JPS62144069A - Measurement of temperature received by metal material - Google Patents

Measurement of temperature received by metal material

Info

Publication number
JPS62144069A
JPS62144069A JP60283130A JP28313085A JPS62144069A JP S62144069 A JPS62144069 A JP S62144069A JP 60283130 A JP60283130 A JP 60283130A JP 28313085 A JP28313085 A JP 28313085A JP S62144069 A JPS62144069 A JP S62144069A
Authority
JP
Japan
Prior art keywords
temperature
weld
tube
metal material
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283130A
Other languages
Japanese (ja)
Inventor
Eiji Murakami
英治 村上
Koji Tamura
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60283130A priority Critical patent/JPS62144069A/en
Publication of JPS62144069A publication Critical patent/JPS62144069A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the temperature received by metal material accurately and handily, by previously depositing various metals differing in Cr content on a metal material to be used at a high temperature to measure width of the decarbonated layer or carburized layer on the weld interface. CONSTITUTION:In a metal material to be used at a high temperature, for example, boiler heat exchanger tube 2, deformed welded part 1 on which various type of metals are previously deposited differing in Cr content from a boiler heat exchanger tube 2 is formed on the surface or in a channel of the tube 2 and then, used for an actual machine. For inspection or the like, the tube 2 is taken out and the weld part 1 is ground and etched to measure the width of the decarbonated layer 5 of the weld part 1 poor in the Cr content and/or that of the carburized layer 4 of the tube 2 rich in the Cr content. From these widths, parameters of temperature history of the tube 2 can be estimated by a well known formula. As operation in the tube 2 can be estimated by determining the operation temperature.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は金1・4材料が受けた温度を測定する方法に係
り、特に実際に運転されているプラントに適用するのに
好適な測定方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the temperature experienced by Gold 1 and 4 materials, and is particularly a measuring method suitable for application to plants that are actually in operation. It is related to.

〈従来の技術及びその問題点〉 ボイラや化学プラント用材仁[は高温で使用されるため
材料劣化を生じる。具体的にその様相を記述すれば、フ
ェライト系材料では運転中にパーライト組織やベーナイ
ト組織の分解、炭化物の凝集等の材質変化を生じ、引張
り強さやクリープ強度が次第に低下してくる。また、オ
ーステナイト系材料では運転中に炭化物の析出や凝集、
粗大化が生じたり、鉄とクロムの金属間化合物であるシ
グマ相が析出してこれがクリープボイドと同様に作用し
、クリープ現象を促進させる。このような材料劣化は運
転温度、運転時間及び作用応力により支配されるもので
ある。
<Conventional technology and its problems> Materials for boilers and chemical plants are used at high temperatures, resulting in material deterioration. Specifically, ferritic materials undergo material changes such as decomposition of pearlite and bainite structures and agglomeration of carbides during operation, and their tensile strength and creep strength gradually decrease. In addition, in austenitic materials, carbide precipitation and agglomeration occur during operation.
Coarsening occurs, and a sigma phase, which is an intermetallic compound of iron and chromium, precipitates and acts like a creep void, promoting the creep phenomenon. Such material deterioration is controlled by operating temperature, operating time, and applied stress.

実機プラントではこのような材料劣化を考慮し通常10
万時間以上の寿命を見込んで設計されている。しかしな
がら、10万時間以上の寿命で設計されたボイラ伝熱管
等においては敵方時間で噴破あるいは膨出する事故がし
ばしば起きている。このような事故の原因は、燃焼ガス
の偏流内部流体である水蒸気量の減少等により、実除の
運転温度が設計温度よりも高くなっていることが多い。
In actual plants, taking into account such material deterioration, the
It is designed with a life expectancy of more than 10,000 hours. However, in boiler heat exchanger tubes and the like designed to have a lifespan of 100,000 hours or more, accidents often occur in which the tubes blow out or bulge out over time. The cause of such accidents is often that the actual operating temperature is higher than the design temperature due to a decrease in the amount of water vapor, which is the internal fluid of the combustion gas.

