した。この方法は、高温で
使用される金属材料にあらかしめ該金属材料とクロム含
有望の異なる異種金属を溶着して異材溶接部を作成して
おき、該異材溶接部の溶接境界における脱炭層あるいは
浸炭層の成長に件−う電気抵抗の変化を測定し、あらか
しめ求めておいた脱炭層あるいは浸炭層の幅と電気抵抗
の関係を用いて脱炭層あるいはl髪炭層の幅を((1定
し、この脱炭層あるいは浸炭層の幅から該金属(J料の
温度履歴を求めるものである。以下に、この方法を実機
ボイラ伝熱管に適用した場合について具体的に説明する
。まず、実機ボイラ伝タハηにおいて、運転中地の部材
よりも温度が高くなり祠*1劣化が生じゃずいと考えら
れる部分を選び、例えばオーステナイト系ステンレス鋼
の伝熱管5に幻しては2イCr−lMo系の溶接材料を
用いて、第8図のように溝状の開先2oを加工した後、
溶接肉盛1を行ない異材溶接部をつくっておく。次に、
電気抵抗測定用の端子9および給電端子8を溶着する。
As a measurement method that solves the above-mentioned problems, a dissimilar metal weld is created by welding dissimilar metals to the metal material in advance7, and a decarburized layer or a carburized layer is formed at the weld boundary based on the electrical resistance of the dissimilar metal weld. We devised a method to measure the temperature history from this width by determining the width of II, and filed an application. In this method, a dissimilar metal weld is created by welding a metal material used at high temperatures with dissimilar metals with different chromium content, and a decarburized layer or carburized layer is formed at the weld boundary of the dissimilar weld. The width of the decarburized layer or carburized layer is determined by measuring the change in electrical resistance associated with the growth of the layer, and using the previously determined relationship between the width of the decarburized layer or carburized layer and the electrical resistance. The temperature history of the metal (J material) is determined from the width of this decarburized layer or carburized layer. Below, we will specifically explain the case where this method is applied to an actual boiler heat transfer tube. At Taha η, select a part where the temperature is higher than the base member during operation and where it is considered that deterioration is unlikely to occur.For example, if the heat exchanger tube 5 is made of austenitic stainless steel, After processing the groove-shaped groove 2o as shown in Fig. 8 using the welding material,
Perform weld overlay 1 to create a dissimilar metal weld. next,
Terminal 9 for electrical resistance measurement and power supply terminal 8 are welded.

これらの端子8.9は測定位置を示すものであり、導電
性、耐熱性を有するものであればどんなものでもよい。
These terminals 8 and 9 indicate measurement positions, and may be of any type as long as they are electrically conductive and heat resistant.

このとき端子間隔はあらかじめ脱炭層あるいは浸炭層の
幅と電気抵抗の関係を求めたときと同一にしておく必要
がある。ボイラの定期検査等により伝熱管の温度IiW
歴の測定が必要なときには、該測定端子8.9に第8図
のようなリード線10を介して定電圧電源6および電圧
計7を取付け、脱炭層4を含む溶接金属1の電気抵抗を
測定する。次に、あらかじめ求めである第6図の脱炭層
の幅と電気抵抗の関係を用いて、電気抵抗より脱炭層の
幅を求める。
At this time, the terminal spacing must be the same as when the relationship between the width of the decarburized layer or carburized layer and the electrical resistance was determined in advance. Temperature IiW of heat exchanger tubes is determined by periodic boiler inspection, etc.
When it is necessary to measure the electrical resistance of the weld metal 1 including the decarburized layer 4, a constant voltage power source 6 and a voltmeter 7 are attached to the measurement terminal 8.9 via the lead wire 10 as shown in FIG. Measure. Next, the width of the decarburized layer is determined from the electrical resistance using the relationship between the width of the decarburized layer and the electrical resistance shown in FIG. 6, which has been determined in advance.

脱炭層の幅と1.arrson−Mi7!6erパラメ
ータは鋼種によらず第5図のような関係があることが知
られており、脱炭層の幅が分かれば第5図により1.a
rrson−Mii2ρerパラメータを求めることが
できる。1.a r r s on−Mileerパラ
メータは温度と時間から決まる熱処理のパラメータであ
り、次式で表わされる。
The width of the decarburized layer and 1. It is known that the arrson-Mi7!6er parameters have a relationship as shown in Figure 5 regardless of the steel type, and if the width of the decarburized layer is known, 1. a
The rrson-Mii2ρer parameter can be found. 1. The on-mileer parameter is a heat treatment parameter determined by temperature and time, and is expressed by the following equation.

