JP4737512B2 - Creep damage estimation method for ferritic heat resistant steel - Google Patents

Creep damage estimation method for ferritic heat resistant steel Download PDF

Info

Publication number
JP4737512B2
JP4737512B2 JP2005076772A JP2005076772A JP4737512B2 JP 4737512 B2 JP4737512 B2 JP 4737512B2 JP 2005076772 A JP2005076772 A JP 2005076772A JP 2005076772 A JP2005076772 A JP 2005076772A JP 4737512 B2 JP4737512 B2 JP 4737512B2
Authority
JP
Japan
Prior art keywords
creep
hardness
heat
relationship
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005076772A
Other languages
Japanese (ja)
Other versions
JP2006258621A (en
Inventor
恭 佐藤
輝夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005076772A priority Critical patent/JP4737512B2/en
Publication of JP2006258621A publication Critical patent/JP2006258621A/en
Application granted granted Critical
Publication of JP4737512B2 publication Critical patent/JP4737512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は金属材料のクリープ損傷を非破壊的に推定する方法に係り、特にボイラ、化学プラント等で550℃〜650℃程度の高温耐圧部に多用されるクロム(Cr)含有量公称9%以上のクロム-モリブデン(Cr-Mo)フェライト系高強度耐熱鋼の損傷推定に好適なクリープ損傷推定方法に関するものである。   The present invention relates to a method for nondestructively estimating creep damage of a metal material, and in particular, a chromium (Cr) content that is frequently used in a high-temperature pressure resistant part of about 550 ° C. to 650 ° C. in boilers, chemical plants, etc. is nominally 9% or more. The present invention relates to a creep damage estimation method suitable for damage estimation of chromium-molybdenum (Cr—Mo) ferritic high-strength heat-resistant steel.

発電用ボイラや各種熱交換器等においては、高温、高圧の条件下で耐熱及び耐圧部材として伝熱管や配管類が多数使用されている。近年、特に発電用ボイラは、発電効率向上のために蒸気温度と圧力を以前より上昇した状態で運転されるようになってきており、ボイラの伝熱管材料として従来から使われてきたCr含有量1〜2.25%のCr-Mo系低合金鋼に代わり、新しい高強度フェライト系耐熱鋼が用いられる。このフェライト系耐熱鋼は公称9%Cr鋼にニオブ(Nb)、バナジウム(V)又は/及びタングステン(W)等を添加し、焼ならし−焼戻し熱処理によって焼戻しマルテンサイト組織となるように成分設計されたもの(例えばCrが9%、Moが1%、その他NbとVが微量で特徴的な性能を発揮する成分として含まれている9Cr-1Mo-Nb,V鋼や9Cr-0.5Mo-1.8W,Nb,V鋼や11Cr-0.4Mo-0.2W,Nb,V,Cu鋼など)で、従来材に比べて格段に優れた高温強度を有している。   In power generation boilers and various heat exchangers, many heat transfer tubes and pipes are used as heat-resistant and pressure-resistant members under high temperature and high pressure conditions. In recent years, power generation boilers, in particular, have been operated with higher steam temperature and pressure than before in order to improve power generation efficiency, and the Cr content that has been conventionally used as a heat transfer tube material for boilers A new high strength ferritic heat resistant steel is used instead of 1-2.25% Cr—Mo based low alloy steel. This ferritic heat-resisting steel is designed to add a niobium (Nb), vanadium (V), and / or tungsten (W), etc. to a nominal 9% Cr steel and to have a tempered martensite structure by normalizing-tempering heat treatment. (For example, 9Cr-1Mo-Nb, V steel or 9Cr-0.5Mo- containing 9% Cr, 1% Mo, and other elements that exhibit characteristic performance in a small amount of Nb and V) 1.8W, Nb, V steel, 11Cr-0.4Mo-0.2W, Nb, V, Cu steel, etc.), and has significantly superior high temperature strength compared to conventional materials.