第8図に鉄鋼材料の応カ一定下のクリープひずみと時間
の関係を、温度をパラメータとして示す。第8図のよう
に、破断までの時間は温度が高い程短かくなる。特に、
ボイラの運転温度のような高温下では、破断寿命は温度
の影響を大きく受けることが知られている。また、ボイ
ラ伝熱管に作用している応力は内圧によるものであるが
、内圧は設計時の圧力計算や主要個所での測定値から当
該個所までの差圧を考慮すれば容易に推定可能なことか
ら、運転中の実機ボイラ伝熱管の作用応力を推定するこ
とは容易である。従って、ボイラ伝熱管の材料劣化の程
度を調べ、ボイラ伝熱管の噴破あるいは膨出事故を予知
するためには、実機ボイラの運転温度を正確Gこ測定す
る必要がある。
FIG. 8 shows the relationship between creep strain and time of a steel material under constant stress, using temperature as a parameter. As shown in FIG. 8, the higher the temperature, the shorter the time until breakage. especially,
It is known that the rupture life is greatly affected by temperature at high temperatures such as the operating temperature of a boiler. Additionally, the stress acting on the boiler heat transfer tubes is due to internal pressure, which can be easily estimated by considering pressure calculations during design and differential pressures from measurements at key locations to the locations. From this, it is easy to estimate the stress acting on the heat exchanger tubes of an actual boiler during operation. Therefore, in order to investigate the degree of material deterioration of boiler heat exchanger tubes and predict blowout or bulge accidents of boiler heat exchanger tubes, it is necessary to accurately measure the operating temperature of the actual boiler.

以上のように、実機ボイラ伝熱管の材料劣化の支配因子
としては温度が最も重要である。しかしながら、運転中
の実機ボイラ伝熱管の温度測定は実施されていないのが
現状である。伝熱管の温度測定方法としては、熱電対を
実機ボイラ伝熱管に溶着しておくことが考えられるが、
熱電対とアンプとの接線配線が非常に長くなり正確な測
定ができないこと、配線が高温の燃焼ガスに直接さらさ
れ損傷を受ける等の問題点があり、実施することは困難
である。また、これらの問題点が解決されたとしても、
実機では非常に多くの点の温度測定を行う必要があり、
熱電対の取り付は及び測定機器の保守には膨大な作業及
び費用が必要である。現在、ボイラ伝熱管の噴破あるい
は膨出事故を防止し、残余寿命を推定するために経時的
にボイラ伝熱管を扱管し、機械的試験や金属組織の観察
を行っているが、残余寿命の推定結果はバラツキが大き
い。
As mentioned above, temperature is the most important factor governing material deterioration of heat exchanger tubes in actual boilers. However, at present, temperature measurements of heat transfer tubes of actual boilers during operation have not been carried out. One possible way to measure the temperature of heat transfer tubes is to weld a thermocouple to the heat transfer tubes of an actual boiler.
This method is difficult to implement because of problems such as the tangential wiring between the thermocouple and the amplifier being extremely long, making it impossible to perform accurate measurements, and the wiring being directly exposed to high-temperature combustion gas and being damaged. Furthermore, even if these problems are resolved,
In actual equipment, it is necessary to measure temperatures at a large number of points.
The installation of thermocouples and the maintenance of the measuring equipment requires extensive work and expense. Currently, in order to prevent boiler heat transfer tubes from blowing out or bulging, and to estimate their remaining life, boiler heat transfer tubes are handled over time and mechanical tests and metallographic observations are conducted. The estimation results vary widely.

前述のように、ボイラ伝熱管の運転温度を正確に測定す
ることができれば、このような多大な労力と時間が必要
な作業は下型となる。
As mentioned above, if the operating temperature of the boiler heat exchanger tubes could be accurately measured, such a labor-intensive and time-consuming work would be eliminated.