P=T (C4−7! o g t)     (1)
ここで、Tは絶対温度(K) 、Cは材ネ・]定数、t
は時間(hour)である。運転時間が分がっているの
で、I、arrson−Mij!lerパラメータより
運転温度を求めることができる。また、浸炭層の幅から
も同様な方法により運転温度を求めることができる。ま
た、異材溶接部GJ′第8図のような軸方向溶接である
必要はなく、第7図に示す周方向溶接の場合も同様であ
る。
P=T (C4-7! o g t) (1)
Here, T is the absolute temperature (K), C is the material constant, t
is hour. Since I know the driving time, I, arrson-Mij! The operating temperature can be determined from the ler parameter. Furthermore, the operating temperature can be determined from the width of the carburized layer using a similar method. Further, it is not necessary that the dissimilar metal welding part GJ' is axial welding as shown in FIG. 8, and the same applies to the case of circumferential welding as shown in FIG.

(発明が解決しようとする問題点) −に記技t)iは、実験室において異相溶接部を作成し
2、これにf〔々の熱処理を施して脱炭層および浸炭層
を成長させ、第6図のような脱炭層あるいは浸炭層の幅
と電気抵抗の関係を鋼種ごとに調べておかなければなら
ないという問題点があった。この作業し、1多大な労力
と時間を必要とするため、数多くの1171種について
脱炭層あるいは浸炭層の幅と電気抵抗の関係を求めてお
くことは困難である。
(Problems to be solved by the invention) - Technique t)i is to create a different-phase weld in a laboratory, 2 heat treat it to f[, grow a decarburized layer and a carburized layer, There was a problem in that the relationship between the width of the decarburized layer or carburized layer and the electrical resistance had to be investigated for each steel type, as shown in Figure 6. Because this work requires a great deal of labor and time, it is difficult to determine the relationship between the width of the decarburized layer or carburized layer and the electrical resistance for a large number of 1171 species.

本発明の目的は、あらかじめ脱炭層あるいは浸炭層の幅
と電気抵抗の関係が求められていない場合においても、
現地において簡便かつ非破壊的に脱炭層J、9よび浸炭
層の幅を測定できる方法を提案することにある。
The purpose of the present invention is to
The purpose of this invention is to propose a method that can easily and nondestructively measure the widths of decarburized layers J and 9 and carburized layers on site.

(問題点を解決するための手段) 前記問題点を解決するため、本発明においては、高温で
使用される金属材料にあらかしめクロム含有量の異なる
異種金属を溶着して異相溶接部を形成し゛(おき、−1
−記機器の使用により該溶接部の両金屈境W部に浸炭層
および脱炭層を形成さ一ロ、上記金属÷(料と異種金属
間を結ふ線」二に沿って金属)1料、浸炭層、脱炭層、
異種金属各部の電気抵抗値をkl定し、各部の測定方向
栄位長さ当たりの電気抵抗値で示される勾配値と前記電
気抵抗値とから浸炭層と脱炭層の測定線方向の幅を求め
、この値から前記金属材料の使用温度を知り、これに基
づき該金属材料の劣化の程度を予知するようにした。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, different metals with different chromium contents are welded to metal materials used at high temperatures to form different phase welds. (Oki, -1
- By using the equipment described above, a carburized layer and a decarburized layer are formed at the bending W portion of both metals in the welded part. , carburized layer, decarburized layer,
The electrical resistance value of each part of the dissimilar metal is determined by kl, and the width of the carburized layer and the decarburized layer in the measurement line direction is determined from the gradient value indicated by the electrical resistance value per height length in the measurement direction of each part and the electrical resistance value. From this value, the operating temperature of the metal material is known, and based on this, the degree of deterioration of the metal material is predicted.