このような耐熱鋼の保守管理においては、長時間使用に伴い進行していくクリープ損傷の評価が重要な課題の一つである。従来の1〜2.25%Cr系低合金鋼の母材の場合は非破壊的な損傷推定手法として「結晶粒変形法」や「金属組織法」が開発され、すでに確立された技術として実プラントに適用されている(特許文献1、2)。これに対して上述の新しい高強度フェライト系耐熱鋼は微細な焼戻しマルテンサイト組織であり、長時間使用に伴う組織変化が小さいことから、これら従来の手法は適用困難であった。そこで種々の研究が行われた結果、近年ではクリープ損傷の進行に伴う硬さの低下を利用する、いわゆる「硬さ法」が有効と言われている(非特許文献1)。
特開平6−200701号公報 特開平6−222053号公報 機械学会通常総会講演論文集 NO.1034(1998年4月)
In maintenance management of such heat-resistant steel, evaluation of creep damage that progresses with long-term use is one of the important issues. In the case of conventional base metal of 1-2.25% Cr-based low alloy steel, “grain deformation method” and “metal structure method” have been developed as non-destructive damage estimation methods, and are already established as actual techniques. It is applied to a plant (Patent Documents 1 and 2). On the other hand, the above-mentioned new high-strength ferritic heat-resistant steel has a fine tempered martensite structure, and since the structure change with long-term use is small, these conventional methods are difficult to apply. Therefore, as a result of various studies, in recent years, it is said that a so-called “hardness method” that utilizes a decrease in hardness accompanying the progress of creep damage is effective (Non-Patent Document 1).
JP-A-6-200701 Japanese Patent Laid-Open No. 6-222053 Proceedings of the General Meeting of the Japan Society of Mechanical Engineers NO. 1034 (April 1998)

硬さ法の基本的な考え方は、予め試験片で硬さとクリープ損傷率の関係(マスターカーブ)を求めておき、実機部材の表面で測定した硬さからクリープ損傷を推定するというものである。焼戻しマルテンサイト組織からなるフェライト系耐熱鋼の場合、応力が作用していない場合の熱的な硬さの変化は非常に小さく、硬さの低下はそのまま損傷による変化とみなせるため、実用的な方法となり得る。   The basic idea of the hardness method is that a relationship between the hardness and the creep damage rate (master curve) is obtained in advance with a test piece, and the creep damage is estimated from the hardness measured on the surface of the actual machine member. In the case of ferritic heat-resistant steel with a tempered martensite structure, the change in thermal hardness when stress is not applied is very small, and the decrease in hardness can be regarded as a change due to damage. Can be.

しかし、これまでの研究では推定精度に問題があり、硬さによる損傷推定手法は、まだ確立された技術とは言えなかった。その一例として9Cr-1Mo-Nb,V鋼について作成した硬さとクリープ損傷率の関係を図5に示す。   However, there have been problems with estimation accuracy in previous studies, and the damage estimation method based on hardness has not yet been established. As an example, the relationship between hardness and creep damage rate prepared for 9Cr-1Mo-Nb, V steel is shown in FIG.

図5は温度と圧力を変えてクリープ破断試験及び中断試験を行い、損傷率(Φc=中断時間/破断時間)と硬さの関係を求めたものである。個々の負荷条件では損傷率と硬さの間に明瞭な相関関係が認められるが直接関係は成立せず、また温度あるいは負荷応力が異なる場合のデータを重ねると幅の広いバンドとなり、硬さから損傷率を推定するには精度的に問題があった。例えば図5においてビッカーズ硬さ200の場合、損傷率は33〜74%と推定され、実用的な評価が難しかった。   FIG. 5 shows a relationship between the damage rate (Φc = interruption time / rupture time) and hardness by performing a creep rupture test and an interruption test at different temperatures and pressures. There is a clear correlation between the damage rate and hardness under each load condition, but there is no direct relationship, and when data for different temperatures or load stresses are overlapped, a wide band is obtained. There was a problem with accuracy in estimating the damage rate. For example, in the case of Vickers hardness 200 in FIG. 5, the damage rate was estimated to be 33 to 74%, and practical evaluation was difficult.

この問題は、溶接部の評価においても同様である。9Cr-1Mo-Nb,V鋼のような焼戻しマルテンサイト組織からなるフェライト系耐熱鋼の場合に、溶接部が図6に示すように溶接金属1と母材2の間の溶接熱影響部(HAZ)3に軟化域が生じ、この軟化域のクリープ損傷が最も早く進行する。従って、この部分の硬さからクリープ損傷を直接求めることもできるが、図5に示すように温度あるいは負荷応力の影響を大きく受けるため、推定精度に問題があった。   This problem also applies to the evaluation of welds. In the case of a ferritic heat resistant steel having a tempered martensite structure such as 9Cr-1Mo-Nb, V steel, the welded heat affected zone (HAZ) between the weld metal 1 and the base metal 2 as shown in FIG. 3) A softening region is generated in 3, and creep damage in this softening region proceeds most rapidly. Therefore, although the creep damage can be directly obtained from the hardness of this portion, there is a problem in estimation accuracy because it is greatly affected by temperature or load stress as shown in FIG.