〈発明の目的〉 本発明の目的は、従来測定が困難であったボイラ伝熱管
等のように測定個所が燃焼ガスにさらされているような
部材の受けた温度を正確かつ(7(1便に測定すること
ができる方法を提供することにある。
<Objective of the Invention> The object of the present invention is to accurately and accurately measure the temperature received by members such as boiler heat exchanger tubes, which have been difficult to measure in the past, and whose measuring points are exposed to combustion gas. The objective is to provide a method that can be used to measure

〈手段の重要〉 要するに本発明は、あらかじめ実機部材にクロム含有量
の異なる異種金属を溶着しておき、温度と時間によって
決まる炭素の拡散現象に起因した溶接部の脱炭層や浸炭
層の大きさから実機部材の加熱された温度を測定するも
のである。
<Importance of Means> In short, the present invention involves welding dissimilar metals with different chromium contents to actual machine parts in advance, and reducing the size of the decarburized layer or carburized layer in the welded area caused by the carbon diffusion phenomenon determined by temperature and time. This is to measure the heated temperature of the actual machine parts.

〈実施例1〉 本発明の具体的な実施例を説明する前に、まずオーステ
ナイト系材料とフェライト系材料の異材溶接部の脱炭層
と温度の関係について説明する。
<Example 1> Before describing specific examples of the present invention, first, the relationship between the decarburized layer and temperature of a dissimilar metal weld between an austenitic material and a ferritic material will be described.

まず、5US304,321,347及び炭素鋼に27
Or−IMo系の溶接体で被覆アーク溶接により肉盛り
を行い、種々の異材溶接部を作成した。
First, 5 US 304,321,347 and 27 for carbon steel.
Welding of Or-IMo based welded bodies was performed by covered arc welding to create various welded parts of dissimilar materials.

次に、これらの異材溶接部を第1表に示す種々の温度2
時間の下で電気炉により熱処理を行った。
Next, these dissimilar metal welds were heated to various temperatures 2 as shown in Table 1.
Heat treatment was performed in an electric furnace for hours.

熱処理後、溶接部断面の研PR,エツチングをイテい、
組織観察を行った。第5図に5US304゜347.3
21に2二〇r−IMo系の溶接体で溶接肉盛を行った
場合の溶接部断面を示す。第5図の第1表 ように、熱処理後の溶接境界3の27Or−IM。
After heat treatment, the cross section of the welded part is polished and etched.
Tissue observation was performed. Figure 5 shows 5US304°347.3
21 shows a cross section of a welded part when weld build-up is performed on a 220r-IMo-based welded body. As shown in Table 1 of FIG. 5, 27Or-IM of weld boundary 3 after heat treatment.

鋼7側すなわちクロム含有量が低い材料側には脱炭層5
が、オーステナイト系ステンレス鋼す側すなわちクロム
含有量の高い材料側には浸炭層4が観察された。これは
2今Or−I M o l5447側の炭素がオーステ
ナイト系ステンレス鋼6側に拡散したことによるもので
ある。脱炭層5は炭素が移動減少してパーライト組織が
フェライト組織になっていること及び浸炭層4は炭化物
が析出していることが観察された。第6図に炭素鋼に2
−2−0r−I系の溶接棒で溶接肉盛を行つた場合の溶
接部断面を示す。第6図のように、熱処理後の溶接境界
3の炭素鋼8側すなわちクロム含有量が低い材料側には
脱炭層5が、21Cr −1Mo @ 7側すなわちク
ロム含有量の高い材料側には浸炭層4が観察された。以
上のように、クロム含有量の異なる異材溶接部を熱処理
すると、クロム含°有量の低い材料からクロム含有量の
高い材料に炭素が拡散し、クロム含有量の低い材料には
脱炭層が、クロム含有量の高い材料には浸炭層ができる
There is a decarburized layer 5 on the steel 7 side, that is, on the material side with low chromium content.
However, a carburized layer 4 was observed on the austenitic stainless steel side, that is, on the material side with a high chromium content. This is because the carbon on the 2-Or-IMol5447 side diffused into the austenitic stainless steel 6 side. It was observed that in the decarburized layer 5, carbon movement decreased and the pearlite structure became a ferrite structure, and in the carburized layer 4, carbide was precipitated. Figure 6 shows carbon steel.
-2-0r-I series welding rod is used to build up the weld. As shown in Fig. 6, there is a decarburized layer 5 on the carbon steel 8 side of the weld boundary 3 after heat treatment, that is, on the material side with low chromium content, and a carburized layer 5 on the 21Cr-1Mo@7 side, that is, on the material side with high chromium content. Layer 4 was observed. As described above, when welds of dissimilar materials with different chromium contents are heat treated, carbon diffuses from the material with a low chromium content to the material with a high chromium content, and a decarburized layer is formed in the material with a low chromium content. A carburized layer forms in materials with high chromium content.