(作用) 第4図において、電気抵抗測定端子13をオーステナイ
ト系ステンレス6M 11 J二に固定し、もう一方の
電気抵抗測定端子I4をオーステナイト系ステンレス鋼
Ill:から移動させて端子間隔を大きくしてい(と、
電気抵抗測定端子14がオーステナイト系ステンレス鋼
11と浸炭層3、浸炭層3と脱炭層4、脱炭N4と2!
4Cr  lMo1li112の境界を移動したとき、
電気抵抗と電気抵抗測定端子間隔の関係の勾配が変化す
る。この勾配の変化点から脱炭層4および浸炭層3の幅
を求めることができ、あらかじめ脱炭層あるいは浸炭層
の幅と電気抵抗の関係が求められていない場合において
も、簡便かつ非破壊的に脱炭層および浸炭層の幅をδ(
り定することができる。
(Function) In Fig. 4, the electrical resistance measuring terminal 13 is fixed to the austenitic stainless steel 6M 11 J2, and the other electrical resistance measuring terminal I4 is moved from the austenitic stainless steel Ill: to increase the terminal interval. (and,
Electrical resistance measurement terminal 14 is austenitic stainless steel 11 and carburized layer 3, carburized layer 3 and decarburized layer 4, decarburized N4 and 2!
When moving the boundary of 4Cr lMo1li112,
The slope of the relationship between the electrical resistance and the distance between the electrical resistance measurement terminals changes. The width of the decarburized layer 4 and the carburized layer 3 can be determined from the change point of this slope, and even if the relationship between the width of the decarburized layer or the carburized layer and the electrical resistance is not determined in advance, decarburization can be performed easily and non-destructively. The width of the coal seam and carburized bed is δ(
can be set.

本発明の具体的な実施例を説明する前に、まず5′Ij
 44溶接部の電気抵抗と電気抵抗測定端子間隔の関係
について説明する。ます、オーステナイト系ステンレス
鋼である5US304にフェライト系18接材料である
2 ′/4Cr −I M o系の溶接棒を用いて被覆
アーク溶接により溶接を行ない、異相溶接部を作成した
。次に、電気炉によりこの異材熔(8部の熱処理を行な
った後、溶接部を切り出し、断面の研摩、エツチングを
行ない、組織を観察しに0第4図に溶接部の断面を示す
。第4図のように、熱処理後の溶接境界2の2 ’A 
Cr−I M o鋼12側すなわちクロム含有量が低い
材料側には脱炭層4が、オーステナイト系ステンレス鋼
11側ずなわちクロム含有量の高い材料側には浸炭層3
が観察された。これは、2 ’A Cr−I M o 
kl 12側の炭素がオーステナイト系ステンレス鋼1
1上に拡11シしたことによるものである。脱炭層4は
炭素が移動減少してマルテンサイI・組織がフェライト
組織になっていることおよび浸炭層3は炭化物が析出し
ていることが観察された。一般に、クロム含有量の異な
る異相溶接部を熱処理すると、クロム含有量の低い材料
からクロム含有量の高い材料に炭素が拡散し、クロム含
有量の低い材料には脱炭層が、クロム含有量の高い材H
には浸炭層ができる。
Before explaining specific embodiments of the present invention, first 5'Ij
The relationship between the electrical resistance of the 44 welded portion and the interval between the electrical resistance measurement terminals will be explained. First, 5US304, which is an austenitic stainless steel, was welded by covered arc welding using a 2'/4Cr-I Mo welding rod, which is a ferritic 18 joint material, to create a different-phase weld. Next, after heat treating this dissimilar material (8 parts) in an electric furnace, the welded part was cut out, the cross section was polished and etched, and the structure was observed. Figure 4 shows a cross section of the welded part. 4 As shown in Figure 4, 2'A of weld boundary 2 after heat treatment
A decarburized layer 4 is provided on the Cr-I Mo steel 12 side, that is, the material side with a low chromium content, and a carburized layer 3 is provided on the austenitic stainless steel 11 side, that is, the material side that has a high chromium content.
was observed. This is 2'A Cr-IM o
The carbon on the kl 12 side is austenitic stainless steel 1
This is due to the expansion of 11 on top of 1. It was observed that in the decarburized layer 4, the movement of carbon decreased and the martensite I structure became a ferrite structure, and in the carburized layer 3, carbides were precipitated. Generally, when heat treating dissimilar welds with different chromium contents, carbon diffuses from the material with low chromium content to the material with high chromium content, and the material with low chromium content has a decarburized layer, while the material with high chromium content has a decarburized layer. Material H
A carburized layer is formed.

次に、異+、4溶接部の電気抵抗と電気抵抗測定端子間
隔の関係について検討した結果を説明する。
Next, the results of studying the relationship between the electrical resistance of the different +4 welds and the distance between the electrical resistance measurement terminals will be explained.