本発明の課題は上記した従来技術の問題点を解消し、焼戻しマルテンサイト組織のフェライト鋼(特にクロム(Cr)含有量9%以上のクロム-モリブデン(Cr-Mo)フェライト系高強度耐熱鋼)の硬さから精度よくクリープ損傷を推定する方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, and a tempered martensitic structure ferritic steel (especially chromium-molybdenum (Cr-Mo) ferritic high strength heat-resisting steel with a chromium (Cr) content of 9% or more)). Another object is to provide a method for accurately estimating creep damage from the hardness of the steel.

本発明の上記課題は、次の解決手段により解決される。
請求項1記載の発明は、焼戻しマルテンサイト組織のフェライト系耐熱鋼のクリープ損傷を非破壊的に推定するフェライト鋼のクリープ損傷推定方法において、耐熱鋼表面の硬さを測定し、予め作成した硬さとクリープひずみ量の関係から当該耐熱鋼のクリープひずみ量を推定し、さらに別途求めたクリープひずみとクリープ損傷率との関係を示すクリープひずみ曲線からクリープ損傷を求めることを特徴とするフェライト系耐熱鋼のクリープ損傷推定方法である。
The above-described problems of the present invention are solved by the following solution means.
The invention according to claim 1 is a method for estimating the creep damage of ferritic steel that non-destructively estimates the creep damage of ferritic heat-resistant steel having a tempered martensite structure. ferrite Sato creep strain of estimating the creep strain of the heat-resisting steel from the relationship, further characterized by determining separately calculated creep strain and creep strain songs line or we creep damage rate showing the relationship between the creep damage rate This is a creep damage estimation method for heat resistant steels.

請求項2記載の発明は、測定する耐熱鋼表面の硬さとして、溶接金属と母材の間にある溶接熱影響部の硬さを測定することにより、予め作成した硬さとクリープひずみ量の関係から当該耐熱鋼のクリープひずみ量を測定し、別途求めたクリープひずみ曲線との比較からクリープ損傷率を求めることを特徴とする請求項1記載のフェライト系耐熱鋼のクリープ損傷推定方法である。 According to a second aspect of the invention, as the hardness of the measurement to heat steel surfaces, by measuring the hardness of the weld heat affected zone which is between the weld metal and the base material, previously prepared hardness and creep strain of relations The creep damage estimation method for a ferritic heat resistant steel according to claim 1, wherein the creep strain rate of the heat resistant steel is measured, and the creep damage rate is determined by comparison with a separately obtained creep strain curve .

請求項3記載の発明は、予め硬さとクリープひずみ量の関係を求める際に、引張試験のひずみ量に補正係数を乗じて推定したクリープひずみ量を用いることを特徴とする請求項1又は2記載のフェライト系耐熱鋼のクリープ損傷推定方法である。 According to a third aspect of the present invention, when the relationship between the hardness and the creep strain amount is obtained in advance, the creep strain amount estimated by multiplying the strain amount of the tensile test by a correction coefficient is used. This is a creep damage estimation method for ferritic heat resistant steels.

(作用)
請求項1記載の発明によれば、硬さの変化はクリープ損傷率と直接対応するものではなく、硬さはクリープひずみ量に対応するため、予め作成した硬さとクリープひずみ量の関係から当該部材のクリープひずみ量を推定し、別途求めたクリープひずみ曲線との比較からクリープ損傷を求めることにより、従来の方法に比べて精度よくクリープ損傷を推定することができる。
(Function)
According to the first aspect of the invention, the change in hardness is not intended to correspond directly to creep damage rate, since the hardness corresponds to the creep strain amount, the member from the relationship previously created hardness and creep strain amount Creep damage can be estimated with higher accuracy than the conventional method by estimating the creep strain amount and obtaining the creep damage rate from comparison with a separately obtained creep strain curve.