こ\でオーステナイト系ステンレス鋼と21Or−IM
o鋼の組合せにおいては、溶接境界部が明瞭に判定でき
、脱炭層あるいは浸炭層の幅の測定が容易であった。
Austenitic stainless steel and 21Or-IM
In the case of the O steel combination, the weld boundary could be clearly identified and the width of the decarburized layer or carburized layer could be easily measured.

次に、脱炭層の幅と熱処理温度及び熱処理時間の関係に
ついて整理した結果を説明する。第7図は脱炭層の幅と
Larson−Millerのパラメータの関係を示し
たものである。但し、縦1軸は対数目盛である。Lar
son−Millerのパラメータは温度と時間を考慮
したパラメータであり、高温における材料挙動の整理に
多用されており、次式で表わされる。
Next, the results of organizing the relationship between the width of the decarburized layer, the heat treatment temperature, and the heat treatment time will be explained. FIG. 7 shows the relationship between the width of the decarburized layer and the Larson-Miller parameter. However, the vertical axis is a logarithmic scale. Lar
The son-Miller parameter is a parameter that takes temperature and time into consideration, and is often used to organize material behavior at high temperatures, and is expressed by the following equation.

P二T (C!+log t)     (1)ここで
、では絶対温度(K)I  Cは材料定数。
P2T (C!+log t) (1) Here, absolute temperature (K) I C is a material constant.

tは時間(hour )である。第7図のように、脱炭
層の1陥は材料、温度に依存せず、Larson−Mi
llerのパラメータで良く整理されている。
t is time (hour). As shown in Fig. 7, one hole in the decarburized layer does not depend on the material or temperature, and is
It is well organized with ller parameters.

従って、第7図を利用すれば、脱炭層の幅から温度履歴
を表わすLarson−Millerのパラメータを推
定することができる。また、実機では運転時間が分って
いるので、式(1)から運転湿度を求めることが可能で
ある。
Therefore, by using FIG. 7, the Larson-Miller parameter representing the temperature history can be estimated from the width of the decarburized layer. Furthermore, since the operating time of the actual machine is known, the operating humidity can be determined from equation (1).

次に、本発明を実機ボイラの伝熱管に適用した場合につ
いて説明する。まず、実機ボイラ伝熱管において、運転
中他の部材よりも温度が高くなり材料劣化が生じやすい
と考えられる部分を選び、伝熱管材料とクロム量の異な
る溶接棒を用いて、第1図のように軸方向に溶接肉盛を
行い、異材溶接部をつくっておく。この場合、溶接肉盛
により伝熱管の強度が若干低下することが考えられるた
め、伝熱管の肉厚を所定のものより厚くしておく必要が
ある。ボイラの定期検査等により伝熱管の温度の測定が
必要なときには、該異材溶接部の一部を切り出し、この
異材溶接部の研摩、エツチングをrテい、光学顕微鏡に
より脱炭層の幅を測定する。次に、測定した脱炭層の幅
から第7図によりLarson−Millerのパラメ
ータを求める。Larson−Millerのパラメー
タは温度と時間から決まるパラメータであり、運転時間
が分っているので式(1)よりd転温度を求めることが
できる。
Next, a case will be described in which the present invention is applied to a heat exchanger tube of an actual boiler. First, we selected a part of an actual boiler heat exchanger tube where the temperature is higher than other parts during operation and is likely to cause material deterioration, and using a welding rod with a different amount of chromium than the heat exchanger tube material, welded it as shown in Figure 1. Weld overlay in the axial direction to create a dissimilar metal weld. In this case, the strength of the heat exchanger tube may be slightly reduced due to weld build-up, so it is necessary to make the wall thickness of the heat exchanger tube thicker than a predetermined thickness. When it is necessary to measure the temperature of the heat exchanger tubes due to periodic boiler inspections, etc., cut out a part of the dissimilar metal weld, polish and etch the dissimilar metal weld, and measure the width of the decarburized layer using an optical microscope. . Next, Larson-Miller parameters are determined from the measured width of the decarburized layer according to FIG. The Larson-Miller parameter is a parameter determined from temperature and time, and since the operating time is known, the d-inversion temperature can be determined from equation (1).