電気抵抗の測定は、第4図のように2!4Cr  ]M
ot[12およびオーステナイト系ステンレス鋼11に
リード線10をスボソ]−溶接で溶着し、このり一ド線
10を定電圧電源6に接続して電流を流し、電気抵抗測
定端子13をオーステナイト系ステンレス鋼11上に固
定し、もう一方の電気抵抗測定端子14をオーステナイ
i・系ステンレス鋼11上から移動させて徐々に端子間
隔を大きくしていき、電気抵抗測定端子13.14にリ
ー]゛線10°で接続された電圧a17により電圧を測
定することにより行なった。上記の測定により1呼られ
た電気抵抗と電気抵抗測定端子間隔の関係を第3図に示
す。第3図のように、電気抵抗は電気抵抗測定端子間隔
の増加に伴い大きくなり、途中で折れ曲がりを生じて電
気抵抗と端子間隔の関係の勾配が変化している。この折
れ曲がりはそれぞれオーステナイト系ステンレス鋼11
と浸炭層3、浸炭層3と脱炭層4、脱炭N4と2 ’A
 Cr −I M 。
The electrical resistance is measured using 2!4Cr]M as shown in Figure 4.
The lead wire 10 is welded to the austenitic stainless steel 12 and the austenitic stainless steel 11 by welding, and the electrical resistance measurement terminal 13 is connected to the constant voltage power source 6 to flow a current. The electric resistance measuring terminal 14 is fixed on the steel 11, and the other electric resistance measuring terminal 14 is moved from the austenite I-stainless steel 11, gradually increasing the distance between the terminals, and the wire is connected to the electric resistance measuring terminal 13 and 14. This was done by measuring the voltage with voltage a17 connected at 10°. FIG. 3 shows the relationship between the electrical resistance determined by the above measurement and the distance between the electrical resistance measurement terminals. As shown in FIG. 3, the electrical resistance increases as the distance between the electrical resistance measurement terminals increases, and a bend occurs in the middle, changing the gradient of the relationship between the electrical resistance and the terminal distance. Each of these bends is made of austenitic stainless steel 11.
and carburized layer 3, carburized layer 3 and decarburized layer 4, decarburized N4 and 2'A
Cr-IM.

鋼12の境界に対応するものである。電気抵抗と端子間
隔の関係に折れ曲がりが生じるのは2Acr1Mo鋼よ
りオーステナイト系ステンレス鋼のほうが電気抵抗率が
大きいことおよび炭化物の析出により電気抵抗率が増大
することによるものであり、電気抵抗率は脱炭層、2 
’A Cr −I M 。
This corresponds to the boundary of steel 12. The reason for the bend in the relationship between electrical resistance and terminal spacing is that austenitic stainless steel has a higher electrical resistivity than 2Acr1Mo steel, and that the electrical resistivity increases due to the precipitation of carbides. coal seam, 2
'A Cr -I M .

鋼、オーステナイト系ステンレス鋼、浸炭層の順に大き
くなる。以上より、電気抵抗と端子間隔の関係の勾配変
化点の距離から脱炭層および浸炭層の幅を測定できるこ
とが分かる。脱炭層の幅が分かれば、第5図を用いてり
、a r r s on−Mi j!7!erパラメー
タを求めることができ、実機では運転時間が分かってい
るので、前記式(1)がら運転温度を求めることができ
る。また、浸炭層の場合も同様である。
The order increases in order of steel, austenitic stainless steel, and carburized layer. From the above, it can be seen that the widths of the decarburized layer and the carburized layer can be measured from the distance of the gradient change point of the relationship between the electrical resistance and the terminal spacing. Once the width of the decarburized layer is known, use Fig. 5 and calculate the width of the decarburized layer. 7! Since the er parameter can be determined and the operating time of the actual machine is known, the operating temperature can be determined from the above equation (1). The same applies to carburized layers.

(実施例) 次に、本発明を実機ボイラの伝熱管に適用した実施例に
ついて説明する。まず、実機ボイラ伝熱管において、運
転中地の部材よりも温度が高くなり材料劣化が生しやず
いと嵩えられる部分を選び、例えば、オーステナイト系
ステンレス鋼の伝熱管に対しては2 ’A Cr −I
 M o系の溶接棒を用いて、第2図のように溝状の開
先20を加工した後、溶接肉盛1を行ない、異材溶接部
をつくってお(。
(Example) Next, an example in which the present invention is applied to a heat exchanger tube of an actual boiler will be described. First, in an actual boiler heat exchanger tube, select a part where the temperature will be higher than that of the base material during operation and where it is unlikely that material deterioration will occur.For example, for an austenitic stainless steel heat exchanger tube, 2'A Cr-I
After processing a groove-shaped groove 20 as shown in Fig. 2 using a Mo-based welding rod, weld overlay 1 is performed to create a dissimilar metal weld (.