請求項2記載の発明によれば、請求項1記載の発明の作用に加えて、最もクリープ損傷が早く進行する溶接熱影響部の最小硬さを、部材表面の硬さとすることで、従来の方法に比べて精度よくクリープ損傷を推定することができる。   According to the invention described in claim 2, in addition to the action of the invention described in claim 1, the minimum hardness of the weld heat affected zone where creep damage proceeds most rapidly is the hardness of the surface of the member. Creep damage can be estimated with higher accuracy than the method.

請求項3記載の発明によれば、請求項1又は2記載の発明の作用に加えて引張試験のひずみ量とクリープひずみ量との間に比例関係があるので高温引張試験のひずみ量を測定することでクリープひずみ量を推定できる。   According to the invention described in claim 3, in addition to the action of the invention described in claim 1 or 2, there is a proportional relationship between the strain amount of the tensile test and the creep strain amount, so the strain amount of the high temperature tensile test is measured. Thus, the amount of creep strain can be estimated.

請求項1記載の発明によれば、9%Cr以上の焼戻しマルテンサイト組織からなるフェライト系高強度耐熱鋼のクリープ損傷を部材表面の硬さから比較的容易な方法で精度よく推定できるので、これらの新しい高強度鋼を使用する際の保守管理を適切に行うことができ、実プラントでの機器運用上の信頼性を高めるとともにこれら高強度耐熱鋼の用途を広げることができ、工業的な効果が大きい。 According to the invention of claim 1, since the creep damage rate of the ferritic high strength heat-resisting steel having a tempered martensite structure of 9% Cr or more can be accurately estimated from the hardness of the member surface, Maintenance management when using these new high-strength steels can be performed appropriately, increasing the reliability of equipment operation in the actual plant and expanding the applications of these high-strength heat-resistant steels. Great effect.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて溶接部の溶接熱影響部でクリープ損傷がもっとも早く進行するので、溶接部の溶接熱影響部の硬さから精度良くクリープ損傷率を求めることができる。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the creep damage progresses the earliest in the weld heat affected zone of the welded portion. A good creep damage rate can be obtained.

請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、高温引張試験のひずみ量とクリープひずみ量との間に比例関係があるので、高温引張試験のひずみ量を測定することでクリープひずみ量を求めることができ、短時間に硬さとクリープひずみ量の関係を得ることができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, since there is a proportional relationship between the strain amount of the high temperature tensile test and the creep strain amount, the strain amount of the high temperature tensile test. Can be obtained, and the relationship between the hardness and the creep strain amount can be obtained in a short time.

以下に本発明の実施例を挙げ、本発明になるクリープ損傷推定方法の詳細を説明する。   Examples of the present invention will be described below, and details of the creep damage estimation method according to the present invention will be described.

図1は本発明の基本的な推定手順を示した図である。まず9Cr-1Mo-Nb,V鋼からなる実機部材の表面での硬さ(実機部材の溶接部近傍での硬さ)を測定し、次に予め求めておいた硬さとひずみの関係から当該部材のひずみを推定する(この関係を得るためには溶接の熱履歴を模擬して作成したHAZ(熱影響部)再現材でクリープ試験を行うことが望ましい。)。さらに別途求めたクリープひずみ曲線との比較から、最終的に損傷率を求めるものである。   FIG. 1 is a diagram showing a basic estimation procedure of the present invention. First, the hardness on the surface of an actual machine member made of 9Cr-1Mo-Nb, V steel (hardness in the vicinity of the welded part of the actual machine member) is measured, and then the member is determined from the relationship between hardness and strain obtained in advance. (In order to obtain this relationship, it is desirable to conduct a creep test with a HAZ (heat affected zone) reproduction material created by simulating the thermal history of welding). Further, the damage rate is finally obtained by comparison with a separately obtained creep strain curve.