あらかじめ伝熱管に作っておく異材溶接部は必らずしも
第1図のような軸方向の溶接肉盛ではなく、第2図のよ
うな周方向の肉盛溶接でもよい。肉盛溶接を周方向とす
ることにより、肉盛溶接の止端部からの割れ発生を防止
することができる。すなわち、伝熱管に作用する応力は
内圧によるものであり、周方向に大きな引張り応力が発
生するが、伝熱管の全周にわたって周方向の肉盛溶接を
行うことにより、溶接止端部にこの引張り応力が作用す
ることを避けることができ好適である。溶接肉盛を第2
図のように周方向とした場合も、第1図のように軸方向
とした場合と同様な方法により脱炭層の幅から温度を測
定することができる。
The dissimilar metal welds previously made on the heat exchanger tube are not necessarily axial weld build-up as shown in FIG. 1, but may be circumferential build-up welds as shown in FIG. By performing overlay welding in the circumferential direction, it is possible to prevent cracks from occurring from the toe of overlay welding. In other words, the stress acting on the heat exchanger tube is due to internal pressure, and a large tensile stress is generated in the circumferential direction, but by performing circumferential overlay welding over the entire circumference of the heat exchanger tube, this tensile stress is removed at the weld toe. This is preferable because stress can be avoided. Second weld overlay
Even in the case of circumferential direction as shown in the figure, the temperature can be measured from the width of the decarburized layer by the same method as in the case of axial direction as shown in FIG.

以上に説明した方法では、あらかじめ作っておいた異材
溶接部を切り出して脱炭層の幅を測定するという作業が
必要である。次に、異材溶接部を切り出さず、すなわち
非破壊的に脱炭層の幅を測定する方法について説明する
。まず、実機ボイラ伝熱管において、温度の測定を必要
とする部分を選び、溶接境界3が第3図のような形状と
なるようにr114状の開先を加工する。溶接部形状を
第3図のような杉にしておくことにより、溶接肉盛によ
りできる異材溶接部の境界3を伝熱管外表面と垂直にす
ることができる。
In the method described above, it is necessary to cut out a dissimilar metal welded part made in advance and measure the width of the decarburized layer. Next, a method for non-destructively measuring the width of the decarburized layer without cutting out the welded portion of dissimilar materials will be described. First, in a heat exchanger tube of an actual boiler, a part where temperature measurement is required is selected, and an r114-shaped groove is processed so that the weld boundary 3 has a shape as shown in FIG. By making the welding part shape cedar as shown in FIG. 3, the boundary 3 of the dissimilar metal welded part created by weld overlay can be made perpendicular to the outer surface of the heat exchanger tube.

すなわち、脱炭層5の幅は異材溶接部の境界3と垂直に
する方向につき測定する必要があり、溶接部形状を第3
図のような形状とすることにより、伝熱管表面からの測
定が可能となる。次に、伝熱管材料とクロム含有量の異
なる溶接材料を用いて肉盛溶接を行う。また、溶接上端
部の応力集中を防止するためにグラインダで閃盛部をな
めらかに仕上げる。以上により、実機ボイラ伝熱管に異
材溶接部が形成され、温度が測定可能となる。
In other words, the width of the decarburized layer 5 must be measured in the direction perpendicular to the boundary 3 of the dissimilar metal weld, and the weld shape must be measured in the third direction.
The shape shown in the figure allows measurement from the surface of the heat exchanger tube. Next, overlay welding is performed using a heat exchanger tube material and a welding material with a different chromium content. In addition, to prevent stress concentration at the upper end of the weld, use a grinder to smooth the flashing part. Through the above steps, a dissimilar metal weld is formed in the actual boiler heat exchanger tube, and the temperature can be measured.