溶接部形状を第1図のような形としておくことにより、
電流が溶接境界2と垂直に流れ、正確な脱炭層あるいは
浸炭層の幅の測定が可能となる。この場合、溶接により
伝熱管の強度が若干低下することが考えられるため、伝
熱管の肉厚を所定のものより厚くしておく必要がある。
By making the welding part shape as shown in Figure 1,
The current flows perpendicularly to the weld boundary 2, allowing accurate measurement of the width of the decarburized or carburized layer. In this case, since the strength of the heat exchanger tube may be slightly reduced due to welding, it is necessary to make the wall thickness of the heat exchanger tube thicker than a predetermined thickness.

また、溶接止端部の応力築中を防止するためにグライン
ダで溶接部をなめらかに仕上げておく。
In addition, to prevent stress from building up at the weld toe, the weld is smoothed using a grinder.

ボイラの定期検査等により伝熱管の温度履歴の測定が必
要なときには、まず伝熱管表面の酸化スゲールをグライ
ンダで除去する。次に、第1図のように伝熱管5および
溶接金属1にリード線10をスポット溶接で溶着し、こ
のリード線10を定電圧電源6に接続して電流を流す。
When it is necessary to measure the temperature history of heat exchanger tubes due to periodic boiler inspections, etc., first, sgale oxide on the surface of the heat exchanger tubes is removed using a grinder. Next, as shown in FIG. 1, a lead wire 10 is welded to the heat exchanger tube 5 and the weld metal 1 by spot welding, and the lead wire 10 is connected to a constant voltage power source 6 to apply a current.

次に電気抵抗測定端子13を伝熱管5上に固定し、もう
一方の電気抵抗測定端子14を伝熱管5上から移動させ
て徐々に端子間隔を大きくしていく。電気抵抗測定端子
13.14はリード線10で電圧計7に接続されており
、電圧から抵抗値を計算することにより、電気抵抗と電
気抵抗測定端子間隔の関係を求めることができる。例え
ば、伝熱管5がオーステナイi・系ステンレス鋼、溶接
金属1が2!4Cr−l M o鋼の場合、電気抵抗と
端子間隔の関係は第3図のようになり、電気抵抗と端子
間隔の関係の折れ曲がり点、すなわち電気抵抗と端子間
隔の関係の勾配の変化点から脱炭層あるいは浸炭層の幅
を求めることができる。脱炭層の幅が分かれば第5図に
よりLarrson−Mi7!12erパラメータを求
めることができ、運転時間が分かっているので式日)よ
り、運転温度を求めることができる。また、浸炭層の場
合も同様である。
Next, the electric resistance measuring terminal 13 is fixed on the heat exchanger tube 5, and the other electric resistance measuring terminal 14 is moved from the heat exchanger tube 5 to gradually increase the distance between the terminals. The electrical resistance measuring terminals 13 and 14 are connected to the voltmeter 7 through lead wires 10, and by calculating the resistance value from the voltage, the relationship between the electrical resistance and the interval between the electrical resistance measuring terminals can be determined. For example, when the heat exchanger tube 5 is made of austenite I-series stainless steel and the weld metal 1 is made of 2!4Cr-l Mo steel, the relationship between electrical resistance and terminal spacing is as shown in Figure 3, and the relationship between electrical resistance and terminal spacing is as shown in Figure 3. The width of the decarburized layer or carburized layer can be determined from the bending point of the relationship, that is, the point of change in the slope of the relationship between electrical resistance and terminal spacing. If the width of the decarburized layer is known, the Larrson-Mi7!12er parameters can be determined from FIG. 5, and since the operating time is known, the operating temperature can be determined from the formula date. The same applies to carburized layers.