次に上記推定手順の技術的根拠を説明する。
本発明者らは種々の温度或いは負荷応力条件下での硬さを調査した結果、部材表面の硬さとひずみの間には負荷条件に大きく左右されることのない良好な相関関係があることを見出した。その一例を図2に示す。この関係は母材でも溶接熱影響部でもよく再現される。ひずみ量が3%付近までは両者の間にはほぼ直線関係が成立する。ひずみが約5%を越えるとそれ以上ひずみが進行しても硬さの低下はほとんど生じることがない。この図から明らかなように、ひずみ量が3〜5%程度以下であれば、硬さからクリープひずみを求めることができる。図2の例においては、ひずみ量5%以下の範囲で、両者の関係は2次多項式として近似すれば次式(1)で表わせる。
硬さ=216.7−12.75×(ひずみ量)+1.276×(ひずみ量)2 (1)
Next, the technical basis of the above estimation procedure will be described.
As a result of examining the hardness under various temperature or load stress conditions, the present inventors have found that there is a good correlation between the hardness and strain of the member surface that is not greatly influenced by the load condition. I found it. An example is shown in FIG. This relationship is well reproduced in both the base metal and the weld heat affected zone. A linear relationship is substantially established between the two until the strain amount is close to 3%. If the strain exceeds about 5%, the hardness hardly decreases even if the strain further advances. As is apparent from this figure, the creep strain can be determined from the hardness if the strain amount is about 3 to 5% or less. In the example of FIG. 2, the relationship between the two can be expressed by the following equation (1) when approximated as a quadratic polynomial within a strain amount of 5% or less.
Hardness = 216.7-12.75 × (strain amount) + 1.276 × (strain amount) 2 (1)

また、図3にクリープひずみ曲線の一例を示すが、ひずみ量が5%になると、ほとんど寿命末期であり、実用上は5%以下のひずみを精度よく推定できればよい。クリープひずみ曲線は、実験室的に求めた定常クリープ速度等の材料データと温度、応力条件から計算できる。近年では加速クリープ域の途中までクリープひずみ曲線を計算できる式が提案されており(例えば式(2)の改良θ法;高温強度の材料科学(内田老鶴圃))、種々の条件でのひずみ曲線を比較的容易に計算することができる。
ε=ε0+A{1−exp(−αt)}+B{exp(αt)−1} (2)
FIG. 3 shows an example of a creep strain curve. When the amount of strain is 5%, it is almost the end of life, and in practice, it is only necessary to accurately estimate a strain of 5% or less. The creep strain curve can be calculated from material data such as steady state creep rate and temperature and stress conditions. In recent years, formulas have been proposed that can calculate creep strain curves up to the middle of the accelerated creep region (for example, the modified θ method of formula (2); high-temperature strength material science (Uchida Otsuru)), and strain under various conditions. The curve can be calculated relatively easily.
ε = ε 0 + A {1−exp (−αt)} + B {exp (αt) −1} (2)

溶接熱影響部の軟化域を対象とする場合には計算に必要な材料データを得るにはHAZ再現材を用いてクリープ試験と引張試験を行えば良い。
本実施例によれば、比較的簡単な手順で硬さからクリープ損傷を精度良く推定できる。
In order to obtain the material data necessary for the calculation when the softening region of the weld heat affected zone is targeted, a creep test and a tensile test may be performed using the HAZ reproducing material.
According to the present embodiment, the creep damage can be accurately estimated from the hardness by a relatively simple procedure.

実施例1では予め硬さとクリープひずみの関係を求めておく例を示したが、そのためには多数のクリープ試験を実施しなければならず、多大な時間を要する。一方、硬さの低下はクリープひずみだけでなく、高温引張試験でのひずみにも対応する。   In the first embodiment, an example in which the relationship between hardness and creep strain is obtained in advance has been shown. However, for that purpose, a large number of creep tests must be performed, which requires a lot of time. On the other hand, the decrease in hardness corresponds to not only creep strain but also strain in a high temperature tensile test.

図4は9Cr-1Mo-Nb,V鋼の高温引張ひずみとクリープひずみを比較して示したものであるが、両者にはほぼ比較関係があり、ひずみ量5%までの高温引張ひずみデータを0.5倍すれば、ほぼクリープひずみデータに相当することが分かった。従って、短時間の高温引張試験で多数のデータを求め、実験的に求めた補正係数(図4の場合は0.5)を乗じることによっても硬さとクリープひずみ量の関係を求めることができる。この場合、精度を落とすことなく短時間で両者の関係を求めることができる。   FIG. 4 shows a comparison of the high-temperature tensile strain and creep strain of 9Cr-1Mo-Nb, V steel, but there is a comparative relationship between them, and high-temperature tensile strain data up to a strain of 5% is shown as 0. When it was multiplied by .5, it was found that it substantially corresponds to creep strain data. Therefore, the relationship between the hardness and the amount of creep strain can also be obtained by obtaining a large number of data in a short time high temperature tensile test and multiplying by an experimentally obtained correction factor (0.5 in the case of FIG. 4). In this case, the relationship between the two can be obtained in a short time without reducing accuracy.