次に、この異材溶接部を用いてその母材の受けた温度を
測定する方法について説明する。まず、あらかじめ作っ
であるボイラ伝熱管の異材溶接部の表面の酸化スクール
をグラインダで除去し、その後パフ研摩にて鏡面に仕上
げ、エツチングを行う。次に、移動式光学顕微鏡あるい
itレプリカ法などにより伝熱管の外表面から脱炭層5
の幅を測定する。前述のように、溶接部形状を第3図の
ような形とすることにより、溶接肉盛によりできる異材
溶接部の境界3は伝熱管表面と直交し、伝熱管表面から
正確な脱炭層5の幅を測定することができる。脱炭層の
幅から温度履歴を推定する方法は前述の場合と同様であ
る。また、第3図の異材溶接部の形状は溶接1F端部の
応力集中をなりシ、割れ発生を防止するためにも有効で
ある。
Next, a method of measuring the temperature experienced by the base metal using this dissimilar metal weld will be explained. First, the oxidized school on the surface of the dissimilar metal welded part of the boiler heat exchanger tube that has been made in advance is removed using a grinder, and then it is finished by puff polishing to a mirror surface and etched. Next, the decarburized layer 5 is removed from the outer surface of the heat exchanger tube using a mobile optical microscope or the IT replica method.
Measure the width of. As mentioned above, by making the weld shape as shown in Figure 3, the boundary 3 of the dissimilar metal weld created by weld overlay is perpendicular to the heat exchanger tube surface, and the decarburized layer 5 can be accurately formed from the heat exchanger tube surface. Width can be measured. The method for estimating the temperature history from the width of the decarburized layer is the same as in the previous case. Further, the shape of the dissimilar metal welded portion shown in FIG. 3 is effective in reducing stress concentration at the end of the weld 1F and preventing cracking.

〈実施例2〉 異材溶接部は必ずしも第3図のような軸方向である必要
はなく、第4図に示すような周方向の溶接形状でもその
効果にかわりがないことはもちろんである。
<Example 2> The welded portion of dissimilar materials does not necessarily have to be in the axial direction as shown in FIG. 3, and it goes without saying that the welding shape in the circumferential direction as shown in FIG. 4 will have the same effect.

また、径年劣化を主目的としたものの他に、ボイラ管寄
せなどの大型tiに漬物の温度分布の推定にも有効であ
る。すなわち、管寄せに(まレグチューブ(管寄せより
小径の接続管)を介して蒸気が供給されることから、各
レグチューブと管寄せの溶接部近くに異材溶接部を設置
しておけば、管寄せの長手方向の平均的な温度分布があ
きらかになる。
Moreover, in addition to the main purpose of aging deterioration, it is also effective for estimating the temperature distribution of pickles in large Ti such as boiler headers. In other words, since steam is supplied to the header via leg tubes (connecting pipes with a smaller diameter than the header), if a dissimilar metal weld is installed near the weld between each leg tube and header, The average temperature distribution in the longitudinal direction of the header becomes clear.

本発明にか\る湿度の推定方法においては、脱炭層の幅
のみからで(まなく、浸炭層の幅からもその温度を測定
できることは当然である。
In the method for estimating humidity according to the present invention, it is of course possible to measure the temperature not only from the width of the decarburized layer (but also from the width of the carburized layer).

〈発明の効果〉 本発明を実施することにより、実機ボイラ伝熱管の噴破
あるいは膨出事故を防Iトするために・必要である0こ
もかかわらず、従来実施することが困難であった連転中
の湿度の測定が正rjt(+かつ簡便に実施できるよう
になった。また、本発明にか\る温度の測定方法はボイ
ラのみならず、池の高温機乙にも適用することができる
<Effects of the Invention> By carrying out the present invention, in order to prevent blowout or bulging accidents of heat exchanger tubes in actual boilers, it is possible to solve a series of problems that have been difficult to implement in the past, although they are necessary. It has become possible to measure the humidity during the boiling process with positive rjt (+) and easily.In addition, the temperature measuring method according to the present invention can be applied not only to boilers but also to high-temperature equipment in ponds. can.