(発明の効果) 本発明によれば、実機ボイラ伝熱管の噴破あるいは膨出
事故を防止するために必要不可欠である伝熱管の温度履
歴の測定を、あらかじめ脱炭層あるいは浸炭層の幅と電
気抵抗の関係が求められていない場合においても、現地
にて簡便かつ非破壊的に実施することができる。なお、
本発明の温度履歴の測定方法ばボイラのみならず、他の
高温機器にも適用することができる。
(Effects of the Invention) According to the present invention, the temperature history of the heat exchanger tubes, which is essential for preventing blowout or bulging accidents of actual boiler heat exchanger tubes, can be measured in advance by measuring the width of the decarburized layer or carburized layer and the electric current. Even if a relationship of resistance is not required, it can be carried out easily and non-destructively on-site. In addition,
The temperature history measuring method of the present invention can be applied not only to boilers but also to other high-temperature equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の一実施例を示す断面図、第2図
は、本発明方法の他の実施例を示す断面図、第3図は、
電気抵抗と電気抵抗測定端子間隔を示す図、第4図は、
本発明方法を示す断面図、第5図は、脱炭層の幅と温度
履歴の関係を示す図、第6図は、脱炭層の幅と電気抵抗
の関係を示す図、第7図および第8図は、それぞれ従来
の温度履歴の測定方法を示す断面図、第9図は、クリー
プひずみと時間の関係を示す図である。 1・・・異種/8接金属、2・・・溶接境界、3・・・
浸炭層、4・・・脱炭層、5・・・伝熱管(高温使用金
属)、6・・・定電圧電源、7・・・電圧計、10・・
・リード線、13・・・電気抵抗測定端子、14・・・
電気抵抗測定端子。 代理人 弁理士 川 北 武 長 第1図 1:異種溶接金属    6:定電圧電源2:溶接境界
      7:電圧計 3:浸炭層       1o: リート線4:脱炭層
       13;電気抵抗測定端r5:伝熱管  
     14:電気抵抗測定端P第2図 第3図 電気抵抗測定端子間隔 1:j        423        11第
5図 P = T (CJog t) 第6図 電気抵抗 第7図
FIG. 1 is a cross-sectional view showing one embodiment of the method of the present invention, FIG. 2 is a cross-sectional view showing another embodiment of the method of the present invention, and FIG.
Figure 4 shows the electrical resistance and the distance between the electrical resistance measurement terminals.
5 is a cross-sectional view showing the method of the present invention; FIG. 5 is a diagram showing the relationship between the width of the decarburized layer and temperature history; FIG. 6 is a diagram showing the relationship between the width of the decarburized layer and electrical resistance; FIGS. The figures are cross-sectional views showing conventional methods of measuring temperature history, and FIG. 9 is a diagram showing the relationship between creep strain and time. 1...Dissimilar/8 metals, 2...Welding boundary, 3...
Carburized layer, 4... Decarburized layer, 5... Heat exchanger tube (metal used at high temperature), 6... Constant voltage power supply, 7... Voltmeter, 10...
・Lead wire, 13... Electric resistance measurement terminal, 14...
Electrical resistance measurement terminal. Agent Patent Attorney Takenaga Kawakita Figure 1 1: Dissimilar weld metals 6: Constant voltage power source 2: Weld boundary 7: Voltmeter 3: Carburized layer 1o: Riet wire 4: Decarburized layer 13; Electrical resistance measuring end r5: Electrical resistance heat tube
14: Electrical resistance measuring terminal P Fig. 2 Fig. 3 Electrical resistance measuring terminal spacing 1: j 423 11 Fig. 5 P = T (CJog t) Fig. 6 Electrical resistance Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)高温で使用される金属材料にあらかじめクロム含
有量の異なる異種金属を溶着して異材溶接部を形成して
おき、上記機器の使用により該溶接部の両金属境界部に
浸炭層および脱炭層を形成させ、上記金属材料と異種金
属間を結ぶ線上に沿って金属材料、浸炭層、脱炭層、異
種金属各部の電気抵抗値を測定し、各部の測定方向単位
長さ当たりの電気抵抗値で示される勾配値と前記電気抵
抗値とから浸炭層と脱炭層の測定線方向の幅を求め、こ
の値から前記金属材料の使用温度を知り、これに基づき
該金属材料の劣化の程度を予知することを特徴とする高
温で使用される金属材料の劣化の程度の予知方法。
(1) A dissimilar metal weld is formed by welding dissimilar metals with different chromium contents to a metal material used at high temperatures in advance, and by using the above equipment a carburized layer is created at the boundary between the two metals of the weld. A carbon layer is formed, and the electrical resistance value of each part of the metal material, carburized layer, decarburized layer, and different metal is measured along the line connecting the metal material and the dissimilar metal, and the electrical resistance value per unit length in the measurement direction of each part is determined. The width of the carburized layer and the decarburized layer in the measurement line direction is determined from the gradient value shown by and the electrical resistance value, the usage temperature of the metal material is known from this value, and the degree of deterioration of the metal material is predicted based on this. A method for predicting the degree of deterioration of metal materials used at high temperatures.
JP18094986A 1986-07-31 1986-07-31 Method for forecasting deterioration degree of metallic material used at high temperature Pending JPS6337248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18094986A JPS6337248A (en) 1986-07-31 1986-07-31 Method for forecasting deterioration degree of metallic material used at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18094986A JPS6337248A (en) 1986-07-31 1986-07-31 Method for forecasting deterioration degree of metallic material used at high temperature