高温耐圧部に多用されるクロム(Cr)含有量9%以上のクロム-モリブデン(Cr-Mo)フェライト系高強度耐熱鋼の損傷推定に好適なクリープ損傷推定方法が確立でき、特にボイラ、化学プラント等の安全対策に利用できる。   A creep damage estimation method suitable for damage estimation of chromium-molybdenum (Cr-Mo) ferritic high-strength heat-resistant steels with a chromium (Cr) content of 9% or more frequently used in high-temperature pressure-resistant parts can be established. It can be used for safety measures such as.

本発明によるクリープ損傷推定方法の説明図である。It is explanatory drawing of the creep damage estimation method by this invention. 本発明による実施例で示した硬さとクリープひずみの関係を表す図である。It is a figure showing the relationship between the hardness shown in the Example by this invention, and a creep distortion. 本発明による実施例で示したクリープひずみとクリープ損傷率の関係を表す図である。It is a figure showing the relationship between the creep distortion shown in the Example by this invention, and a creep damage rate. 本発明による他の実施例で示した硬さと高温引張ひずみの関係を表す図である。It is a figure showing the relationship between the hardness shown in the other Example by this invention, and high temperature tensile strain. 従来技術として示した硬さとクリープ損傷率の関係を表す図である。It is a figure showing the relationship between the hardness shown as a prior art, and a creep damage rate. 溶接部近傍の硬さ分布の例を表す図である。It is a figure showing the example of hardness distribution near a welding part.

符号の説明Explanation of symbols

1 溶接金属 2 母材
3 溶接熱影響部(HAZ)
1 Weld metal 2 Base material 3 Weld heat affected zone (HAZ)

Claims (3)

焼戻しマルテンサイト組織のフェライト系耐熱鋼のクリープ損傷を非破壊的に推定するフェライト鋼のクリープ損傷推定方法において、
耐熱鋼表面の硬さを測定し、予め作成した硬さとクリープひずみ量の関係から当該耐熱鋼のクリープひずみ量を推定し、さらに別途求めたクリープひずみとクリープ損傷率との関係を示すクリープひずみ曲線からクリープ損傷率を求めることを特徴とするフェライト系耐熱鋼のクリープ損傷推定方法。
In the method of estimating the creep damage of ferritic steel, non-destructively estimating the creep damage of ferritic heat-resistant steel with a tempered martensite structure,
The hardness of the heat-resistant steel surface is measured, the creep strain amount of the heat-resistant steel is estimated from the relationship between the hardness and the creep strain amount created in advance, and the creep strain curve showing the relationship between the creep strain and the creep damage rate obtained separately. Of creep damage of ferritic heat-resistant steel, characterized by obtaining creep damage rate from
測定する耐熱鋼表面の硬さとして、溶接金属と母材の間にある溶接熱影響部の硬さを測定することにより、予め作成した硬さとクリープひずみ量の関係から当該耐熱鋼のクリープひずみ量を測定し、別途求めたクリープひずみ曲線との比較からクリープ損傷率を求めることを特徴とする請求項1記載のフェライト系耐熱鋼のクリープ損傷推定方法。 As the hardness of the measurement to the heat-resisting steel surface, the welding heat by measuring the hardness of the affected zone, creep strain amount of the heat-resisting steel from the relationship previously created hardness and creep strain amount which is between the weld metal and the base metal The creep damage estimation method for ferritic heat resistant steel according to claim 1, wherein the creep damage rate is calculated from a comparison with a separately obtained creep strain curve . 予め硬さとクリープひずみ量の関係を求める際に、引張試験のひずみ量に補正係数を乗じて推定したクリープひずみ量を用いることを特徴とする請求項1又は2記載のフェライト系耐熱鋼のクリープ損傷推定方法。   The creep damage of a ferritic heat-resistant steel according to claim 1 or 2, wherein the creep strain amount estimated by multiplying the strain amount of the tensile test by a correction factor is used when the relationship between the hardness and the creep strain amount is obtained in advance. Estimation method.
JP2005076772A 2005-03-17 2005-03-17 Creep damage estimation method for ferritic heat resistant steel Active JP4737512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076772A JP4737512B2 (en) 2005-03-17 2005-03-17 Creep damage estimation method for ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076772A JP4737512B2 (en) 2005-03-17 2005-03-17 Creep damage estimation method for ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2006258621A JP2006258621A (en) 2006-09-28
JP4737512B2 true JP4737512B2 (en) 2011-08-03