4、図面の+7ti qi−な説明 第1図は本発明の実施にか\る管長手方向Gこ異材溶接
部を形成させたちの\側面図、第2図は周方向に異材溶
接部を形成したもの\正面図、第3図(ま第1図のA−
A断面図、第4図は第2図の縦断面Gこ相当し、溝部を
設は異材溶接部を形成した場合を示す図面、第5図はオ
ーステナイト系ステンレスS4を母材とする異材溶接部
の断面図、第6図は炭素鋼を母材とする異材溶接部の断
面図、第7図は脱炭層の幅と受けた温度との関係を示す
線図、第8図はクリープのひずみと時間の関係を示す図
面である。
4.+7tiqi- Explanation of the Drawings Figure 1 is a side view of a dissimilar metal weld formed in the longitudinal direction of a pipe according to the present invention, and Figure 2 is a side view of a dissimilar metal weld formed in the circumferential direction. What I did / Front view, Figure 3 (Also, A- in Figure 1)
A sectional view and Fig. 4 correspond to the longitudinal section G in Fig. 2, and the grooves are provided to form a dissimilar metal weld. Fig. 5 is a dissimilar metal weld with austenitic stainless steel S4 as the base material. Fig. 6 is a cross-sectional view of a dissimilar metal weld with carbon steel as the base material, Fig. 7 is a diagram showing the relationship between the width of the decarburized layer and the temperature received, and Fig. 8 is a diagram showing the relationship between creep strain and It is a drawing showing a time relationship.

1・・・・・・異材溶接部 2・・・・・・伝熱管 3・・・・・・溶接境界 4・・・・・−浸炭層 5・・・・・・脱炭層 第 l 丙 第2図 IW肩部娶邪 第3図 第4図 鵡5図 第6図1...Dissimilar metal welding part 2... Heat exchanger tube 3...Welding boundary 4...-Carburized layer 5... Decarburized layer No.1 C Figure 2 IW shoulder marriage Figure 3 Figure 4 Parrot 5 Figure 6

Claims (1)

【特許請求の範囲】 1、高温で使用される金属材料にあらかじめ該金属材料
とクロム含有量の異なる異種金属を溶着して異材溶接部
を作成しておき、該異材溶接部の溶接境界における脱炭
層およびまたは浸炭層の幅を測定し、あらかじめ作成し
ておいた脱炭層あるいは浸炭層の幅と温度の関係線図を
用いて、該金属材料が加熱された温度を測定することを
特徴とする金属材料が受けた温度の測定方法。 2、フェライト系材料にはオーステナイト系材料を、オ
ーステナイト系材料にはフェライト系材料を溶着して異
材溶接部を作成することを特徴とする特許請求の範囲第
1項記載の金属材料が受けた温度の測定方法。 3、管外面の周方向に異材溶接部を形成することを特徴
とする特許請求の範囲第2項記載の金属材料が受けた温
度の測定方法。 4、管外面の長手方向に異材溶接部を形成することを特
徴とする特許請求の範囲第2項記載の金属材料が受けた
温度の測定方法。 5、金属材料の表面に溝を堀り、この溝に母材とは異る
材料を溶着し異材溶接部を形成することを特徴とする特
許請求の範囲第1項ないし第4項のいずれかに記載の金
属材料が受けた温度の測定方法。
[Claims] 1. A dissimilar metal weld is created by welding dissimilar metals with different chromium contents to a metal material to be used at high temperatures in advance, and desorption at the weld boundary of the dissimilar weld is performed. The method is characterized in that the width of the coal layer and/or carburized layer is measured, and the temperature at which the metal material is heated is measured using a previously prepared relationship diagram between the width of the decarburized layer or the carburized layer and the temperature. A method of measuring the temperature experienced by metallic materials. 2. The temperature to which the metal material according to claim 1 is subjected, characterized in that the dissimilar metal weld is created by welding an austenitic material to the ferritic material and a ferritic material to the austenitic material. How to measure. 3. A method for measuring the temperature experienced by a metal material according to claim 2, which comprises forming a dissimilar metal weld in the circumferential direction of the outer surface of the tube. 4. A method for measuring the temperature experienced by a metal material according to claim 2, characterized in that a dissimilar metal weld is formed in the longitudinal direction of the outer surface of the tube. 5. Any one of claims 1 to 4, characterized in that a groove is dug in the surface of a metal material, and a material different from the base material is welded to the groove to form a dissimilar metal weld. A method for measuring the temperature experienced by a metal material as described in .
JP60283130A 1985-12-18 1985-12-18 Measurement of temperature received by metal material Pending JPS62144069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283130A JPS62144069A (en) 1985-12-18 1985-12-18 Measurement of temperature received by metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283130A JPS62144069A (en) 1985-12-18 1985-12-18 Measurement of temperature received by metal material