Publications (1)

Publication Number Publication Date
JPS6337248A true JPS6337248A (en) 1988-02-17

Family

ID=16092090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18094986A Pending JPS6337248A (en) 1986-07-31 1986-07-31 Method for forecasting deterioration degree of metallic material used at high temperature

Country Status (1)

Country Link
JP (1) JPS6337248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382103A (en) * 1992-07-30 1995-01-17 Seikosha Co., Ltd. Multiple color ink ribbon cassette
US6590189B2 (en) 2000-08-10 2003-07-08 Pf-Schweisstechnologie Gmbh Method of measuring a welding voltage at a heating coil of a heating coil fitting and a heating coil welding apparatus
WO2018216179A1 (en) * 2017-05-25 2018-11-29 地方独立行政法人神奈川県立産業技術総合研究所 Temperature measurement method, temperature measurement tool, and temperature measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382103A (en) * 1992-07-30 1995-01-17 Seikosha Co., Ltd. Multiple color ink ribbon cassette
USRE35388E (en) * 1992-07-30 1996-12-03 Seiko Precision Inc. Multiple color ink ribbon cassette
US6590189B2 (en) 2000-08-10 2003-07-08 Pf-Schweisstechnologie Gmbh Method of measuring a welding voltage at a heating coil of a heating coil fitting and a heating coil welding apparatus
WO2018216179A1 (en) * 2017-05-25 2018-11-29 地方独立行政法人神奈川県立産業技術総合研究所 Temperature measurement method, temperature measurement tool, and temperature measurement device

Similar Documents

Publication Publication Date Title
JP3643806B2 (en) High-accuracy creep damage evaluation method
US1841762A (en) gebmahy
US9737948B2 (en) Method for welding thin-walled tubes by means of peak temperature temper welding
JPS6337248A (en) Method for forecasting deterioration degree of metallic material used at high temperature
US4475963A (en) Method for postweld heat treatment
Santella et al. Martensite formation in 9 Cr-1 Mo steel weld metal and its effect on creep behavior
Bortsov et al. Features of multi-electrode submerged-arc welding in the production of high-strength thick-walled pipes
JP4737512B2 (en) Creep damage estimation method for ferritic heat resistant steel
Schmiedt et al. Characterisation of the corrosion fatigue behaviour of brazed AISI 304L/BNi-2 joints in synthetic exhaust gas condensate
Terasaki et al. Prediction of cooling time for ferrite-austenite transformation in duplex stainless steel
CN110763818B (en) Method for testing space spiral bent pipe for heat exchanger
JPS62273441A (en) Nondestructive temperature measurement for metal material
JPS62144069A (en) Measurement of temperature received by metal material
Josefson et al. Transient and residual stresses in a single-pass butt welded pipe
EP0034057B1 (en) Method for postweld heat treatment
Turowska et al. Evaluation of high temperature corrosion resistance of finned tubes made of austenitic steel and nickel alloys
Sitorus Effect of welding heat input on the corrosion rate of carbon steel MMA welding
RU2064672C1 (en) Method of determination of content of ferrite phase in article
JPS63115046A (en) Damage detecting method for weld zone
Ion et al. Computer modelling of weld-implant testing
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
Lazić et al. Evaluation of expressions for calculating the cooling time in carbon steels welding
JPH1164326A (en) Method for evaluating creep damage of weld of high-cr ferrite steel
SU1147540A1 (en) Method of selecting optimum welding modes
Wieczorska et al. The influence of TIG welding technology on the properties and quality of joints made of dissimilar steels