Family

ID=37098050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076772A Active JP4737512B2 (en) 2005-03-17 2005-03-17 Creep damage estimation method for ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP4737512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044718A (en) * 2019-02-02 2019-07-23 中南大学 Rock burst proneness Grade Judgment based on uniaxial compression lag than index

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086615B2 (en) * 2006-11-15 2012-11-28 三菱重工業株式会社 Life evaluation method by creep elongation of high strength steel weld and life evaluation method of high strength steel weld
JP5314288B2 (en) * 2008-01-31 2013-10-16 三菱重工業株式会社 Creep rupture strength prediction method and creep rupture strength prediction device
CN101852701B (en) * 2010-05-11 2011-11-02 东方电气集团东方锅炉股份有限公司 Method for estimating long-term enduring performance of 9-12 Cr percent ferrite heat resistant steel
JP2014071053A (en) 2012-10-01 2014-04-21 Hitachi Ltd Creep damage assessment method and creep damage assessment system for high-temperature members

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674951A (en) * 1992-08-25 1994-03-18 Mitsubishi Heavy Ind Ltd Creep damage evaluating method for ferrite heat resistant steel
JP2000171418A (en) * 1998-12-02 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Non-destructive estimation method of creep strain quantity of heat-resisting steel
JP2004012377A (en) * 2002-06-10 2004-01-15 Toshiba Corp Method for estimating strain of high-temperature component of gas turbine and strain estimation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674951A (en) * 1992-08-25 1994-03-18 Mitsubishi Heavy Ind Ltd Creep damage evaluating method for ferrite heat resistant steel
JP2000171418A (en) * 1998-12-02 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Non-destructive estimation method of creep strain quantity of heat-resisting steel
JP2004012377A (en) * 2002-06-10 2004-01-15 Toshiba Corp Method for estimating strain of high-temperature component of gas turbine and strain estimation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044718A (en) * 2019-02-02 2019-07-23 中南大学 Rock burst proneness Grade Judgment based on uniaxial compression lag than index

Also Published As

Publication number Publication date
JP2006258621A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Abson et al. Review of type IV cracking of weldments in 9–12% Cr creep strength enhanced ferritic steels
Swindeman et al. Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel
Masuyama Creep degradation in welds of Mod. 9Cr-1Mo steel
Zhao et al. Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe
JP4737512B2 (en) Creep damage estimation method for ferritic heat resistant steel
Farragher et al. High temperature, low cycle fatigue characterization of P91 weld and heat affected zone material
Bhaduri et al. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables
Yaguchi et al. Creep strength of high chromium steels welded parts under multiaxial stress conditions
Kessal et al. Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone
Kim et al. Time-dependent crack growth behavior for a SMAW weldment of Gr. 91 steel
Komai et al. 10-Year Experience With T23 (2.25 Cr-1.6 W) and T122 (12Cr-0.4 Mo-2W) in a Power Boiler
Wu et al. Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment
CN108009329B (en) Method for determining minimum pipeline length of 9% Cr hot-strength steel pipeline welding process evaluation
Liu et al. Investigation on mechanical properties of 9% Cr/CrMoV dissimilar steels welded joint
Santella et al. Martensite formation in 9 Cr-1 Mo steel weld metal and its effect on creep behavior
Saha et al. Failure of a secondary superheater tube in a 140-MW thermal power plant
Zhang et al. Numerical simulation of creep damage for low alloy steel welded joint considering as-welding residual stress
Ma et al. Evaluation of weld joint strength reduction factor due to creep in alloy 740H to P92 dissimilar metal weld joint
Collini et al. Thermomechanical stress analysis of dissimilar welded joints in pipe supports: Structural assessment and design optimization
Brett The impression creep Monkman Grant relationship
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
Hong et al. Effects of Welding Speed and Welding Current on the Residual Stress and Deformation of SAF 2507/316L Dissimilar Plasma Arc Welding
Shindo et al. Cryogenic fracture toughness determination of a structural alloy weldment by notch tensile measurement and finite element analysis
Hasegawa et al. An evaluation of high temperature hydrogen attack resistance and a possible new microstructure development based remnant life assessment method of a clean ASME Gr. 91 thick section steel plate
Milovic Is substituting P91 for P22 justified?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

R150 Certificate of patent or registration of utility model

Ref document number: 4737512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250