Publications (1)

Publication Number Publication Date
JPS62144069A true JPS62144069A (en) 1987-06-27

Family

ID=17661612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283130A Pending JPS62144069A (en) 1985-12-18 1985-12-18 Measurement of temperature received by metal material

Country Status (1)

Country Link
JP (1) JPS62144069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208214A (en) * 2005-01-28 2006-08-10 Babcock Hitachi Kk Thermal history estimating method of heat-resistant member
JP2016153754A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Welded section temperature estimation method
WO2016151954A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating use temperature of heat resistant member
JP2018059763A (en) * 2016-10-04 2018-04-12 株式会社Ihi Service temperature estimation method of stainless steel and life calculation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208214A (en) * 2005-01-28 2006-08-10 Babcock Hitachi Kk Thermal history estimating method of heat-resistant member
JP2016153754A (en) * 2015-02-20 2016-08-25 三菱日立パワーシステムズ株式会社 Welded section temperature estimation method
WO2016151954A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating use temperature of heat resistant member
JP2016183899A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Heat resistant member working temperature estimation method
JP2018059763A (en) * 2016-10-04 2018-04-12 株式会社Ihi Service temperature estimation method of stainless steel and life calculation method thereof

Similar Documents

Publication Publication Date Title
Masuyama Creep degradation in welds of Mod. 9Cr-1Mo steel
Pandey et al. Diffusible hydrogen level in deposited metal and their effect on tensile properties and flexural strength of P91 steel
Bahrami et al. Failure of AISI 304H stainless steel elbows in a heat exchanger
JP5614313B2 (en) Standard specimen for nondestructive inspection and its manufacturing method
Wu et al. Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment
JPS62144069A (en) Measurement of temperature received by metal material
Husain et al. Investigation of tubing failure of super-heater boiler from Kuwait Desalination Electrical Power Plant
Sultan et al. Corrosion behavior of thermal seamless carbon steel boiler pipes
Damjanović et al. The influence of residual stresses on fracture behavior of Pipe Ring Notched Bend specimen (PRNB)
Hilson et al. Spatial variation of residual stresses in a welded pipe for high temperature applications
Zangeneh et al. Thermal/stress analysis of a failed fire-tube heater treater
Almazrouee et al. Role of oxide notching and degraded alloy microstructure in remarkably premature failure of steam generator tubes
Ren et al. Failure analysis of a water wall tube
Grin’ et al. Metal Examination and an Assessment of a Feedwater Pipeline’s Reliability after Prolonged Operation
Sinnott et al. Carbon-molybdenum steel steam pipe after 100,000 hours of service
Kowalski et al. Influence of process of straightening ship hull structure made of 316L stainless steel on corrosion resistance and mechanical properties
Singh Raman Relevance of high-temperature oxidation in life assessment and microstructural degradation of Cr-Mo steel weldments
JPS62273441A (en) Nondestructive temperature measurement for metal material
JPH1164326A (en) Method for evaluating creep damage of weld of high-cr ferrite steel
White et al. Properties of boiler tubing at elevated temperatures determined by expansion tests
Wahab et al. Fracture mechanics evaluation of a 0.5 Mo carbon steel subjected to high temperature hydrogen attack
Tong et al. Intelligent Testing and Analysis of Dissimilar Steel Welds for Industrial Throttle Flowmeter
JPH06148062A (en) Method for evaluating service life of metallic material
Gutman Corrosion resistance of welded joints in gas transmission pipes in a hydrogen sulphide-bearing medium
Haase et al. SSC Resistance Testing of Heavy Wall Large-Diameter Pipes Using Full-Size Four-Point Bend Tests and DCB Tests